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General problem

• Input: A list of DNA sequences
• Output: A list of short DNA strings of 

length 20-50 bases (oligos)
– occur only once in each DNA sequence 

(“unique” oligos problem)
or
– occur in as many DNA sequences as 

possible (“popular” oligos problem)
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Barley genome (H. vulgare)

• Size is ˜ 5x109 bases
– 12 times the size of Rice
– 35 times the size of Arabidopsis

• Too large for whole sequencing
• Strategy

– Build a BAC library of Barley
– Identify/sequence only the BACs

containing the genes (expected ˜ 10%)

Method

• An EST database for Barley is available
• Use the EST db to identify a set of 

“popular” oligos that hybridize with as 
many genes/EST as possible (maximize 
coverage)

• Use as little oligos/filter/screens as 
possible (minimize time and money)
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Objectives

• Maximize the coverage ratio
(number of covered ESTs/number of 
oligos)

• Minimize the computational resources 
(memory, time)

Barley EST db

• Composed by ˜ 350K EST sequences
• Cleaned (quality-trimming, cleaned of 

contaminants, etc.)
• Assembled (pre-clustered, assembled)
• Final dataset (HarvEST v1.07) 

– 46,145 unigenes
– 28,475,016 bases
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Related work

• Pattern discovery (Meme, Teiresias, Pratt, 
Gibbs, Projection, Weeder, etc.) cannot be 
used because of the large input size

• Primer/probe design typically use all-against-
all BLAST (eg., [Li&Stormo’01], [Rouillard et 
al.’02]) are extremely slow

• Rahmann [CSB’02] uses suffix arrays 
(requires ˜ 50 hours on Compaq Alpha with 
16GB RAM on a dataset of 40Mbases)

Def: (c,d)-match

• Given integers c and d and strings w and 
y, |w|=|y|, we say that w (c,d)-match y iff
w and y can be partitioned in substrings 
w=w1w2w3 and y=y1y2y3 such that

• |w1|=|y1| and |w3|=|y3|
• w2=y2, |w2|=|y2|=c (core)
• H(w1w3 ,y1y3)=d

l=16, c=8, d=3

acaatatgagaccctt

agaatatgagacgcat

w1

y1

w2

y2

w3

y3
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Def: (c,d)-coverage

• Given a set X={x1,…,xk }, a string y and 
integers c and d, the (c,d)-coverage of y 
is the number of sequences of X
containing each at least one (c,d)-match 
of y

• Integer l to denote the length of y (l-mer)

“popular oligos” problem

• Given X={x1,…,xk } and integers l, d, c
and T, find all strings of length l such 
that their (c,d)-coverage in X is =T

• We call these strings “popular oligos”
• In our experiments

l=36, c=20, d=2 or 3, T=2…50
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Observations

• Note that a popular oligo may never appear 
exactly in X

• Enumerating/counting all                 possible 
(c,d)-matches of each l-mer in X is 
computationally impractical

• For example, if l=36, c=20, d=3, |Σ|=4, one 
should count ˜ 15K (20,3)-matches for each 
36mer. We have 2*28M 36mers, for a total of 
846B elementary operations

( )1
dl c

d
− 

Σ − 
 

Heuristics: phase one

• Build an hash table for the cores
• For each core w2 that appears in =Tc

(core coverage threshold) sequences
– Collect all flanking regions w1w3, such that 

w1w2w3 is an l-mer with popular core w2

– Run phase two on set of all extensions 
w1w3
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Example: phase one

AAAAGGCAGCTTATAATCTCCATATCGCTG

GTGAAGGAGGTAGATACTCGTATACGATCACTGCCTA
>EST3
GGCCCGTGCGC

TCCGACTACTGCACCCCGAGCGGATCACACAATGGAA
>EST2
AGGCAGCTTATAATCTCCACTGCT

GTGAAGGAGGTAGATCAAATAGAGCCTGCCCTAAAA
>EST1

GGCGA
TGGAGTCCTCGGACACGATCACATCGACAATGTGAA
>EST0

33GAAGG

TGAAG

0

ATCAC

AAGGC

GTGAA

GATCA

ACTGC

32

0

0

17

340

0 31

0 16

1 54

1

1 1

2

2 23

1 35

1 0

1 12

2 7

2 34

13

3 26

2 35

3 0

2 22

3 29

23

3 40

3 25

l=8, c=5, d=1, Tc=3

Example: phase one
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>EST2
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0
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Heuristics: phase two (UPGMA)

• Place all w1w3 at the leaves of the tree & merge 
identical leaves

• Build the UPGMA* tree on Hamming distance
• Create a set of d-mutants for each string in the 

leaves of the tree
• Traverse the tree bottom-up performing set 

intersection
– as soon as intersection is empty, separate the 

subtree from the rest of the tree
• The sets at the root of each tree in the forest 

represent the candidate popular oligo
* Unweighed Pair Group Method with Arithmetic Mean

Example : phase two (UPGMA)

GTG GAAAGGC 1. GTG 1. TGG
2. AAA2. AAA

3. TGG
4. AAA

3. GGC
4. AAA

set 1 set 2

1. GGA

3. GCC
4. AAG

2. AAG 1. AGC

3. AGC
2. CCG

AAA AAGGC AGC
AAGGCTGG CCG
AAGGC AGCAAA

flanking region

core

set 3 set 4

l=8, c=5, d=1, Tc=3

occurrencescore AAGGC
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Example : phase two (UPGMA)

GTG GAAAGGC 1. GTG 1. TGG
2. AAA2. AAA

3. TGG
4. AAA

3. GGC
4. AAA

set 1 set 2

1. GGA

3. GCC
4. AAG

2. AAG 1. AGC

3. AGC
2. CCG

AAA AAGGC AGC
AAGGCTGG CCG
AAGGC AGCAAA

flanking region

core

set 3 set 4

l=8, c=5, d=1, Tc=3

occurrencescore AAGGC

Example : phase two (UPGMA)

