
UNIVERSIT�A DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA ELETTRONICA

E INFORMATICA

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA

ED ELETTRONICA INDUSTRIALI

X ciclo

Off-Line Data Compression

By Textual Substitution

Stefano Lonardi

Tutor Coordinatore
Ch.mo Prof. Alberto Apostolico Ch.mo Prof. Luigi Malesani

31 Dicembre 1998

Sommario

Un aspetto centrale nella gestione digitale dell'informazione �e lo sviluppo di

metodi per la rappresentazione e�ciente dell'informazione stessa. La com-

pressione dati si interessa di algoritmi, protocolli e codici capaci di produrre

rappresentazioni \concise" dell'informazione.

In questa Tesi ci concentriamo sulla compressione dati senza perdita di in-

formazione (lossless) ed in particolare su alcuni metodi di sostituzione testuale

(textual substitution) che traggono origine da idee di Ziv e Lempel [178, 179, 180]

in seguito generalizzate da Storer e Szymanski [149, 150, 152]. Tali metodi sono

oggi alla base di numerosi programmi di compressione, quali ad esempio Com-

press, Gzip, Zip, PkZip, StuffIt, Stacker, ed altri, comunemente utilizzati

per ridurre le dimensioni di archivi in memoria secondaria e/o per diminuire i

tempi di trasmissione sulle reti di comunicazione digitale. Sono anche realizzati

in hardware nei protocolli di trasmissione di Fax, Modem, e router di rete, e

sono usati in crittogra�a per ridurre le possibilit�a di criptoanalisi.

Questa Tesi studia un approccio alla compressione dati chiamato Off-Line

costruito intorno al seguente paradigma. L'analisi fuori linea (cio�e dopo che i

dati sono stati caricati in memoria centrale) identi�ca nel testo da comprimere

una sottostringa particolarmente ridondante e ne sostituisce tutte le possibili

occorrenze non sovrapposte con altrettanti puntatori ad una copia comune.

La sottostringa viene scelta in modo da ottenere a quello stadio la massima

compressione possibile. Il processo viene ripetuto sul testo compresso �nch�e non

�e pi�u possibile trovare una parola in grado di produrre ulteriore compressione.

A dispetto della apparente semplicit�a dello schema, la sua realizzazione e�-

ciente presenta interessanti problemi algoritmici, scelte progettuali riguardanti

strutture dati avanzate, e lo sviluppo di euristiche atte a ridurre i tempi di cal-

colo. Il lavoro descritto in questa tesi riguarda speci�catamente questi aspetti

e tralascia deliberatamente gli aspetti algoritmici e combinatoriali che sotten-

dono questi sviluppi, aspetti che formano oggetto e di cui si da resoconto nelle

pubblicazioni allegate in Appendice.

Nella maggior parte dei casi, le realizzazioni risultanti dal paradigma Off-

Line attingono a compressioni superiori a quelle raggiunte dai pi�u noti pro-

grammi di compressione di tipo sostituzionale. Su dati non strutturati, quali

ad esempio le sequenze genetiche, la prestazione raggiunta �e migliore per�no

di quella di BZip, l'attuale \stato dell'arte" basato sull'algoritmo di context-

sorting di Burrows e Wheeler [30].

iii

Dipartimento di Ingegneria Elettronica ed Informatica

Via Gradenigo 6/a { 35131 Padova { Italy

E-mail: stelo@dei.unipd.it

Abstract

One crucial concern of digital information processing consists precisely of devel-

oping increasingly e�cient methods for the representation of information itself.

Data compression studies algorithms, protocols, schemes, and codes capable to

produce \concise" representations of information.

In this Thesis, we focus the attention on lossless data compression and in

particular on some textual substitution methods that were pioneered by Lem-

pel and Ziv [178, 179, 180] and generalized later by Storer and Szymanski

[149, 150, 152]. These methods are implemented today in many compression

programs such as Compress, Gzip, Zip, PKZip, StuffIt, Stacker, etc.,

commonly used to reduce the size of archives on secondary memory and/or

to speed up transmissions on computer networks. They are also realized in

hardware in many communication protocols of Fax machines, Modems, and

network routers, and also in cryptography to make the encryption stronger.

This Thesis studies an approach to data compression calledOff-Line based

on the following paradigm. An analysis conducted o�-line (i.e., assuming that

the entire text-string to be compressed is already available) identi�es in the text

a substring which is highly redundant. Next, the occurrences of this substring

in a maximal set of non-overlapping occurrences are substituted with as many

pointers to a suitable reference copy. The substring itself is chosen so as to

maximize the expected contraction it would induce on the text once substituted

as above. The process is then iterated until no word capable of producing

further compression can be found.

Despite of the apparent simplicity of the scheme, its e�cient realization

raises challenging and interesting algorithmic problems. Furthermore, advanced

data structures and heuristics have to be designed and implemented in order to

reduce the computation time. The work described in this Thesis is concerned

speci�cally with these aspects and disregards the algorithmic and combinatorial

issues that subtend these developments, issues that form the object of the al-

ready published records reported as here in the References and as an Appendix.

In most of the cases, the implementations of the Off-Line paradigm attain

a compression e�ciency higher than other textual substitution programs. When

input �les are unstructured, notably, with genetic sequences, the performance

is even higher that BZip, the current \state of the art" based on the context-

sorting algorithm by Burrows and Wheeler [30].

v

Acknowledgments

First and foremost, I would like to thank Alberto Apostolico for his advice,

interest, and encouragement during the collaboration that led to this Thesis. He

�rst sparked my interest in the theory of algorithms on strings, computational

biology and lossless data compression.

At Purdue University, thanks go to Vernon Rego for granting use of the

PC-cluster on which many experiments were performed, to Mike Atallah for an

enlightening course on algorithms, and to Valerio Pascucci for introducing me

to STL.

At University of Padova, I am indebted to Giorgio Satta for many stimu-

lating discussions on su�x trees and algorithms on strings.

Special thanks goes to James Storer who contributed some interesting ideas;

to Andreas Dress, Stefan Kurtz, Gene Myers, and Bernhard Balkenhol for a

fruitful period in Bielefeld; to Jean Loup Gailly, Mark Adler, and Mark Nelson

for having produced and made public helpful code on data compression.

During the time spent doing my research I feel particularly lucky to have had

the opportunity to meet and exchange ideas with Gianfranco Bilardi, Mary E.

Bock, John J. Cruz, Concettina Guerra, Graziano Pesole, Andrea Pietracaprina,

Geppino Pucci, Guglielmo Rabbiolo, James F. Reid, Paolo Sommaruga, and

Giorgio Valle. All of them have helped me in various ways and contributed to

this work.

My family deserves a warm and special thank for their loving support and

encouragement during these years.

Last but not least, I want to thank Paola | for everything.

