
1

Efficient Selection of Unique and
Popular Oligos for Large EST Databases

Stefano Lonardi
University of California, Riverside

joint work with
Jie Zheng, Timothy Close, Tao Jiang

University of California, Riverside

General problem

• Input: A list of DNA sequences
• Output: A list of short DNA strings of

length 20-50 bases (oligos)
– occur only once in each DNA sequence

(“unique” oligos problem)
or
– occur in as many DNA sequences as

possible (“popular” oligos problem)

2

Barley genome (H. vulgare)

• Size is ˜ 5x109 bases
– 12 times the size of Rice
– 35 times the size of Arabidopsis

• Too large for whole sequencing
• Strategy

– Build a BAC library of Barley
– Identify/sequence only the BACs

containing the genes (expected ˜ 10%)

Method

• An EST database for Barley is available
• Use the EST db to identify a set of

“popular” oligos that hybridize with as
many genes/EST as possible (maximize
coverage)

• Use as little oligos/filter/screens as
possible (minimize time and money)

3

Objectives

• Maximize the coverage ratio
(number of covered ESTs/number of
oligos)

• Minimize the computational resources
(memory, time)

Barley EST db

• Composed by ˜ 350K EST sequences
• Cleaned (quality-trimming, cleaned of

contaminants, etc.)
• Assembled (pre-clustered, assembled)
• Final dataset (HarvEST v1.07)

– 46,145 unigenes
– 28,475,016 bases

4

Related work

• Pattern discovery (Meme, Teiresias, Pratt,
Gibbs, Projection, Weeder, etc.) cannot be
used because of the large input size

• Primer/probe design typically use all-against-
all BLAST (eg., [Li&Stormo’01], [Rouillard et
al.’02]) are extremely slow

• Rahmann [CSB’02] uses suffix arrays
(requires ˜ 50 hours on Compaq Alpha with
16GB RAM on a dataset of 40Mbases)

Def: (c,d)-match

• Given integers c and d and strings w and
y, |w|=|y|, we say that w (c,d)-match y iff
w and y can be partitioned in substrings
w=w1w2w3 and y=y1y2y3 such that

• |w1|=|y1| and |w3|=|y3|
• w2=y2, |w2|=|y2|=c (core)
• H(w1w3 ,y1y3)=d

l=16, c=8, d=3

acaatatgagaccctt

agaatatgagacgcat

w1

y1

w2

y2

w3

y3

5

Def: (c,d)-coverage

• Given a set X={x1,…,xk }, a string y and
integers c and d, the (c,d)-coverage of y
is the number of sequences of X
containing each at least one (c,d)-match
of y

• Integer l to denote the length of y (l-mer)

“popular oligos” problem

• Given X={x1,…,xk } and integers l, d, c
and T, find all strings of length l such
that their (c,d)-coverage in X is =T

• We call these strings “popular oligos”
• In our experiments

l=36, c=20, d=2 or 3, T=2…50

6

Observations

• Note that a popular oligo may never appear
exactly in X

• Enumerating/counting all possible
(c,d)-matches of each l-mer in X is
computationally impractical

• For example, if l=36, c=20, d=3, |Σ|=4, one
should count ˜ 15K (20,3)-matches for each
36mer. We have 2*28M 36mers, for a total of
846B elementary operations

()1
dl c

d
− 

Σ − 
 

Heuristics: phase one

• Build an hash table for the cores
• For each core w2 that appears in =Tc

(core coverage threshold) sequences
– Collect all flanking regions w1w3, such that