3
2
3
0

0
3
0
3

3
0
3
2

0
3
0
3

AAA
GGC
AAA
TGG

4
3

1
2

1 2 3 4

make tree

compressionAfter

Before compression

1 3 (2, 4)

I

3I
I 1

2

2 4 1 3

1

2

3

I

IImake tree

GGC

1 (2, 4)3

3
0
3

3
2

0 2
3
0

AAA
TGG1

(2, 4)
3

set 2

l=8, c=5, d=1, Tc=3

TGG

TGGAAA

AAA

AAA

GCG

GCG
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Example : phase two (UPGMA)

3
2
3
0

0
3
0
3

3
0
3
2

0
3
0
3

AAA
GGC
AAA
TGG

4
3

1
2

1 2 3 4

make tree

compressionAfter

Before compression

1 3 (2, 4)

I

3I
I 1

2

2 4 1 3

1

2

3

I

IImake tree

GGC

1 (2, 4)3

3
0
3

3
2

0 2
3
0

AAA
TGG1

(2, 4)
3

set 2

H(AAA,AAA)=0

l=8, c=5, d=1, Tc=3

TGG

TGGAAA

AAA

AAA

GCG

GCG

Example : phase two (UPGMA)

CGG
GGG
TAG
TCG
TTG
TGA
TGC
TGT

AGG AGC
CGC
TGC
GAC
GCC
GTC
GGA
GGG
GGT

emtpyI 2

1 3 (2, 4)

I 1

I 3

= I 1

1 3

cluster1

(2, 4)

I 3

cluster2

cut tree

Candidates (from core AAGGC):

AAAAGGCA
AGAAGGCA
GGAAGGCG
CAAAGGCA
ATAAGGCA

TGAAGGCC
GAAAGGCA
AAAAGGCC
TAAAGGCA
AAAAGGCG

ACAAGGCA AAAAGGCT

TAA

ATA

CAA
GAA

ACA
AGA

AAC

AAT
AAG

1-mutants of TGG: 1-mutants of GGC:1-mutants of AAA:

l=8, c=5, d=1, Tc=3

AAA

TGG AAAGCG

TGG GCG

AAA TGG GCG
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Example : phase two (UPGMA)

CGG
GGG
TAG
TCG
TTG
TGA
TGC
TGT

AGG AGC
CGC
TGC
GAC
GCC
GTC
GGA
GGG
GGT

emtpyI 2

1 3 (2, 4)

I 1

I 3

= I 1

1 3

cluster1

(2, 4)

I 3

cluster2

cut tree

Candidates (from core AAGGC):

AAAAGGCA
AGAAGGCA
GGAAGGCG
CAAAGGCA
ATAAGGCA

TGAAGGCC
GAAAGGCA
AAAAGGCC
TAAAGGCA
AAAAGGCG

ACAAGGCA AAAAGGCT

TAA

ATA

CAA
GAA

ACA
AGA

AAC

AAT
AAG

1-mutants of TGG: 1-mutants of GGC:1-mutants of AAA:

l=8, c=5, d=1, Tc=3

AAA

TGG AAAGCG

TGG GCG

AAA TGG GCG

Heuristics: phase three

• Radix sort the candidate oligos to 
remove duplicates

• Discard unsuitable oligos
– low-complexity strings (polyA, polyT, etc.)
– 44% < GC-content < 56%

• Compute coverage
• Compress/correct oligos 
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Overview: phase one
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Overview: phase three
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Limitation of the heuristics

• Cores which have coverage below Tc
are called unpopular

• A l-mer can (c,d)-match with any of its l-
c+1 cores

• We will miss popular oligos which 
popularity depend on a combination of 
several unpopular cores
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Simulations

• Generate {x1,…,xk } random sequences
• Inject {I1,…,Is } popular oligos with d

errors outside a core of length c, with 
coverage {C1,…,Cs } (Gaussian 
distribution, max coverage R)

• Run the popular oligo algorithm on 
{x1,…,xk }

Simulation

• Obtain {O1,…,Ot } with coverage 
{C’1,…,C’s } (sorted)

• {O1,…,Ot } is compressed
• Compare (I,C) with (O,C’)
• For each 1=i=u for u=min(s,t) we 

compute

1

'1
( , ')

'

u
i i

i i

C C
E C C

u C=

−
= ∑
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Simulation results

• k=2000, |xi|=720, c=20, s=100, R=100

• We never miss any oligo whose coverage is 
above Tc+10

0.250.07Tc=30

0.310Tc=25

0.060.6Tc=20

0.070Tc=15

5.301.89Tc=10

d=3d=2E*100

Experimental results

• l=36  (oligo length)
• c=20 (core length)
• d=2,3   (max mismatches outside core)
• Tc=varies  (core coverage threshold)
• k=46,145 unigenes
• n=28 million bases
• PC with 1.2 GHz CPU and 1GB memory



16

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55

core coverage threshold

unigene covered oligos candidates (M) time (min) coverage ratio

Coverage graph

½h

2½h

18½h

2782

896

312329

38

7

Current & Future work

• Progressive processing to reduce 
memory requirements

• Fine tuning & optimization of the code
• New strategies to improve coverage 

ratio
• New definition for popular/unique oligos
• Parallel implementation
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Complexity

• Build a seed table O(cn)
• Collect flanking substrings O(nr(l-c))

where r is # occurrences of cores
• Building UPGMA 

• Counting colors for m candidate
O(rm(l-c))

3dl c
O r

d
−  

  
  
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UPGMA + intersection

TGG GCG
GGG

TGC AAA