vii

Contents

Sommario iii

Abstract v

Acknowledgments vii

1 Introduction 1

2 Macro schemes 9

2.1 Notations . 9

2.2 The class of macro schemes . 10

2.3 Shortest representation . 11

2.4 Lempel-Ziv 77 . 12

2.5 Lempel-Ziv 78 . 13

2.6 LZ-77 vs. LZ-78 . 15

2.7 Optimal encoding given a static dictionary 15

2.8 O�-line/on-line encoding and decoding 16

3 O�-line 19

3.1 Steepest descent . 19

3.2 Choosing the gain function . 21

3.2.1 Scheme 1 . 22

3.2.2 Scheme 2 . 24

3.2.3 Scheme 3 . 25

4 Implementation 29

4.1 The fragment tree . 29

4.2 Statistical indexing of the text 31

4.3 Augmented su�x tree . 33

4.4 Implementing the augmented su�x tree 33

4.4.1 Computing the gain function 35

4.4.2 Maintaining the augmented su�x tree 36

4.5 Statistical encoders . 37

4.5.1 Off-Line1 . 38

4.5.2 Off-Line2 . 40

ix

4.5.3 Off-Line3 . 41

4.6 Decoding . 43

4.7 Heuristics . 44

4.7.1 Priority queue . 45

4.7.2 Pruned tree . 46

4.7.3 Su�x tree . 47

4.8 Software . 47

4.9 Results . 49

4.9.1 DNA sequences . 50

5 Conclusions 55

5.1 Bounds . 56

5.2 Parallel implementation . 56

5.3 Grammatical inference . 56

List of Tables

4.1 Statistical encoders available to Off-Line. Three bits su�ce to

describe the type of encoding for each array 37

4.2 Statistical encoders used in Off-Line1 for the Calgary Corpus:

\N" is no encoding,\A" is arithmetic coding, \R" is run-length

encoding, \H" is Hu�man encoding, \Z" is De
ate encoding (Gzip) 39

4.3 Statistical encoders used in Off-Line1 for the DNA dataset:

\A" is arithmetic coding, \R" is run-length encoding, \H" is

Hu�man encoding, \Z" is De
ate encoding (Gzip) 40

4.4 Statistical encoders used in Off-Line2 for the Calgary Corpus:

\A" is arithmetic coding, \R" is run-length encoding, \H" is

Hu�man encoding, \Z" is De
ate encoding (Gzip) 41

4.5 Statistical encoders used in Off-Line2 for the DNA dataset:

\N" is no encoding, \A" is arithmetic coding, \R" is run-length

encoding, \H" is Hu�man encoding, \Z" is De
ate encoding (Gzip) 42

4.6 Statistical encoders used in Off-Line3 for the Calgary Corpus:

\A" is arithmetic coding, \R" is run-length encoding, \H" is

Hu�man encoding, \Z" is De
ate encoding (Gzip) 43

4.7 Statistical encoders used in Off-Line3 for the DNA dataset:

\A" is arithmetic coding, \R" is run-length encoding, \H" is

Hu�man encoding, \Z" is De
ate encoding (Gzip) 44

4.8 Comparing the performance of Off-Line1. We �xed min occ

= 2, min length = 2, max length = 100. The tree is augmented 46

4.9 Comparing the performance of Off-Line1. We �xed min occ

= 4, min length = 4, queue = 10. The tree is augmented 46

4.10 Comparing the performance of Off-Line1 between standard suf-

�x tree and augmented su�x tree. We �xed max length = 40,

queue = 10 . 47

4.11 Comparing the performance of Off-Line encoders. We �xed

min occ = 2, min length = 2, max length = 100, queue = 10

and the tree is augmented. Running times are for a 300Mhz

Solaris machine. 50

4.12 Comparing Off-Line with other compression programs via tex-

tual substitution on the Calgary Corpus 50

4.13 Comparing Off-Line with context-sorting encoders on the Cal-

gary Corpus . 51

xi

4.14 Comparing Off-Line with other compression programs on the

chromosomes of the yeast . 53

4.15 Comparing Off-Line with DNA-speci�c compression programs

on third chromosome (chrIII) of the yeast (315,344 bps). bpc

is the average number of bits per character in the compressed

representation . 54

5.1 Iterations of the main loop of Off-Line for the Calgary corpus

�les . 57

5.2 Iterations of the main loop of Off-Line for the chromosomes of

the yeast . 58

List of Figures

1.1 The general model of a transmission system: compression and

decompression are respectively integrated in the encoder and the

decoder . 2

1.2 A partial classi�cation of lossless compression methods 7

2.1 An example of LZ-77 encoding (sliding window) 13

2.2 An example of LZ-78 encoding 14

3.1 The hierarchy of time-complexity for macro schemes 20

3.2 Overlapping and non-overlapping occurrences 21

3.3 The general paradigm . 21

3.4 Scheme 1. The word w = aba is selected to be substituted. The

di�erence of the two expressions gives the gain in bits of trans-

forming w to a pointer-based representation 23

3.5 A graphical representation of the value of G1(w) for all the words

in the Fibonacci string abaababaabaababaababa$ (computed on

the augmented su�x tree) . 24

3.6 Scheme 2. The word w = aba is selected to be substituted. The

di�erence of the two expressions gives the gain in bits of trans-

forming w to a pointer-based representation. (L means literal,

P means pointer; the pair (p; l) is a pointer to a reference copy

that is p symbols distant and has length l) 25

3.7 A graphical representation of G2(w) on the augmented su�x tree

for the Fibonacci string abaababaabaababaababa$ 26

3.8 Scheme 3. The word w = aba is selected to be substituted. The

di�erence of the two expressions gives the gain in bits of trans-

forming w to a pointer-based representation, where d is the size

of the dictionary (L means literal, P means pointer and (1) refers

to the �rst entry in the dictionary) 27

4.1 The initial fragment tree for abaababaabaababaababa$. Only

the �elds key, begin, end, left and right are displayed 31

4.2 The fragment tree after the removal of the occurrences of aba . . 31

4.3 The su�x tree T (abaababaabaababaababa$), with internal nodes

storing the number of (overlapping) occurrences 32

4.4 The direct construction of the su�x tree T (abaab$) 33

xiii

4.5 The augmented su�x tree T̂ (abaababaabaababaababa$) with in-

ternal nodes (original & auxiliary) storing the number of non-

overlapping occurrences . 34

4.6 A run of Off-Line1 on the string abaababaabaababaababa$. . 38

4.7 A run of Off-Line2 on the string abaababaabaababaababa$. . 40

4.8 A run of Off-Line3 on the string abaababaabaababaababa$. . 42

4.9 The top level structure of Off-Line 48

4.10 The de�nition of the class Tree 49

5.1 The text analyzed . 57

5.2 The inferred grammar produced by Off-Line1 (blanks are sub-

stituted by) . 59

5.3 The inferred grammar produced by Sequitur (blanks are sub-

stituted by) . 60

Chapter

1

Introduction

I have made this letter longer than usual

because I lack the time to make it shorter.

{ Blaise Pascal (1623{1662)

Eventually, all information about physical objects including humans, build-

ings, processes, and organizations will be on-line. This trend is both desirable

and inevitable. In the near future grand scienti�c challenges of molecular bi-

ology, physics, aerospace, etc. will involve very-large distributed databases of

textual documents, whose e�ective storage and communication requires a ma-

jor research and development e�ort. From Genome Studies to the World Wide

Web, from Digital Libraries to Satellite Communications, the ability to handle

e�ciently information is crucial.

The goal of data compression is to �nd succinct representations of data.

The reason is twofold. First, a shorter representation takes less time to be

transmitted over a network. When sitting at the computer, waiting for a Web

page to come in, or for a �le to download, we naturally feel that anything longer

than a few seconds is a long time to wait. Second, a compact �le takes less space

to be stored in primary or secondary memory. No matter how big a storage

device one has, sooner or later it is going to over
ow. Data compression delays

this inevitability.

The importance of data compression in information technology cannot be

over-emphasized. The design of algorithms and methods to build a compact

representation of data has been crucial in the process of developing devices like

Fax machines, digital television, Internet routers and fast modems [157].

An abstract model of a transmission system is shown in Figure 1.1 where

compression is performed in the encoder, decompression in the decoder. The

general assumption is that the source emits symbols based on some unknown

probabilistic model. Data can be compressed whenever some patterns of data

are more likely to occur than others. In most applications the channel is as-

1

2

sumed to be noiseless, although some methods pose the problem of devising an

encoding resilient to errors (see e.g., [154]).

In general, two broad classes of data compression schemes can be de�ned:

(1) lossless (or reversible, textual) and (2) lossy (or non-reversible).

The lossless class contains all the methods where the data recovered by the

decoder is identical to the data which was compressed by the encoder. By

contrast, in a system of lossy compression, the decompressed data is just an

approximation of the original. By allowing some errors in the recovered data

much greater compression can be achieved. In particular, small di�erences be-

tween the original and the reconstructed data are not noticed when we compress

images and sounds. We can say that lossy methods \exploit" the weaknesses of

human senses and perception to achieve better compression. Some of the lossy

methods in the for image/video compression are Jpeg (see e.g., [164]), Mpeg

(see e.g., [66]), vector quantization (Vq) (see e.g., [69]), wavelet based (see e.g.,

[47]), and fractal based (see e.g., [104, 17]).

In the present Thesis we restrict our attention to lossless techniques. Un-

fortunately, any lossless compression method is inherently limited. It cannot

compress all �les of size n since some of these �les are \random". For the sake

of the contradiction, let us assume that an algorithm exists that can compress

by at least one bit without loss all �les of size n bits. Use this algorithm to

process all the 2n �les of size n bits. All compressed �les have at most n � 1

bits, so there are at most
Pi=n�1

i=0 2i = 2n � 1 di�erent compressed �les. So at

least two di�erent input �les must compress to the same output �le, then the

method is not lossless.

An analogous counting argument can be used to show that there cannot exist

a single dictionary construction scheme which is superior to other schemes for all

inputs. If a compression algorithm performs well for one set of input strings, it

is likely that it will not perform well for others. The advantage of one dictionary

construction scheme over another can only apply with regard to restricted class

of input texts.

In spite of the above fundamental limitations, many successful approaches

have been devised and implemented in software products. A partial classi�ca-

tion is shown in Figure 1.2, along with relevant references.

Although in this Thesis we concentrate on the class of substitutional (or

dictionary-based or macro schemes) methods, we brie
y describe statistical and

predictive encoders.

Statistical encoders usually consists of a modeling stage followed by a coding

stage. The model assigns probabilities to the source symbols, the coding stage

Source Encoder Decoder ReceiverChannel

Figure 1.1: The general model of a transmission system: compression and decom-

pression are respectively integrated in the encoder and the decoder

3

actually codes the symbols based on those probabilities. Static methods need

two passes over the �le, one to gather the statistics and the other to compress

the �le and therefore they are not on-line. Dynamic methods build and adapt

the model as they process the �le.

Predictive encoders are based on �nite-context models and use the preceding

few symbols to predict (or estimate the probability of) the next one. The main

idea is that, since not all short substrings may be uniformly represented in

the text, then the knowledge of a short substring constitutes a good basis for

guessing the next character in the stream of symbols.

Statistical and predictive methods usually give better compression because

they locally adapt better to the structure of the text. Textual substitution

schemes are usually faster because they process a whole text fragment at a

time.

A systematic classi�cation of substitutional techniques has been developed

by Storer and Szymanski in the late Seventies [149, 155, 68, 156, 151, 152]. They

characterized several di�erent macro schemes with regard to the structure of

the pointers. Unfortunately, for most such schemes, the problem to �nd the

shortest representation of a given text is NP-complete.
Only a couple of notable macro schemes turn out to be tractable: Lempel

and Ziv (LZ) introduced these schemes in the late Seventies, originally to char-

acterize the \complexity", or information contents of a string [178, 179, 180].

Later, they were shown to have linear time implementations (see e.g., [131]).

Their moderate requirements in terms of time and memory gave them

widespread implementations in wired hardware, like for modems [157], Fax

machines and network routers, as well as in software, like Java applets, image

formats and cryptography [133, 117].

In the next Chapters we will see that the nature of the pointers in Lempel-

Ziv schemes is highly constrained to be unidirectional and non-recursive. In

fact, the typical implementation of LZ-77 [179] processes data on-line as it is

read, i.e., it parses the �le sequentially left to right and looks through a �xed

size window of past symbols to �nd the longest match of the substring starting

at the current position. This substring is then substituted with a pointer to the

previous occurrence, e.g., a pair of integers such as displacement and length,

which yields a shorter representation.

There are many variations on the \theme by Lempel and Ziv" (more than

twenty are described in the books [20, 140]), but probably the most impor-

tant implementations are Compress, which is found on all UN*X installations

(based on a variant of LZ-78 [166, 180]) and the exemplary Gzip from GNU

(based on LZ-77 [179], with addition of many tricks and improvements). The

relative performance of such schemes depends on many factors, including the

often subtle interplay between pointer size and dictionary parameters. The �ne

tuning of these parameters is extremely time consuming but always critical for

the �nal performance.

Lempel-Ziv schemes are asymptotically optimal both in terms of compres-

4

sion achieved and algorithmic complexity. The uni-directional nature of pointers

is crucial in determining their computational e�ciency. Unfortunately, the only

tradeo� that can be adjusted in these methods is the size of sliding window or

the size of the dictionary.

Our proposed method may be regarded as introducing a tradeo� in Lempel-

Ziv schemes, by relaxing the on-line constraint which is naturally suggested by

the sequential nature of the data to be compressed. The approach, called Off-

Line, can in principle handle the entire �le or large portions of it, and exploits

random access to issue pointers in either direction if this brings increase in

compression.