w1w2w3 is an l-mer with popular core w2

– Run phase two on set of all extensions
w1w3

7

Example: phase one

AAAAGGCAGCTTATAATCTCCATATCGCTG

GTGAAGGAGGTAGATACTCGTATACGATCACTGCCTA
>EST3
GGCCCGTGCGC

TCCGACTACTGCACCCCGAGCGGATCACACAATGGAA
>EST2
AGGCAGCTTATAATCTCCACTGCT

GTGAAGGAGGTAGATCAAATAGAGCCTGCCCTAAAA
>EST1

GGCGA
TGGAGTCCTCGGACACGATCACATCGACAATGTGAA
>EST0

33GAAGG

TGAAG

0

ATCAC

AAGGC

GTGAA

GATCA

ACTGC

32

0

0

17

340

0 31

0 16

1 54

1

1 1

2

2 23

1 35

1 0

1 12

2 7

2 34

13

3 26

2 35

3 0

2 22

3 29

23

3 40

3 25

l=8, c=5, d=1, Tc=3

Example: phase one

AAAAGGCAGCTTATAATCTCCATATCGCTG

GTGAAGGAGGTAGATACTCGTATACGATCACTGCCTA
>EST3
GGCCCGTGCGC

TCCGACTACTGCACCCCGAGCGGATCACACAATGGAA
>EST2
AGGCAGCTTATAATCTCCACTGCT

GTGAAGGAGGTAGATCAAATAGAGCCTGCCCTAAAA
>EST1

GGCGA
TGGAGTCCTCGGACACGATCACATCGACAATGTGAA
>EST0

33GAAGG

TGAAG

0

ATCAC

AAGGC

GTGAA

GATCA

ACTGC

32

0

0

17

340

0 31

0 16

1 54

1

1 1

2

2 23

1 35

1 0

1 12

2 7

2 34

13

3 26

2 35

3 0

2 22

3 29

23

3 40

3 25

l=8, c=5, d=1, Tc=3

8

Heuristics: phase two (UPGMA)

• Place all w1w3 at the leaves of the tree & merge
identical leaves

• Build the UPGMA* tree on Hamming distance
• Create a set of d-mutants for each string in the

leaves of the tree
• Traverse the tree bottom-up performing set

intersection
– as soon as intersection is empty, separate the

subtree from the rest of the tree
• The sets at the root of each tree in the forest

represent the candidate popular oligo
* Unweighed Pair Group Method with Arithmetic Mean

Example : phase two (UPGMA)

GTG GAAAGGC 1. GTG 1. TGG
2. AAA2. AAA

3. TGG
4. AAA

3. GGC
4. AAA

set 1 set 2

1. GGA

3. GCC
4. AAG

2. AAG 1. AGC

3. AGC
2. CCG

AAA AAGGC AGC
AAGGCTGG CCG
AAGGC AGCAAA

flanking region

core

set 3 set 4

l=8, c=5, d=1, Tc=3

occurrencescore AAGGC

9

Example : phase two (UPGMA)

GTG GAAAGGC 1. GTG 1. TGG
2. AAA2. AAA

3. TGG
4. AAA

3. GGC
4. AAA

set 1 set 2

1. GGA

3. GCC
4. AAG

2. AAG 1. AGC

3. AGC
2. CCG

AAA AAGGC AGC
AAGGCTGG CCG
AAGGC AGCAAA

flanking region

core

set 3 set 4

l=8, c=5, d=1, Tc=3

occurrencescore AAGGC

Example : phase two (UPGMA)

3
2
3
0

0
3
0
3

3
0
3
2

0
3
0
3

AAA
GGC
AAA
TGG

4
3

1
2

1 2 3 4

make tree

compressionAfter

Before compression

1 3 (2, 4)

I

3I
I 1

2

2 4 1 3

1

2

3

I

IImake tree

GGC

1 (2, 4)3

3
0
3

3
2

0 2
3
0

AAA
TGG1

(2, 4)
3

set 2

l=8, c=5, d=1, Tc=3

TGG

TGGAAA

AAA

AAA

GCG

GCG

10

Example : phase two (UPGMA)

3
2
3
0

0
3
0
3

3
0
3
2

0
3
0
3

AAA
GGC
AAA
TGG

4
3

1
2

1 2 3 4

make tree

compressionAfter

Before compression

1 3 (2, 4)

I

3I
I 1

2

2 4 1 3

1

2

3

I

IImake tree

GGC

1 (2, 4)3

3
0
3

3
2

0 2
3
0

AAA
TGG1

(2, 4)
3

set 2

H(AAA,AAA)=0

l=8, c=5, d=1, Tc=3

TGG

TGGAAA

AAA

AAA

GCG

GCG

Example : phase two (UPGMA)

CGG
GGG
TAG
TCG
TTG
TGA
TGC
TGT

AGG AGC
CGC
TGC
GAC
GCC
GTC
GGA
GGG
GGT

emtpyI 2

1 3 (2, 4)

I 1

I 3

= I 1

1 3

cluster1

(2, 4)

I 3

cluster2

cut tree

Candidates (from core AAGGC):

AAAAGGCA
AGAAGGCA
GGAAGGCG
CAAAGGCA
ATAAGGCA

TGAAGGCC
GAAAGGCA
AAAAGGCC
TAAAGGCA
AAAAGGCG

ACAAGGCA AAAAGGCT

TAA

ATA

CAA
GAA

ACA
AGA

AAC

AAT
AAG

1-mutants of TGG: 1-mutants of GGC:1-mutants of AAA:

l=8, c=5, d=1, Tc=3

AAA

TGG AAAGCG

TGG GCG

AAA TGG GCG

11

Example : phase two (UPGMA)

CGG
GGG
TAG
TCG
TTG
TGA
TGC
TGT

AGG AGC
CGC
TGC
GAC
GCC
GTC
GGA
GGG
GGT

emtpyI 2

1 3 (2, 4)

