SOME THEORY AND PRACTICE
OF

GREEDY OFF-LINE TEXTUAL SUBSTITUTION

Alberto Apostolico Stefano Lonardi

PURDUE UNIVERSITY and UNIVERSITA DI PADOVA

[N

Lossless Compression by Textual Substitution

the optimum encoding problem for most macro schemes is N ’P-complete [Storer,

Szymanski 82]

<)

steepest descent OFF-LINE scheme
A
v
LZ macro schemes ([Ziv, Lempel 77], [Ziv, Lempel 78])

[1 have linear time implementations (e.g., [Rodeh, Pratt, Even 81])

[1 are highly constrained (unidirectional pointers, . ..)

o v,

[]

[| I

Findings

uniform improvement over PACK (Huffman) and COMPRESS (LZ-78)

improvement over GZIP (LZ-77) and BZIp [Burrows, Wheeler 94] for highly

random inputs (e.g., genetic sequences)
computationally intensive

viable to parallel implementation where advantageous
some unexpected tradeoffs

some interesting algorithmic and programming problems

-

Overall structure of OFF-LINE

x = < read the original text >;
repeat

D = < build a data structure containing, for every substring of the text z,

the number of its non overlapped occurrences >;
s = < choose from D the substring that maximizes the compression >;

x = < substitute all the occurrences of sinx >;

until < no further compression of & can be obtained >;
< run Huffman on the encoding >;

abaababaabaababaababa
1 23 456 7 8 91011 12 13 14 15 16 17 18 19 20 21

File Size Huffman LZ-78 LZ-77 BWT
(bytes) PACK COMPRESS | OFF-LINE GZIP BZIP2
bib 111,261 5.23 3.34 2.98 2.52 1.97
bookl 768,771 4.56 3.45 3.43 3.26 2.42
book2 610,856 4.82 3.28 2.88 2.70 2.06
geo 102,400 5.69 6.07 5.57 5.35 4.44
news 377,109 5.22 3.86 3.26 3.07 2.51
objl 21,504 6.07 5.22 4.45 3.84 4.01
obj2 246,814 6.30 4.17 3.50 2.64 2.47
paperl 53,161 5.03 3.77 3.29 2.79 2.49
paper2 82,199 4.64 3.51 3.19 2.89 2.43
pic 513,216 1.66 0.96 0.96 0.87 0.77
progc 39,611 5.25 3.86 3.29 2.68 2.53
progl 71,646 4.81 3.03 2.50 1.81 1.73
progp 49,379 4.91 3.11 2.70 1.82 1.73
trans 93,695 5.57 3.26 2.40 1.62 1.52
average 224,402 4.98 3.63 3.17 2.70 2.36
mito 78,521 1.84 1.82 1.73 1.97 1.84
chrl 230,195 2.19 2.18 2.16 2.30 2.16
chrVI 270,148 2.19 2.18 2.17 2.33 2.18

How to ...

[1 ...count the number of non overlapped occurrences of each substring
[1 augmented suffix tree

[1 ...search and substitute all the occurrences of a particular substring
[] balanced tree of text fragments

aba

aba..$
M\

123456789 10111213141516171819202122
abaababaabaababaababa$

(1]
ba$
14
aba..$
O (3]
ba$
1]
2]
10]

Augmented Suffix Tree

[1 collects compactly all the suffixes of a string and counts the number

non-overlapped occurrences

O construction: brute force O(n?); clever O(n log® n) [Apostolico, Preparata
96]

O query: O(m)
[space: O(nlogn) (probably O(n) [Mignosi, Breslauer p.c.])

[brute force construction: on average O(n logn)

aba

aba..$

123456789 10111213141516171819202122
abaababaabaababaababa$

o (1]
ba$
(14
aba..$
@ 3]
ba$
1]
2]
[10]

Balanced Tree of Text Fragments

22[g]<]e]

o

abaababaabaababaababa$

123456 7 8 9101112 13 14 15 16 17 18 19 20 21 22

abaaba ba abaaba ba aba ba$

12 3 4 567

-

Choosing and Computing a Gain measure (1/2)

average length of a symbol in bits

Assume an integer z can be encoded with [(2) bits, 712,, = |w

Leave one of the f,, non overlapped occurrences of w in the text, substitute the

other f,, — 1 with a pointer to the original one

. B =the

123456 7 8 9101112 13 14 15 16 17 18 19 20 21 22

'abaababaabaababaababa$

m\uégé

1(9,3) (9

3)badba(93)bal93)bas

123456 7 8 9101112 13 14 15 16 17 18 19 20 21 22

Nw3@€.+.ﬁ\8 =

(14 1(n) + 1(my)) +1

N

-

Choosing and Computing a Gain Measure (2/2)