A prominent property of this paradigm is the possibility for the user to

adjust the tradeo� between compression and time/space complexity. We would

expect that, within some reasonable bounds, the larger is the computational

e�ort, the more compact the representation obtained at the outset. There are

applications, e.g., storing data on Cd-Roms, in which one can a�ord a very

e�cient time-consuming compression if the decoding is kept fast.

O�-line heuristics introduce a time complexity overhead that can be heavy.

In this Thesis we describe and explore some strategies devised to cope with the

problem. Their possible implementation in parallel [153, 42, 70, 43, 147, 39],

perhaps by dedicated architectures, may be expected to achieve the speed to

process streams of large �les in real-time.

The main contribution of this work is to have carried out a systematic

analysis of a family of data compression methods previously largely unexplored.

In terms of results we obtain uniform improvements over Pack (Hu�man),

Compress (LZ-78). We outperform GZip (LZ-77) in most of the cases. When

compared with context-modeling encoders, like BZip [30], we obtain better

results only for highly random inputs (notably, genetic sequences).

The textual substitution scheme described here shows promise of interesting

applications to the inference of hierarchical structures or grammars (see e.g.,

[63, 64, 125]) an aspect not studied in detail in this Thesis.

Related works

It was surprising to learn that the idea of iterating textual substitution based on

the number of occurrences of each word in the text dates back to the Seventies.

The following passages are from a landmark paper by Frank Rubin [132].

. . . A seemingly ideal way to develop the input groups1 would be to choose

the most frequent sequence in the input string, substitute a code for each

occurrence of this group, choose the next most frequent sequence in the

recorded input string, and so forth . . . It is not a priori obvious that the

most frequent groups are the most valuable, and it may be desirable to

take the length of the group into account. That is a frequent long group

would be considered more valuable than a frequent short group . . . The

1i.e., to parse the input in phrases

5

second open question in the accretion technique is what measure of \best"

input group should be used. The measure should re
ect the amount of

saving obtained by using that particular input group . . .

Rubin attacks the problem of �nding a compact representation of a given

text by means of an iterative algorithm. In the �rst iteration he assigns a code to

each symbol of the alphabet and he parses the text. In the following iterations

he groups together parsed substrings to create a new entry in the dictionary

only if it brings an increase of compression in the encoding. The evaluation of

a function based on the length and the number of occurrences of the phrases

indicates the \best" phrases to be merged. The process of grouping is iterated

until the length of the representation of the source cannot be improved further.

The work by Storer and Szymanski [149, 155, 156, 151, 152] shows that

the general problem of �nding the representation of minimal size of a given

text using general macro schemes, even assuming that the pointers are encoded

with a �xed length code, is NP-complete. Our approach can be thought as

an approximation of the optimal parsing by steepest descent of some of those

macro schemes. Chapter 2 describes Storer's macro schemes in detail and in-

troduces some complexity issues connected with data compression via textual

substitution.

As an improvement of LZ-77, Horspool discusses the e�ect of non-greedy

parsing and shows that some gain can be obtained relaxing the usual longest

match strategy [78]. This may suggest that o�-line could be advantageous in

terms of the compression achieved. A non-greedy strategy is used e�ectively in

Gzip and is called lazy evaluation mechanism.

The paper by Apostolico and Preparata [13] suggests that the augmented

su�x tree could be used in the implementation of a data compression scheme.

Some theoretical studies on the complexity of the o�-line optimum parsing

appeared recently [46, 44], but as far as we know no o�-line technique has been

implemented to date (see Section 2.8). These results suggest that the power of

an o�-line is encoder is needed to approximate the optimal parsing.

Finally, Nevill-Manning and Witten [125, 123, 126, 124] describe Sequitur

an on-line algorithm capable to infer a hierarchical grammar from the text.

However, the grammar they produce is much more constrained than ours. We

report some comparisons in the �nal Chapter.

Organization of the Thesis

The structure of the Thesis is as follows. In Chapter 2 we introduce the problem

and we review most of the known textual substitution methods, in particular

Lempel-Ziv schemes. We give an overview of the theoretical studies and results

on macro schemes to date.

Chapter 3 introduces the general idea behind the approach we propose. We

cover three variations on the general scheme connected to Storer's macro scheme

described in Chapter 2.

6

In Chapter 4 we delve into the details of the implementation. We describe

data structures, implementation issues, heuristics, and performance of our en-

coders.

Some conclusive remarks and future directions are addressed in the �nal

Chapter.

7

� Substitutional

{ Macro schemes or dictionary-based [149, 155, 150, 156, 68, 151,

152]

{ LZ-78 [180] and LZW (e.g., Compress and Gif) [166, 115, 174,

35, 111, 109]

{ LZ-77 (e.g., GZip) [179, 131, 60, 170, 78, 22, 98]

� Statistical

{ Hu�man (e.g., Pack) [80]

{ Dynamic Hu�man (e.g., Compact) [67, 89, 161]

{ Arithmetic coding [97, 96, 171, 127]

{ Markov model (Dmc) [36]

� Context Modeling

{ Prediction by partial matching (e.g., Ppm) [34, 33, 116]

{ Context tree weighting (Ctw) [168, 169, 167, 159, 158, 1, 162, 2]

{ Burrows-Wheeler Transform (e.g., Bzip) [30, 55, 136, 135, 15,

99, 177, 175, 176, 110]

{ Symbol ranking [56, 57]

{ Hash table based [128]

{ Induction of hierarchical grammars (e.g., Sequitur) [125, 123,

126, 124, 16]

� Misc.

{ Run-Length (Rle) (see e.g., [20])

{ Di�erential or delta (Dpcm) [81]

{ Move To Front (Mtf) [134, 79, 50, 84, 21, 71]

Figure 1.2: A partial classi�cation of lossless compression methods

8

Chapter

2

Macro schemes

The input to a lossless data compression algorithm is a text on a �xed alphabet

�. It is denoted by x and called the source. The output of the algorithm

is a word x̂ 2 f0; 1g�, the encoded text. The e�ciency of the compression is

measured by the compression ratio jx̂j = jxj.
The method is de�ned by means of a functions f : � ! f0; 1g� and its

inverse f�1 : f0; 1g� ! � such that x̂ = f(x) and x = f�1(x̂). The function f

is called the encoder, f�1 is the decoder. Since no distortion is allowed and the

original sequence must be fully recoverable from its compressed description we

have x = f�1(f(x)).

In general, a textual substitution scheme (or macro scheme) de�nes f as

follows

� �nd a dictionary D (it could be part of x);

� parse the text x using the dictionary D;

� compute a code to encode the parsing.

In Section 2.2 we describe some instances on the above scheme. For most

of them the problem of computing the optimal encoding of a given text is NP-
complete (see Section 2.3). In two very special cases, however, the problem is

tractable. The schemes by Ziv and Lempel, covered in Section 2.4, 2.5, and

2.6, have linear time implementations. A polynomial algorithm that computes

the optimal encoding when the dictionary is known in advance is described in

Section 2.7. Analytic properties of on-line/o�-line encoding and decoding are

discussed in Section 2.8.

2.1 Notations

We shall treat the source data as a �nite string over some �xed alphabet � of

symbols. Given a string w in ��, the number of consecutive symbols in w is the

length of the string, jwj.

9

10 2.2. THE CLASS OF MACRO SCHEMES

For convenience of notation we assume n to be the length of the source

string x and mw the length of a substring w. We set B equal to log2 j�j that is
the number of bits per symbol in the plain text. Unless otherwise stated, log k

means log2 k.

We denote the i-th symbol of w by w[i], 1 � i � jwj. A substring (or a

word) of w, denoted by w[i; j], is composed by w[i] �w[i+1] � : : : �w[j] where � is
the concatenation operation and 1 � i � j � jwj (for all other choices of i and
j, w[i; j] is the empty string). Substrings of the form w[1; j] for 1 � j � jwj are
called the pre�xes of w, while the substrings w[j; jwj] are called the su�xes of

w.

We de�ne X to be the set of all the distinct substrings that we can choose

from x, that is X = fwj 9 i; j 2 [1; n] such that w = x[i; j]g. If jxj = n, then

the cardinality of X is O(n2).

We say that a pattern w occurs in x if there exists a position i 2 [1; jxj �
jwj+1] such that w = x[i; i+ jwj � 1]. Equivalently, w occurs in x if either (1)

w is a pre�x of a su�x of x or (2) w is a su�x of a pre�x of x.

2.2 The class of macro schemes

In his 1979 Ph.D. Thesis [150], James Storer describes some complexity issues

related to lossless data compression. In particular, he introduces a rather ex-

haustive classi�cation of macro schemes. Macro schemes are systems which

factor out duplicate occurrences of data, replacing the repeated elements with

some sort of pointer identifying the data to be replaced at that point.

More precisely, Storer de�nes a pointer as a pair (d; l) where d is the position

of the �rst character in the target and l is the length of the target. The size of

the pointer is denoted by j(d; l)j.
A pointer is called internal if it refers to positions inside the original string.

With internal macro schemes, a string is compressed by replacing duplicate

occurrences of a substring with a pointer to another occurrence of the same

substring. The �nal result is a single string of symbols interspersed with point-

ers.

A pointer is called external if it points to an external structure, called dic-

tionary. With external macro schemes, a string is compressed by replacing

duplicates with pointers to common words stored in the dictionary. In general,

the dictionary is allowed to contain pointers to other entries in the dictionary.

The result is a pair of strings, the dictionary and the string of symbols inter-

spersed with pointers.

Other considerations on the nature of the pointers lead to several variations

on the above basic scheme. A scheme is recursive if a string that is the target

of a pointer is allowed to contain inside other pointers. While cycles cannot

occur in compressed representation using compressed pointers, using original

pointers cycles may be useful. If we allow recursion but not cycles, then the

scheme has topological recursion.

2.3. SHORTEST REPRESENTATION 11

An original pointer refers to a substring of the original source string, whereas

a compressed pointer denotes a substring of the compressed representation itself.