I 1

I 3

= I 1

1 3

cluster1

(2, 4)

I 3

cluster2

cut tree

Candidates (from core AAGGC):

AAAAGGCA
AGAAGGCA
GGAAGGCG
CAAAGGCA
ATAAGGCA

TGAAGGCC
GAAAGGCA
AAAAGGCC
TAAAGGCA
AAAAGGCG

ACAAGGCA AAAAGGCT

TAA

ATA

CAA
GAA

ACA
AGA

AAC

AAT
AAG

1-mutants of TGG: 1-mutants of GGC:1-mutants of AAA:

l=8, c=5, d=1, Tc=3

AAA

TGG AAAGCG

TGG GCG

AAA TGG GCG

Heuristics: phase three

• Radix sort the candidate oligos to
remove duplicates

• Discard unsuitable oligos
– low-complexity strings (polyA, polyT, etc.)
– 44% < GC-content < 56%

• Compute coverage
• Compress/correct oligos

12

Overview: phase one

Cut tree

1

2

3

1

2

3

1

2

3

set 17set 2set 1

. . .

17 sets of 36-mers that share the core at a specific position

popular cores

1 2 3

1 2

Table of

1 2 3

1 2

Table of seeds

UPGMA tree

Compute candidates

Build tree

Compute
Coverage

Collect flanking regions

List of candidates

Select

Hashing

Input
EST

Discard
unsuitable
oligos

Compute
Coverage

Output
oligos

Compression
& correction

Overview: phase two (UPGMA)

Cut tree

1

2

3

1

2

3

1

2

3

set 17set 2set 1

. . .

17 sets of 36-mers that share the core at a specific position

popular cores

1 2 3

1 2

Table of

1 2 3

1 2

Table of seeds

UPGMA tree

Compute candidates

Build tree

Compute
Coverage

Collect flanking regions

List of candidates

Select

Hashing

Input
EST

Discard
unsuitable
oligos

Compute
Coverage

Output
oligos

Compression
& correction

13

Overview: phase three

Cut tree

1

2

3

1

2

3

1

2

3

set 17set 2set 1

. . .

17 sets of 36-mers that share the core at a specific position

popular cores

1 2 3

1 2

Table of

1 2 3

1 2

Table of seeds

UPGMA tree

Compute candidates

Build tree

Compute
Coverage

Collect flanking regions

List of candidates

Select

Hashing

Input
EST

Discard
unsuitable
oligos

Compute
Coverage

Output
oligos

Compression
& correction

Limitation of the heuristics

• Cores which have coverage below Tc
are called unpopular

• A l-mer can (c,d)-match with any of its l-
c+1 cores

• We will miss popular oligos which
popularity depend on a combination of
several unpopular cores

14

Simulations

• Generate {x1,…,xk } random sequences
• Inject {I1,…,Is } popular oligos with d

errors outside a core of length c, with
coverage {C1,…,Cs } (Gaussian
distribution, max coverage R)

• Run the popular oligo algorithm on
{x1,…,xk }

Simulation

• Obtain {O1,…,Ot } with coverage
{C’1,…,C’s } (sorted)

• {O1,…,Ot } is compressed
• Compare (I,C) with (O,C’)
• For each 1=i=u for u=min(s,t) we

compute

1

'1
(, ')

'

u
i i

i i

C C
E C C

u C=

−
= ∑

15

Simulation results

• k=2000, |xi|=720, c=20, s=100, R=100

• We never miss any oligo whose coverage is
above Tc+10

0.250.07Tc=30

0.310Tc=25

0.060.6Tc=20

0.070Tc=15

5.301.89Tc=10

d=3d=2E*100

Experimental results

• l=36 (oligo length)
• c=20 (core length)
• d=2,3 (max mismatches outside core)
• Tc=varies (core coverage threshold)
• k=46,145 unigenes
• n=28 million bases
• PC with 1.2 GHz CPU and 1GB memory

16

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55

core coverage threshold

unigene covered oligos candidates (M) time (min) coverage ratio

Coverage graph

½h

2½h

18½h

2782

896

312329

38

7

Current & Future work

• Progressive processing to reduce
memory requirements

• Fine tuning & optimization of the code
• New strategies to improve coverage

ratio
• New definition for popular/unique oligos
• Parallel implementation

17

Complexity

• Build a seed table O(cn)
• Collect flanking substrings O(nr(l-c))

where r is # occurrences of cores
• Building UPGMA

• Counting colors for m candidate
O(rm(l-c))

3dl c
O r

d
−  

  
  

18

UPGMA + intersection

TGG GCG
GGG

TGC AAA