Remove all the f,, non overlapped occurrences of w in the text, save w,

m., = |w|, f,, and the list of occurrences, compact the text

123456 7 8 9101112 13 14 15 16 17 18 19 20 21 22

7mcmmﬁmcmvcmvcmcﬁmcmgmw

B fumw

aba | 1491217

3 5

bababa$

1234567

Bmuy + 1(mw) + (fuw) + ful(n)

Remark: compute GG only at explicit nodes of the tree

A

OFF-LINE variants

[1 () substrings selection/substitution are performed between two consecutive
updates of the tree

[] OFF-LINE-SLOPPY

[1 all the prefixes of the current selection are replaced if capable to produce
compression

[] OFF-LINE-PREF

[1 only substrings which have length less than H are considered

[] OFF-LINE-PRUNED

A

OFE-LINE-SLOPPY on MItO

(size 78521)

Heap Size (Q) Substitutions Trees Ratio Time size %
1 787 788 1.0 100.0% 32,798 100.00%
10 799 83 9.6 12.11% 32,837 100.11%
100 910 13 70.0 4.21% 33,113 100.96%
1,000 1,174 4 293.5 4.44% 33,688 102.71%
OFF-LINE-SLOPPY on paper2 (size 82201)
Heap Size (Q) Substitutions Trees Ratio Time size %
1 165 165 1.0 100.0% 17,074 100.0%
10 170 22 1.7 14.8% 17,141 100.4%
100 303 7 43.3 7.06% 17,440 102.1%
1,000 619 3 | 206.3 8.86% | 17,861 | 104.6%

File Size Iterations

(bytes) OFF-LINE
bib 111,261 927
book1l 768,771 5,255
book2 610,856 4,193
geo 102,400 764
news 377,109 2,902
objl 21,504 215
obj2 246,814 1,751
paperl 53,161 663
paper2 82,199 811
pic 513,216 113
progc 39,611 537
progl 71,646 611
progp 49,379 453
trans 93,695 616
mito 78,521 170
chrl 230,195 77
chrVi 270,148 35

-

Final remarks

[1 Data structures and algorithms

[] parallel implementation

[1 update the (pruned) augmented suffix tree
[1 Empirical studies

[] fine-tune the function G
[] reiterate the compression on the substrings removed
[1 experiment other encodings (arithmetic, move to front)

L1 hybrid with other schemes

A

Suffix Tree

[J collects compactly all the suffixes of z$

(] construction: brute force O (n?); clever O(n) [Weiner 73], [McCreight 76],
[Ukkonen 95] - in parallel O(log n) using n processors [AILSV 83]

[query time: O(m)

[space: O(n)

74], [Apostolico, Szpankowski 92], [Chang, Lawler 94])

[1 occurrences of a substring w = leaves reachable from the node rooted at w

But . ..we need the statistic of non overlapped occurrences

A

[1 brute force construction: on average QAS log 3 (e.g. [Aho, Hopcroft, Ullman

v,

b a aba..$
3) @ 1]
$ ba$
— 1] (14
ab a aba..$
@ 3]
$ ba$
16] 111]
ba mcm m

123456789 10111213141516171819202122
abaababaabaababaababa$

e

A

Allocating the Augmented Suffix Tree

[1 structure of the node (array, linked list, balanced search tree, global hash
table)

[1 space considerations (linked list 20 bytes per node), avg 1.5 node per symbol
[1 avg 30 bytes per symbol (bps)
[two indices |1, 7]
[1 one pointer to list of children
[] one pointer to list of siblings
[1 one counter for the number of non overlapped occurrences
[] variations (Patricia 12bps [Morrison 68], suffix-array 6bps [Manber, Myers 93],

suffix-cactus 9bps [Kaerkkaeinen 95], level compressed trie 11bps
[Andersson, Nilsson 95])

v,

Dynamic text and statistics indexing problem

[1 the augmented suffix tree is a suitable data structure for our needs
[1 how the tree is modified if we delete a char in the text?
[1 what happens if we delete all the occurrences of a substring?

[1 is there an algorithm to “update” efficiently the tree and its statistics?

[1 dynamic text problem [McCreight 76], [Fiala, Green 89], [Gu, Farach, Beigel
94], [Ferragina 97]

A