A left (right) pointer points only to substrings occurring earlier (later) in the

text. If all the pointers point in the same direction then we say that the pointers

are unidirectional. Finally, we say that two pointers overlap if their target

substrings overlaps.

The above classi�cation led Storer to de�ne four basic macro schemes: (com-

pressed) external pointer macro (EPM), compressed (internal) pointer macro

(CPM), original (internal) pointer macro (OPM) and original external pointer

macro (OEPM).

Example 1 Let x = abaababaabaababaababa$ and assume for simplicity that

the size of a pointer is one. D is the external dictionary. Then we can encode

x using the CPM scheme, and non-recursive, unidirectional pointers as

x̂ = aba(1; 3)(2; 5)(4; 8)(2; 2)$

and we obtain a ratio of jx̂j = jxj = 8
22 . If we allow pointers to be bidirectional

and overlapping we can express the string under the OPM scheme as

x̂ = (9; 6)(10; 2)abaaba(13; 2)(12; 5)$

and we obtain 11
22 . Using EPM, and non-recursive, unidirectional pointers

x̂ = (1; 3)(1; 3)(2; 2)(1; 3)(1; 3)(2; 2)(1; 3)(2; 2)$ D = aba

we get 12
22 . Using a bigger dictionary

x̂ = (1; 8)(1; 8)(4; 6) D = abaababa$

we get again 12
22 .

2.3 Shortest representation

An important theoretical concept related to lossless data compression is the

notion ofKolmogorov complexity of a string [100]. Loosely speaking, it is de�ned

as the length of the shortest program by which an universal machine produces

such string at the outset from scratch. Unfortunately, the problem of telling if

a string has a Kolmogorov complexity less than a given k is undecidable.

When we restrict the descriptions in terms of macro schemes then the prob-

lem of �nding the shortest representation becomes decidable, although not

tractable. In fact, Storer and Szymanski [149, 155, 156, 151, 152] and Gal-

lant [68] prove that the problem of optimal encoding with most of the macro

schemes is intractable.

Theorem 1 The following problems are NP-complete

12 2.4. LEMPEL-ZIV 77

� given a string x and an integer k, determine whether jx̂j < k using EPM

scheme, in any of the following situations

{ both overlapping pointers and recursion is allowed

{ overlapping pointers is allowed and recursion is forbidden

{ overlapping pointers is forbidden and recursion is allowed

{ both overlapping pointers and recursion is forbidden

{ restricting pointers to be unidirectional and any of the above

� given a string x and an integer k, determine whether jx̂j < k using CPM

scheme when any combination of the restriction to unidirectional point-

ers, no recursion, and no overlapping is made and regardless whether the

pointer size is part of the problem

� given a string x and an integer k, determine whether jx̂j < k using OPM

scheme with either or both of the recursion and overlapping restriction

(with unidirectional or bidirectional pointers)

� given a string x and an integer k, determine whether jx̂j < k using OEPM

scheme when both recursion and overlapping are forbidden

The situation for OPM with unidirectional pointers is the only case not

shown to be intractable. In fact, the scheme by Lempel and Ziv (Sections 2.4

and 2.5) falls within the framework of OPM with left pointers and topological

recursion [178, 179]. Rodeh et al. present a linear time algorithm for that

scheme [131].

As we will see, the algorithms in Section 2.7 can be regarded as an instance

of the EPM scheme where the dictionary is speci�ed in advance. The running

time is quadratic in the size of the source.

2.4 Lempel-Ziv 77

The typical implementation of LZ-77 [179] processes data on-line as it is read,

i.e., parses the �le sequentially left to right and looks through a �xed size

window of past symbols to �nd the longest match of the string starting at

the current position. The string is then substituted with a pointer (e.g., the

triplet of displacement, length, last symbol) which should result in a shorter

representation.

Formally, suppose that we have the pre�x of a string w already parsed in

p�1 phrases as w[1; i�1] = y1y2 : : : yp�1, and we want to de�ne the p-th phrase

yp = w[i; j]; j � i.

The LZ-77 scheme looks for the longest pre�x of w[i; n] that matches a

substring of w[1; i�1]. In other words, the length of the pre�x can be expressed
as maxk2[1;i�1]f l j w[i; i + l] = w[k; k + l � 1] � c; c 2 �g. The pre�x w[i; i + l]

2.5. LEMPEL-ZIV 78 13

becomes the p-th phrase which is encoded as a pointer (k; l; c). The current

position i is updated to i+ l + 1.

A variation of the previous scheme, called LZSS, avoids to send always the

new character c adding a bit to the encoding to distinguish a pointer from a

literal. Speci�cally, it encodes a match, called a citation, with (1; k; l) (if l > 0)

and a literal, called an innovation, with (0; c) (if l = 0).

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a

5 6 7 0 1 2 3 4

 0 1 2 3 4 5 6 7

(7,2,a)

a b a a b a b a a b a a b a b a a b a b a

5 6 7 0 1 2 3 4

window lookahead

(1,4,a)

Figure 2.1: An example of LZ-77 encoding (sliding window)

Example 2 (see Figure 2.1) The sliding window stores the N = 4 more

recently coded symbols, and the lookahead bu�er stores the next N symbols about

to be coded. The window and the lookahead form a circular bu�er of size 2N .

The �rst six symbols of the text have just been encoded. The encoder searches

the window for the occurrence of the longest pre�x of the lookahead and then

issues the pointer (7; 2; a) which suggests that the next two symbols can be copied

from position 7 in the window, and that they are followed by the symbol a. Then

the window is moved to the right three symbols simply overwriting symbols 5; 6

and 7 with the incoming symbols and changing the beginning of the lookahead

bu�er to position 4.

The central point for determining the complexity of the algorithm is the

search for longest match. Many approaches have been analyzed in [19] ranging

from the Boyer-Moore string matching algorithm [26], to digital search trees

[7, 131, 60], and from splay trees [146] to hash tables (see for example [62, 48]).

In particular if one chooses the su�x tree to create an index of the words in

the sliding window then the algorithm runs in amortized linear time [131].

2.5 Lempel-Ziv 78

Instead of allowing pointers to reference any string that appeared previously,

the text seen so far is parsed in phrases, where each phrase is the longest phrase

14 2.5. LEMPEL-ZIV 78

already used previously plus one character [180]. The list of phrases that may

be references is the dictionary.

Initially, the dictionary y1; : : : yj�j is initialized with all the symbols of the

alphabet. Suppose we have already parsed w[1; i� 1] in p� 1 phrases from the

dictionary, and we want to de�ne the p-th phrase yp = w[i; j]; j � i. At this

point the dictionary contains j�j+ p� 1 entries.

The LZ-78 encoder looks for the longest pre�x of w[i; n] that matches a

string in the dictionary yq for any q 2 [1; j�j+p�1]. In other words, the length
of the pre�x is maxq2[1;j�j+p�1]fjyqj such that w[i; i+ jyqj�1] = yqg. The string
w[i; i + jyqj � 1] becomes the p-th phrase that is encoded as (q).

The dictionary is updated with the new phrase yp = w[i; i + jyqj] and the

current position is moved to i to i + jyqj. The dictionary built in this fashion

satis�es the pre�x property : for any given phrase in the dictionary, all its pre�xes

are also phrases in the dictionary.

a b a a b a b a a b a a b a b a a b a b a

a
b

0
1

2 ab
ba
aa

aba

0 1 0 2 5 6 3 3 5 0

abaa

3
4
5
6

bab
baa

abab

7
8
9

Dictionary

In

Out

0

a

1

b

2

b

4

a

3

a

5

a

7

b

8

a

6

a

9

b

Figure 2.2: An example of LZ-78 encoding

Example 3 (see Figure 2.2) At the beginning the dictionary is initialized

with the symbols a and b, respectively with index 0 and 1. Then the input

text is parsed by looking for the longest match of a word in the dictionary: the

compressed output is composed by the sequence of indices in the dictionary. At

each step, a new string composed by the longest match plus the innovation is

added to the dictionary.

LZ-78 encoding can be implemented in linear time by use of simple trie data

2.6. LZ-77 VS. LZ-78 15

structure [7] with space complexity proportional to the number of codewords

in the output.

The decoding is symmetric to the encoding. The dictionary is initialized

with all the symbols in �. The dictionary is recovered while the decompression

process runs: indeed, the dictionary is not transmitted. When the decoder

reads a symbol (q) from the encoded �le it outputs yq and it adds the word

yq � c to the dictionary where c is the �rst symbol of the next phrase.
Because we need the �rst symbol of the next phrase, the dictionary is up-

dated only after the new phrase is decoded. A problem occurs if the next symbol

of the encoding is (r) which is precisely the index of yq � c. Indeed, this happens
only in a very special case, when the symbol c is also the �rst symbol of yq.

This arises if the text contains the string awawa where a 2 � and w 2 ��, such

that aw belongs to the dictionary and awa does not. In the decoding we have

yq = aw and yr = awa. However, since yqa is not yet in the dictionary the

entry yr does not exists. The decoder must recognize this situation and add

awa to the dictionary immediately after reading (q). This observation has been

made by Welch [166].

2.6 LZ-77 vs. LZ-78

Although apparently di�erent, LZ-77 and LZ-78 share some important prop-

erties. Both methods are asymptotically optimal in the information-theoretic

sense, i.e., the average code length of a symbol tends asymptotically to the

entropy of the source [178, 179, 180], even for sliding window schemes [173].

However, it is not always clear how fast these schemes converge to the best

achievable compression. There are several studies on the redundancy (de�ned

as the di�erence between the average code rate and the source entropy, when

the memory size for the algorithm is limited) of the Lempel-Ziv code.

It has been recently shown that LZ-78 approaches asymptotic optimality

faster than LZ-77. The average number of bits generated by LZ-78 for the �rst

n symbols of an input string from an i.i.d. source is only O(1= log n) more than

its entropy [83, 105, 141]. However, for the LZ-77 algorithm this redundancy is

as much as O(log log n= log n) [172, 106, 107].

Another recent result by Kosaraju and Manzini [92] states that for low

entropy strings, the worst case compression ratio obtained by LZ-78 is better

by a factor 8=3 than the compression ratio of the LZ-77 algorithm.

