Compression of Biological Sequences by Greedy Off-line Textual Substitution

Alberto Apostolico Stefano Lonardi

Purdue University

Università di Padova

Genetic Databases

- Massive
- Growing exponentially

Example: GenBank contains approximately 4,654,000,000 bases in 5,355,000 sequence records as of December 1999

DNA Sequence Records

Composed by annotations (in English) and DNA bases (on the alphabet {A,C,G,T,U,M,R,W,S,Y,K,V,H,D,B,X,N}}

GATTGTAGAAAATCACAGCG

MEK1 MEK1 upstream sequence, from -200 to -1

AGATATATATCCGTTTCGTACTCAGTGACGTACCGGGCGTAGAAGTTGGGCGGCTA TTTGACAGATATATCAAAAATATTGTCATGAACTATACCATATACAACTTAGGATAAAA

Problem

Textual compression of DNA data is difficult, i.e., "standard" methods do not seem to exploit the redundancies (if any) inherent to DNA sequences

cfr. C.Nevill-Manning, I.H.Witten, "Protein is incompressible", DCC99

Findings and Improvements

- A third scheme (Off-line₃) has been designed
- Compression time has been improved using a few "tuned" heuristics
- Compression performance on a single DNA sequences is substantially better than other generic textual compression methods
- Compression performance approaches the methods specifically designed for DNA sequences
- The best performance is in the compression of families of DNA sequences

Overall Structure of Off-line

Off-line (string x)

repeat

- build an index T of the substrings w of the text x, and collect f_w (count of non-overlapping occurrences)
- choose Q substrings $s_1,...,s_Q$ in T which maximize the gain function G
- substitute the occurrences of $s_1,...,s_Q$ in x with pointers

until no further compression of x can be obtained

Data Structures

- Index T: min. augmented suffix tree
 - construction O(n log²(n))
 - annotation with the count of nonoverlapping occurrences O(n)
- text x stored in a balanced tree of text fragments
 - frequent deletions and string searches

Off-line Comparison

	Paper2	Paper2	Mito	Mito
01	size	time [min]	size	time [min]
Off-line ₁	30,848	3.21	16,426	1.66
Off-line ₂	33,757	3.01	17,741	2.24
Off-line ₃	30,219	2.38	16,086	2.38

300 Mhz/128 MB machine running Solaris

Heuristics

- Queue collect Q substrings from T with "high utilization" potential
- Pruning consider only substrings of length < L
- "Standard" suffix tree faster to build but less accurate (i.e., counts overlapping occurrences)

- Off-line appears to be a solid first step to tackle the problem of compression of genetic sequences
- Next: specialize Off-line for DNA with "biological knowledge" (e.g., palindromic/approximate occurrences)