2.7 Optimal encoding given a static dictionary

A dictionary can be constructed in static or dynamic fashion. In static schemes

the whole dictionary is constructed before the input is compressed: both the en-

coder and the decoder share a �xed, given dictionary. By contrast, the encoder

may transmit to the decoder the dictionary before transmitting the pointers;

16 2.8. OFF-LINE/ON-LINE ENCODING AND DECODING

or the compressor and the decompressor may evolve a common dynamic dic-

tionary through the coding process. In the latter case, as in LZ-77 and LZ-78

schemes, the dictionary is initially empty and is constructed incrementally.

In the Section 2.3 we mentioned that the selection of the best possible dictio-

nary is a NP-complete problem. But what if we are given a static dictionary?

We de�ne the optimal parsing relative to an arbitrary static dictionary, the

parsing that produces the least number of phrases (and pointers). A more

complex problem is �nding the optimal encoding in the case of non-uniform

pointer size.

The optimal parsing can be found in O(n2) time via dynamic programming

as proposed by Wagner [163]. It is an o�-line algorithm that requires the entire

input to be stored in main memory. Alternatively, the optimal parsing can be

rephrased as the problem of �nding a shortest path between a given pair of

vertices in a directed network [142].

For pre�x dictionaries, the on-line algorithm by Hartman and Rodeh [77]

runs in O(nd) time where d is the longest string in the dictionary. If the

pre�x dictionary comes from a process like Lempel-Ziv parsing where successive

insertions can grow by at most one symbol, then d = O(
p
n) and the algorithm

runs in time O(n3=2). The result has been improved to linear time by Cohn

and Khazan [35].

In general, the optimal encoding has been considered impractical because

of its computation cost. Therefore, several heuristic algorithms have been de-

veloped, e.g., the longest match heuristic, the longest fragment �rst heuristic

(LFF), and the greedy heuristic [70, 87, 88, 18, 35]. In particular Katajainen

and Raita [87] propose an approximation algorithm for the optimal parsing for

a given static dictionary.

2.8 O�-line/on-line encoding and decoding

The theoretical studies on the performance of LZ schemes in the case of one-

way head machines (on-line algorithms) or two-way head machines (o�-line

algorithms) can be divided in two classes. The studies that address the problem

asymptotically and the papers that consider the �nite case.

Ziv and Lempel investigate the encoding power of a �nite state one-way

head machine with an unrestricted decoder and show that the lower bound on

the achievable compression ratio can be attained asymptotically [179, 180]. The

same bound is achieved when both the encoder and the decoder are one-way

head machines. Later, Sheinwald, Lempel and Ziv [144, 145] prove that the

bound can be attained when the encoder is unrestricted and the decoder is a

�nite state one-way machine. As far as asymptotic results are concerned, the

power of o�-line coding is not useful if we want to be able to decode on-line.

In the �nite case, De Agostino and Storer study the performance of on-line

and o�-line coding and decoding. If the decoding has to be on-line, then the

problem of �nding, o�-line, the dictionary with pre�x property that parses the

2.8. OFF-LINE/ON-LINE ENCODING AND DECODING 17

string in the minimum number of phrases is NP-complete [46]. Furthermore,
they prove that a sub-logarithmic factor approximation algorithm cannot be

realized on-line. Later, De Agostino and Silvestri [44] show that LZ-78 and two

widely used greedy strategies produce in the worst case an O(n1=4) approxima-

tion of the optimal parsing. These results suggest that the power of an o�-line

encoder is needed in order to approximate the optimal parsing.

18 2.8. OFF-LINE/ON-LINE ENCODING AND DECODING

Chapter

3

O�-line

In the previous Chapter we mentioned that the problem of �nding the optimal

representation in the world of macro schemes is NP-complete. Notably, only a
couple of schemes have polynomial time algorithms.

Our interest in the approach described in this Thesis can be regarded as

an \exploration of the algorithmic space" between the linear time algorithms

for textual substitution (LZ-77, LZ-78) and the exponential time algorithms

for optimal encoding for general macro schemes (see Figure 3.1). As far as we

know, that space is largely unexplored. With the exception of the quadratic-

time algorithm for the optimal encoding with static dictionary no other textual

substitution algorithm \inhabit" that space.

We wonder if one could design an approximation scheme of the optimal

encoding that runs in polynomial time. Or if one could extend Lempel-Ziv

schemes to achieve greater compression at the expenses of higher time com-

plexity. In other words, we would like to understand if one could \trade" time

complexity for compression e�ciency.

3.1 Steepest descent

The problem of �nding the shortest representation of a given string can be for-

mulated as an optimization problem. The feasible solutions are all the possible

pointer-based representations of the original string x. The neighborhood N(x̂)

of a compressed description x̂ is the set of all the descriptions obtained from x̂

by (1) substituting some of the occurrences of a substring w 2 X with pointers

(contraction) or (2) substituting one of the pointers with its target (expansion).

The objective function corresponds to the length of the compressed description,

jx̂j. The goal is to �nd, among all the x̂ in the solution space, a representation

x̂OPT which attains the minimum of the objective function.

Steepest descent is a general approach for the minimization of complex func-

tions. Its strategy is to move in the space of the feasible solutions from the

current x̂ to one of the elements in N(x̂) based on the largest improvement

19

20 3.1. STEEPEST DESCENT

LZ-77 encoding
LZ-78 encoding

Optimal encoding for

Off-Line

Optimal encoding for a

Time ComplexityLinearPolynomialExponential

general macro schemes

given dictionary

encoding

Figure 3.1: The hierarchy of time-complexity for macro schemes

in the objective function. Formally, given the current x̂ the algorithm moves

to the element argmaxy2N(x̂)fjx̂j � jyjg. The direction of the move is towards

the highest contraction in the neighborhood. Therefore, it will never consider

expansions and it will always try to substitute the maximal number of occur-

rences with pointers. However, expansion moves could be necessary to escape

from a local minimum. Indeed, the method is not guaranteed to converge to

the shortest representation x̂OPT .

Contraction steps involve checking all the substrings in X to �nd the most

\convenient" substitution. Let us suppose to have a function G : X ! R

that computes the di�erence in bits between the plain text representation of a

substring w 2 X and its pointer-based equivalent. As the �rst move, steepest

descent suggests to substitute, among all the words in X , the word w1 which

maximizes G.

The value of G(w) is computed upon the length mw and the number of

non-overlapping occurrences fw. We distinguish the number of occurrences of

w from the number of non-overlapping occurrences of w. Two occurrences of w

are said to be non-overlapping if their respective starting positions, say i and

j, satisfy ji� jj � jwj. In general, fw may be di�erent from the total number

of occurrences of w.

We are interested in counting non-overlapping occurrences because we sub-

stitute these occurrences with pointers to a common copy. If two occurrences

overlap there is no way to substitute both with pointers. The maximal number

of substitutions of w with pointers is therefore given by fw.

In general, the maximal set of non-overlapping occurrences is not unique.

3.2. CHOOSING THE GAIN FUNCTION 21

The set we consider is the set obtained by scanning the text left to right and

greedily choosing the next non-overlapping occurrence.

a b a a b a b a a b a a b a b a a b a b a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.2: Overlapping and non-overlapping occurrences

Example 4 (Figure 3.2) The substring w = aba occurs eight times in x =

abaababaabaababaababa$. However the occurrences at position 4 and 6, 12

and 14, 17 and 19 overlap with each other. Since there are no more than �ve

non-overlapping occurrences of w in x, then faba = 5. The maximal number of

pointers that could substitute the occurrences of w is faba. The sets of positions

of maximal cardinality are f1; 4; 9; 12; 17g, f1; 4; 9; 12; 19g, f1; 4; 9; 14; 17g,
f1; 4; 9; 14; 19g, f1; 6; 9; 12; 17g, f1; 6; 9; 12; 19g, f1; 6; 9; 14; 17g and f1;
6; 9; 14; 19g. We choose f1; 4; 9; 12; 17g.

Once that w1 has been substituted with pointers, the substring w2 which

maximizes G is considered. Note that G has changed after the substitution of

w1. All the words which occurrences overlap with any of the occurrences of w1

have their statistics changed. Some of them could not be represented anymore

in X . Therefore, the parameters on which G is based should be \updated" after

each substitution.

The entire process is iterated until no words in x capable of producing

further compression can be found. The general paradigm considered in this

Thesis is shown in Figure 3.3.

Off-Line (string x)

repeat

D = < index containing fw, for every substring w of the text x >

s = < the substring in D which maximizes G >

x = < x where the occurrences of s are substituted with pointers >

until < no further compression of x can be obtained >

Figure 3.3: The general paradigm

In order to fully specify Off-Line we need to de�ne: (1) the structure

of the pointer-based representation, that is, the speci�c macro scheme (2) the

function G and (3) the substitution algorithm, that is, the implemention of (1).

3.2 Choosing the gain function

By gain measure G : X ! R we refer to the function which evaluates the \con-

venience" of a particular substring substitution. G(w) computes the number

22 3.2. CHOOSING THE GAIN FUNCTION

of bits saved by transforming w in a pointer-based representation, that is, by

substituting the occurrences of the w in the text with pointers to a common

copy. We assume to know the statistics of every word in X , in particular to

know the number fw and the positions of a maximal set of non-overlapping

occurrences of w.

Unfortunately, it is not easy to de�ne precisely G because, when we want to

predict the contraction that the substitution of a particular word will induce,

we lack the actual costs associated to the encoding of the pointers which can

be computed only at the end of the entire process.

Letting l(z) be the number of bits needed to encode an integer z, we assume

for simplicity that l(z) = dlog ze, even if we could choose more accurate mea-

sures1 for the encoding of integers in an unknown range [10, 51, 131]. However,

since the �nal encoding of the compressed string is not based on any such repre-

sentation, but rather on some statistical encoding (i.e., Hu�man or arithmetic

coding) there is no way to compute accurately G at this stage.

In the rest of the Chapter we describe three possible measures of the gain

respectively associated with three di�erent substitution schemes. In terms

of Storer's classi�cation of Section 2.2, our pointers are always bidirectional.

Schemes 1 and 3 use external and non-overlapping pointers, while Scheme 2

uses internal and overlapping pointers. Pointers are always compressed because

of the iterative steepest descent strategy.

3.2.1 Scheme 1

Let us suppose that w is the word that maximizes G at the i-th iteration and

thus it is selected to be substituted by the algorithm in Figure 3.3. Scheme 1

removes from the text all the fw occurrences of the word w and compacts the

text. The word w is saved in the dictionary with its length, its non-overlapping

frequency fw and the positions where it appeared in the text. In order to use

small integers the positions of the occurrences of w are not saved as absolute

values. They are stored instead as consecutive increments each relative to the

end of the preceding occurrence of w.

Speci�cally, the items of information we need to save in order to be able to

recover the original string are

� the string w, that requires Bmw bits, where B is log j�j and � is the

alphabet;

� the length of the string, mw, that requires l(mw) bits;

� the number of occurrences, fw, that requires l(fw) bits;

� the fw positions of w in x, that require fwl(n) bits.

Figure 3.4 shows the two representations and their associated costs. The

�gure at the top illustrates the cost of representing the occurrences of w as

1speci�cally, we can represent an integer z with l(z) = log z +O(log(1 + log z)) bits

3.2. CHOOSING THE GAIN FUNCTION 23

a b a a b a b a a b a a b a b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Bfwmw

b a b a b a $
1 2 3 4 5 6 7

a b a . . .

3 . .

1 4 9 12 17 . .

5 . .

dictionary original positions

Bmw + l(mw) + l(fw) + fwl(n)

Figure 3.4: Scheme 1. The word w = aba is selected to be substituted. The

di�erence of the two expressions gives the gain in bits of transforming w to a

pointer-based representation

plain text. The fw copies of w require a total of Bfwmw bits in the original

string. The bottom �gure shows the cost of representing w using the external

dictionary. The di�erence of the two expressions de�nes G1(w) as follows

G1(w) = Bfwmw � l(mw)�Bmw � l(fw)� l(n)fw

= (fw � 1)Bmw � l(mw)� l(fw)� l(n)fw

Note that G1(w) depends only from fw and mw, while n and B are constants.

The �nal encoding of Scheme 1 is then composed by

� the text with all the redundant words removed;

� the dictionary;

� the length of the words in the dictionary,

� their original (relative) positions,

� their maximum number of non-overlapping occurrences.

Note that in this scheme we do not need extra bits for distinguishing literal

from pointers.

A graphical representation of the values assigned by the function G1 to the

words of the �fth Fibonacci string is shown in Figure 3.5 (compare with Figure

3.7). The picture has been obtained with Verbumculus [8, 9], a tool for the

detection of over- and under-represented words in sequences. The tree captures

all the substrings in the original strings. The substrings are represented by the

labels spelled out on the paths from the root to any internal node. The font

size of the labels is proportional to the value of G1. The negative values of G1

are shown with an italic font.

24 3.2. CHOOSING THE GAIN FUNCTION

a

ba

$

b

ab

$

a

ab

ba

$

a

ba

ababaababa$

aba

$

ababaababa$

ba$

aba

$

ababaababa$

ba$

a

b

ababaababa$

a ab

$

a

ababaababa$

ba$

a

ba

$

ba

ba

ababaababa$

a

$

ba

ababaababa$

ba$

aba

$

ababaababa$

ba$

Figure 3.5: A graphical representation of the value of G1(w) for all the words in the

Fibonacci string abaababaabaababaababa$ (computed on the augmented su�x

tree)

3.2.2 Scheme 2

If w is the word selected at the i-th iteration, Scheme 2 substitutes all the

occurrences of w except one with pointers to the original copy. The pointer is a

pair in the form (position, length). In order to keep the size of the pointers short,

we store the position as a displacement. A bit-vector is needed to distinguish

pointers from literals in the text. On the other hand, Scheme 2 does not need

an external dictionary.

This substitution strategy is an iterative \original internal pointer macro"

scheme (OPM) in terms of Storer's classi�cation (see Section 2.2). We forbid

pointer recursion, that is, we assume that we cannot substitute words that

contains other pointers inside2. The pointers are bidirectional.

The plain text representation of all the occurrences of w requires now (B+

1)fwmw bits, because of the additional bit. The pointer-based representation

costs are as follows (see Figure 3.6)

� (B + 1)mw bits for the original copy of w

� (fw � 1)(l(n) + l(mw) + 1) bits for the fw � 1 pointers

The di�erence of these expressions de�nes G2 as follows

G2(w) = (B + 1)fwmw � (B + 1)mw � (fw � 1)(l(n) + l(mw) + 1)

2Thus, no bit-vector is needed for the dictionary

3.2. CHOOSING THE GAIN FUNCTION 25

a b a a b a b a a b a a b a b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

L L

(B + 1)fwmw

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(8,3) (5,3) b a a b a(-3,3) b a(-5,3) b a $
P P L L L L L P L L P L L L

(B + 1)mw + (fw � 1)(l(n) + l(mw) + 1)

Figure 3.6: Scheme 2. The word w = aba is selected to be substituted. The

di�erence of the two expressions gives the gain in bits of transforming w to a

pointer-based representation. (L means literal, P means pointer; the pair (p; l) is

a pointer to a reference copy that is p symbols distant and has length l)

= (fw � 1)(B + 1)mw � (fw � 1)(l(n) + l(mw) + 1)

= (fw � 1)((B + 1)mw � l(n)� l(mw)� 1)

With respect to Scheme 1 we have one additional degree of freedom. We

can choose which one of the original copies should remain untouched in the text

or we could even leave more than one copy in the text. The problem to select

the copy that gives the best compression has not been addressed. We always

choose to leave one reference copy in the middle of the sequence of occurrences,

in order to try to minimize the size of the pointers.

The �nal encoding is therefore composed by

� the text with the redundant words substituted with pointers,

� a bit-vector of the same size of the text, indicating pointers and literals.

Figure 3.7 displays the value of the gain function on the su�x tree for our

running example. The font size of the labels is proportional to the value of G2.

The negative values of G2 are shown with an italic font.

3.2.3 Scheme 3

In Scheme 3, words are substituted with pointers to entries in an external

dictionary. If the substring w is selected at the i-th iteration, we append w

to the dictionary and we replace all the occurrences of w with pointers to the

entry of w in the dictionary. The dictionary is composed by the concatenation of

words and their lengths. Again, a bit-vector is required to distinguish pointers

from literals in the text.

We forbid pointer recursion, that is, we assume that words in the dictio-

nary do not contain pointers. Therefore, we do not need a bit-vector for the

dictionary.

26 3.2. CHOOSING THE GAIN FUNCTION

a

ba

$

b

ab

$

a

ab

ba

$

a
ba

ababaababa$

aba

$

ababaababa$

ba$

aba

$

ababaababa$

ba$

a b

ababaababa$

a

ab

$

a

ababaababa$

ba$

a

ba

$

ba ba

ababaababa$

a

$

ba

ababaababa$

ba$

aba

$

ababaababa$

ba$

Figure 3.7: A graphical representation of G2(w) on the augmented su�x tree for

the Fibonacci string abaababaabaababaababa$

The plain text representation of all the occurrences of w requires (B +

1)fwmw bits. The costs of the pointer-based representation (see Figure 3.8) are

the following

� Bmw bits for the string w in the dictionary,

� l(mw) to store the length mw,

� l(d)fw for the fw pointers inside the text, where d is the size of the dic-

tionary.

The di�erence of the expressions de�nes G3(w) as follows

G3(w) = (B + 1)fwmw �Bmw � l(d)fw � l(mw)

= B(fw � 1)mw + fwmw � l(d)fw � l(mw)

Note that at the time of evaluating G3 we cannot predict the value of d. This

problem will be addressed in Section 4.5.3.

The �nal encoding is composed by

� the text with the redundant words substituted with pointers,

� a bit-vector of the same size of the text, indicating pointers and literals,

3.2. CHOOSING THE GAIN FUNCTION 27

a b a a b a b a a b a a b a b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

L L

(B + 1)fwmw

 1 2 3 4 5 6 7 8 9 10 11 12

 (1) (1) b a (1) (1) b a (1) b a $

a b a . . .
dictionary

P P L L P P L L P L L L

3 . .

 1 2 . .

Bmw + l(d)fw + l(mw)

Figure 3.8: Scheme 3. The word w = aba is selected to be substituted. The

di�erence of the two expressions gives the gain in bits of transforming w to a

pointer-based representation, where d is the size of the dictionary (L means literal,

P means pointer and (1) refers to the �rst entry in the dictionary)

� the dictionary,

� the lengths of the words in the dictionary.

28 3.2. CHOOSING THE GAIN FUNCTION

Chapter

4

Implementation

In �rst part of the Chapter we describe how to build and maintain two data

structures that play a fundamental role in the implementation of Off-Line.

The �rst is the fragment tree, a balanced tree of text fragments allowing one to

search and substitute e�ciently all the occurrences of the words. The second

is the augmented su�x tree, a text index used to allocate and compute the

maximal number of non-overlapping occurrences for each substring in the text.

In the second part, we analyze the type and performance of various sta-

tistical encodings applied to the internal representation produced by the three

versions of Off-Line. We propose some heuristics to speed up the compression

process. Finally, we describe the software implementing our scheme, and report

the results.

4.1 The fragment tree

In Chapter 3 we saw that our compression paradigm requires e�cient string

searching [90, 26] over dynamically updates of the text. Since these two opera-

tions are somewhat contrasting the problem becomes quite involved.

The dynamic text indexing problem has been studied by Gu et al. [74] by

introducing a data structure which permits insertion and deletion of a single

character in O(log n) time and searching for all occw occurrences of a string w

(after i update operations in the data structure) in time O(jwj + occw log i +

i log jwj). Other recent papers address the dynamic text indexing problem [58,

59].

A naive implementation keeps two data structures, a dynamic array and

a single linked list, that both contains the same text. The array is used to

search, the list to update the text. The two structure should be maintained

synchronized by copying one into the other at the end of each series of updates.

The cost of the synchronization is �(n) and the list requires at least 5n bytes

of memory.

29

30 4.1. THE FRAGMENT TREE

A better solution is to build and maintain a fragment tree, a balanced search

tree of text fragments. Text fragments are substrings of the original text left un-

touched after the removal of some words. The concatenation of these fragments

represents the text after the update operation.

We use a red-black tree where each node is associated with a text fragment.

Each node contains the �elds key, color, p, left, right, begin, and end. The key

corresponds to the ending position of the fragment. The �elds color and p are

used to maintain balanced the red-black tree during insertions and deletions (see

e.g., [37]). The pointers left and right point respectively to the left and right

child of the node. The �elds begin and end are two pointers to the beginning

and the ending position of the text fragment represented in that node.

The operations de�ned on fragment tree are the following

� Create (string x), creates a fragment tree which consists of a single

node encompassing the entire text-string x that constitutes the only frag-

ment

� Search (string s), returns the maximal set of non-overlapping occur-

rences of s in the text

� Remove (string s), deletes all the occurrences of s from the text

� Substitute (string s1; string s2), replaces all the occurrences1 of s1
with s2

The access to the i-th element of the text is obtained as follows. We use

the position i as a query in the search tree. Since the tree is kept balanced, the

search takes time logarithmic in the number of fragments. Once the fragment

containing the position i is found, the symbol x[i] is retrieved in constant time.

The Search operation is based on the KMP linear time string searching

algorithm [90]. The operations Remove and Substitute split the array in

several fragments. The e�ect of these operations is re
ected by introducing new

nodes in the tree, but the array in which the text x is stored is not modi�ed.

Only the structure of the tree and the content of the nodes are updated.

Example 5 Initially, the fragment tree consists of a single node (see Figure

4.1). The deletion of the occurrences of the substring aba splits the array into

three text fragments (see Figure 4.2). The nodes for the fragments ba, ba, and

ba$ are created. Now, if we want to read x[5] we use \5" as a query. We start

the search from the root of the tree. Since 5 > 4 we move to the node at its

right. We stop there because 5 < 7. We access the array through the pointers,

and we �nally get b.

If the size of the tree becomes too large then the Search operation be-

comes too expensive. To counteract excessive fragmentation the fragment tree

is compacted periodically in a single array by refresh cycles.

1we assume js1j � js2j because our substitutions are aimed to compress the text

4.2. STATISTICAL INDEXING OF THE TEXT 31

a b a a b a b a a b a a b a b a a b a b a $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

22

Figure 4.1: The initial fragment tree for abaababaabaababaababa$. Only the

�elds key, begin, end, left and right are displayed

a b a a b a b a a b a a b a b a a b a b a $

2

 1 2 3 4 5 6 7

4

7

Figure 4.2: The fragment tree after the removal of the occurrences of aba

The performance of this data structure has been compared with our �rst

naive implementation. The new data structure improves the overall perfor-

mance of the compression algorithm by at least 20% and uses a fraction of the

memory.

4.2 Statistical indexing of the text

To compute and store the statistics of the words in the text we choose the su�x

tree. The su�x tree is a digital search tree that embodies a compact index of

all distinct, non-empty substrings of the text (see e.g., [7, 148, 40, 75]).

The su�x tree T (x) for the string x = abaababaabaababaababa$ is shown

in Figure 4.3. The paths of the tree are compressed, i.e., only nodes with more

than one outgoing edge are represented. The tree T (x) has n+1 leaves, labeled

from 1 to n+1. Since each node has at least two children (and at most j�j+1),

the tree has O(n) nodes overall.

The i-th su�x of x, that is, the su�x that starts at position i 2 [1; n + 1],

may be read on the tree by concatenating the words on the edges of a path

from the root to the leaf labeled by i. The end-marker $ 62 � ensures that no

su�x of x$ can be a pre�x of another su�x, and hence there is a one-to-one

correspondence between the leaves and the non-empty su�xes of x.

On the other hand, the substrings of x can be obtained by spelling out the

words from the root to any internal node of T (x) or to any position in the

32 4.2. STATISTICAL INDEXING OF THE TEXT

a ab a aba aba..$a b

ba$$aba..$$

ba

$

ba

aba aba..$

ba$

$

ab a

aba..$

b a

$

ab aba..$

ba$

ba

$

a ba ba a aba..$

ba$$aba..$$

ba

$

aba aba..$

ba$

a

ba

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a b a a b a b a a b a a b a b a a b a b a $

9

28

19

17 12

4

621 14

23

13

3 2

8 16

3

11

22

8 3 2

3 2

20

18

157

2

10

13

5

4 3

4

4

Figure 4.3: The su�x tree T (abaababaabaababaababa$), with internal nodes

storing the number of (overlapping) occurrences

middle of an edge. For any two substrings of x, if y is a pre�x they have in

common, then the path in T (x) relative to y is the same for the two substrings.

To achieve overall linear-space allocation, the words on the edges are not

stored explicitly. For each word, it su�ces to save an ordered pair of integers

indexing one of the occurrences of the word in the text. Each edge label requires

thus constant space, which, in conjunction with the fact that total number of

nodes is bounded by O(n), results in the overall linear space for the tree.

The computation of the statistics of all substrings of a string is a direct

application of su�x trees. We denote by <w> the node, if it exists, precisely

at the end of the path in T (x) labeled with w. If instead w ends in the middle

of an arc then <w> denotes the node corresponding to the shortest extension

of w that ends in a node. Then, the number of occurrences of a string w is

given by the number of leaves in the subtree rooted at <w>. In Figure 4.3, the

number of occurrences is shown inside the internal nodes.

Many algorithms exist for the construction of su�x trees. A \brute force"

algorithm, for instance, would consist of inserting the su�xes of x one at a time

starting with the longest and progressing to the shortest (see Figure 4.4). In

the worst case it requires quadratic time while the average time complexity is

O(n log n) [14] (cf. also [31]).

Several clever constructions are available. The algorithm by McCreight [112]

and the one by Chen and Seiferas [32] are variation of the Weiner's algorithm

[165] and require only linear time for �nite alphabet. These algorithms are o�-

4.3. AUGMENTED SUFFIX TREE 33

baab$

aabaab$

ab$

1

1 2 3 4 5 6

a b a a b $

2 3

abaab$
1

baab$
2

baab$
1

$

a b a a b $ b a a b $ a a b $

a

ab$
3

$

b
1

b

4

aab$

$
5

6

2

$

......

aab$

Figure 4.4: The direct construction of the su�x tree T (abaab$)

line. A more recent construction by Ukkonen [160] achieves linear time on-line.

Recently, Farach [52] proposes an optimal construction for large alphabets.

4.3 Augmented su�x tree

If we want to build an index similar to a weighted version of T (x), only this

time for the statistics without overlap then the problem becomes more involved.

A perusal of Figures 4.3 and 4.5 shows that this transition induces a twofold

change in the tree: the number of occurrences in each internal node does not

longer necessarily coincide with the number of leaves; moreover, extra nodes

must now be introduced to account for changes in the statistics which occur in

the middle of the arcs.

The e�cient construction of the augmented index in minimal form (i.e.,

with the minimum possible number of unary nodes) is quite elaborate. The

resulting structure, called minimal augmented su�x tree, is denoted with T̂ (x).

The algorithm by Apostolico and Preparata [13] requires a post processing to

augment the tree with the extra unary nodes (at most O(n logn)) that results

in a worst-case complexity of O(n log2 n). However, the brute force construction

of T (x) can be adapted to produce T̂ (x) directly in O(n logn) time on average,

and O(n2) time in the worst case. The number of auxiliary nodes was bounded

in [13] by O(n log n), but a tighter, O(n) bound, was claimed recently [27].

4.4 Implementing the augmented su�x tree

The allocation in main memory of the su�x tree presents a spectrum of choices

which are related to the actual structure of the nodes. We are interested in

structures that allow to �nd for each node and symbol of the alphabet the

corresponding outgoing edge as quickly as possible. Unfortunately, the fastest

34 4.4. IMPLEMENTING THE AUGMENTED SUFFIX TREE

38

4 3 2

4 2

a ab a aba aba..$a b

ba$$aba..$$

ba

$

ba

aba aba..$

ba$

$

ab a

aba..$

b a

$

ab aba..$

ba$

ba

$

a ba ba a aba..$

ba$$aba..$$

ba

$

aba aba..$

ba$

a

ba

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a b a a b a b a a b a a b a b a a b a b a $

9

2 125

19

17 12

4

621 14

23

13

3 2

8 16

1 3

11

22

8 3 2

3 2

20

18

157

21

10

13

5

Figure 4.5: The augmented su�x tree T̂ (abaababaabaababaababa$) with internal

nodes (original & auxiliary) storing the number of non-overlapping occurrences

ways are the most expensive in terms of memory usage.

We can arrange the outgoing pointers of each node as an array of size j�j.
If we index directly the array with the �rst character of the word labeling the

outgoing edge, we achieve O(1) time to �nd the next node to visit. The array

of pointers yields fast searches, but it introduces an amount of waste space even

for small alphabets because many entries will not be used.

At the other end of the spectrum, we could arrange the pointers to the

descendants of a node as a linked list (or as a balanced search tree). This keeps

the space to a minimum, but introduce an overhead on the search (O(j�j) time
in the case of the list, O(log j�j) time for the balanced tree). If the alphabet

is ordered we can keep the list of the outgoing pointers sorted by the edge

labels with no extra cost. This somewhat reduces the time to search for a given

character and thus speeds up in practice the construction of the tree.

Finally, the adjacency of a node could be realized as part of a global hash

table. This yields worst case linear time searching [62, 48], but the space for

the table could be considerably large if we want to keep collisions low.

In actual applications the best design is probably a clever mix of the above

choices. Nodes near the root tend to have j�j children, so the array would be

the best choice. Moreover, if the �rst l levels of the tree are very dense we could

\compress" and eliminate those level by having an l-dimensional array indexed

by a pre�x of length l instead of using a single character [113]. Nodes near the

leaves have usually few descendants so lists can be attractive. For the nodes in

4.4. IMPLEMENTING THE AUGMENTED SUFFIX TREE 35

the middle of the tree, hashing or balanced trees may be the best option.

In our case the space is of high practical concern, so that we use the linked

list. Speci�cally, the structure of a node <w> contains: (1) two indices [i; j]

which identify the beginning and the the end of the last non-overlapping oc-

currence of a su�x of w of size j � i + 1 in x 2, (2) one pointer to the list of

children, (3) one to the list of siblings, and (4) one counter for the number of

non-overlapping occurrences, fw.

As said, the su�x trees require linear space. However, in practice even the

multiplicative constant involved matters. At 20 bytes per node and with an

average 1:5n number of nodes as observed in our experiments, a text of size n

needs about 30n bytes of storage space.

Although the size of the su�x tree depends on the particular implementa-

tion, one might expect it to be never smaller than 20 bytes per symbols (bps)

in the worst case [94]. Other related or alternative data structures have been

devised to relieve space requirements, such as the PATRICIA tree (12 bps)

[118], the su�x-array (9 bps) [108], the su�x-cactus (10 bps) [85, 86], the level

compressed trie (12 bps) [4], the su�x binary search tree (10 bps) [82] and

the compact dyrected acyclic word graphs (36 bps) [23, 24, 25, 41]. Generally

space savings are achieved at the expense of a higher time complexity in the

construction or in the query: for instance, the su�x array and the PAT tree

need O(n logn) time for the construction (O(n) on average for the su�x array)

and O(jwj+ log n) time when searching for a string w.

4.4.1 Computing the gain function

The function G discussed in Section 3.2 has to be computed for each substring

in the text x. However the cardinality of X is �(n2) in the worst case, and that

would expose us to a quadratic time algorithm.

Fortunately we can prove we can neglect words that end in the middle of

an arc. If we compute G only at the internal nodes of T̂ (x) we are not missing

any potential substitution. Therefore the annotation of the augmented su�x

tree with the value of the gain takes time proportional to the number of nodes

in the tree, that is O(n log n) or better.

The latter corresponds to the time complexity for each iteration of the

encoder. The overall complexity is therefore O(mn logn) wherem is the number

of iterations. The parameter m depends on many factors, such as the alphabet

size, and the length and the redundancy of the text.

The proof is based on the two following observations.

Property 1 G(w) is a monotone increasing function of mw, that is if we

choose two strings s and t such that ms < mt and fs = ft then G(s) < G(t)

Indeed the family of functions G(w) described in Section 3.2 have the form

cmw � d log(mw)� e where c; d and e are independent from mw. If we de�ne a

2i.e., such that w[jwj � j + i; jwj] = x[i; j]

36 4.4. IMPLEMENTING THE AUGMENTED SUFFIX TREE

new function g(m) = cm� d logm� e, then its derivative g0(m) = c � d=m is

always positive for m > d=c.

Property 2 The number of occurrences of w does not change in the middle of

an arc.

This property comes directly from the structure of the su�x tree (see Section

4.2).

We can now prove our statement. Suppose, for the sake of contradiction,

that a word w which attains the maximum G(w) ends in the middle of an arc.

By Property 1 if we move downward on the arc the number of occurrences does

not change, but the length of the string increases. By Property 2, if the length

of the string increases then the gain increases as well. If G increases, then w

was not the word that maximized G.

We conclude that is safe to disregard the words that end in the middle of

an arc and compute the gain only at the internal nodes. A more complete and

general study on this somewhat surprising property can be found in [8, 9].

4.4.2 Maintaining the augmented su�x tree

Recall that, according to our scheme, we compute G(w) while visiting the tree,

and the word w which maximizes G(w) is selected. The substitution of w with

appropriate pointers is performed and the process is repeated. The su�x tree

is updated and searched again for the next best substitution. These iterations

stop as soon as the optimal G(w) becomes zero or other conditions occur.

Repeatedly building the su�x tree at each iteration results in a considerable

computational e�ort, irrespective of the method adopted. Ideally, we would like

to build the tree once and then have an e�cient way to maintain it, together

with updated statistics, following every substring deletion or substitution.

A linear time algorithm to maintain the tree dynamically under deletion

of a string was originally proposed by McCreight [112]. A similar problem,

restricted to a single character update, has been studied by Fiala and Green in

the context of sliding window compression [60]. More recently, Larsson showed

that the algorithm by Ukkonen can be easily extended to accommodate the

\sliding window update" of the su�x tree in amortized linear time [98].

However, we did not �nd any existing solution to the problem of dynamic

maintenance of the entire augmented statistical index so to re
ect the deletion

of all the occurrences of a given word. Updating dynamically the tree seems

to be much more complicated and expensive than rebuilding the entire tree on

the new text.

We then decided to build the su�x tree from scratch at each iteration. Some

strategies to speed up the process were also devised, and they will be discussed

in Section 4.7.

4.5. STATISTICAL ENCODERS 37

4.5 Statistical encoders

A crucial point in the design of compression schemes is the coding of the stream

of data which is produced by the textual substitution process. It is well-known

from many experiments (see e.g., [60]) that the encoding of the pointers is

critical and that a �xed length code [49, 51] is unlikely to allocate optimally

the bits for displacement and length.

id encoding type

0 Plain

1 Hu�man

2 Arithmetic

3 De
ate (zlib)

4 RLE

5 RLE + Hu�man

6 RLE + Arithmetic

7 RLE + De
ate (zlib)

Table 4.1: Statistical encoders available toOff-Line. Three bits su�ce to describe

the type of encoding for each array

At present, Off-Line uses the statistical encoders shown in Table 4.1.

The Hu�man and the De
ate encoder are part of the zlib library written

by M. Adler and J. L. Gailly [65]. The interface to zlib and the arithmetic

encoder are adapted versions of programs by M. Nelson [122, 121]. The last

four options are composed by a cascade of run-length encoding followed by a

statistical encoder.

Off-Line picks the most e�cient statistical encoding for each one of the

arrays generated by the substitution process by comparing their respective �nal

sizes. Three bits for each array are needed to indicate the type of compressor

employed. The speci�c choice depends on the nature of the �le and on the type

of scheme we are using.

These considerations should now make it clear why a precise de�nition of

G a priori is very di�cult. Indeed, the parameters of G should depend on

entropy estimates of the arrays as produced by the most appropriate statistical

encoders. Unfortunately, we do not know such estimates until the substitution

process it terminated. But the function G dictates when to stop substituting

and what to choose. Moreover, the values assigned to parameters such as the

minimum/maximum match length and minimum number of occurrences also

have some impact on the entire process. The interplay between the parameters

of G and the statistical encoders is very complex and not completely understood

at this moment.

In our experiments, the value of B that appears as a parameter in G is esti-

mated by computing the average bit length of a symbol after the compression of

the source with the best statistical encoder available in Table 4.1. Indeed, the

initial assumption to assign B = log j�j bits per symbol is an often incorrect

38 4.5. STATISTICAL ENCODERS

estimate, because it assumes that all the symbols occur with the same proba-

bility. To evaluate correctly the cost the original representation, we must take

into account the actual entropy of the source.

4.5.1 Off-Line1

An example of output produced by Off-Line1 (i.e., the program implementing

Scheme 1) is shown in Figure 4.6. The �rst iteration results in the choice of

aba; the second of ba.

1: abaababaabaababaababa$ Substituted substring: "aba"

2: bababa$ Substituted substring: "ba"

----------------------------- Final encoding:

sublen = [3 2]

substr = [ababa]

abspol = [0 0] abspoh = [0 0]

relpol = [0 2 0 2 0 0] relpoh = [0 0 0 0 0 0]

occurr = [5 3]

text = [$]

Figure 4.6: A run of Off-Line1 on the string abaababaabaababaababa$

The actual encoding x̂ consists of some arrays that contain all the informa-

tion we need to reconstruct the text. At the end of the i-th iteration, resulting

in the choice of the substring w, such arrays are as follows

� sublen[i] contains the length of the word w and more precisely mw �
min length; the latter term represents the minimum acceptable length,

and is 0 in the previous example but 2 or more in our experiments;

� substr[k,k+sublen[i]+min length-1] records w where k-1 is the end-

ing position of substring substituted in iteration i � 1; substr is the

dictionary;

� occurr[i] stores the number of non-overlapping occurrences of w and

more precisely fw � min occ; the latter term represents the minimum

acceptable length, and is 0 in the previous example but 2 in our experi-

ments;

� abspoh[i] and abspol[i] contains the higher and the lower byte of the

absolute position of the �rst occurrence of w;

� relpoh[j] and relpol[j,j+occur[i]+min occ-1] record the higher and

the lower byte of the consecutive displacements of the other occurrences

of w;

4.5. STATISTICAL ENCODERS 39

File te
xt

su
bl
en

su
bs
tr

oc
cu
rr

ab
sp
ol

ab
sp
oh

re
lp
ol

re
lp
oh

bib Z R+H Z R+H N A N H

book1 A R+H Z R+A A A A H

book2 Z R+H Z R+H H H H H

geo Z R+A Z R+A N A Z Z

news Z R+H Z R+H A A H A

obj1 Z Z Z Z N A A H

obj2 Z R+H Z R+H A A Z H

paper1 Z Z Z R+H N A N H

paper2 Z Z Z R+H N A N H

pic Z A Z A A A R+H Z

progc Z Z Z R+H N A N H

progl Z Z Z H N A N H

progp Z Z Z H N A A H

trans Z Z Z H N A Z H

Table 4.2: Statistical encoders used in Off-Line1 for the Calgary Corpus: \N" is

no encoding,\A" is arithmetic coding, \R" is run-length encoding, \H" is Hu�man

encoding, \Z" is De
ate encoding (Gzip)

� text[] stores whatever may be left of the original x at the end of the

compression process.

In general, the number 255 is reserved as an escape code to indicate that

a current datum over
ows the standard space so that an additional byte is

allocated for its storage. For example, if the length of a word is 297 we store

(255; 42) in two consecutive positions of the array sublen. The value 255 is

represented as (255; 0).

As one should expect, the bulk of the output is represented by the lower

byte of the relative positions relpol and by the array text. The experiments

shows that although the former is practically incompressible, in principle text

can be compressed again with other methods.

The choices for the encoding for each array are summarized in Table 4.3 and

4.2. Table 4.2 refers to the Calgary corpus, a standard benchmark for textual

compression techniques. Table 4.3 is concerned with the fourteen chromosomes

of the yeast S. cerevisiae and the mitochondrial DNA. The experimental results

for these datasets will be discussed in Section 4.9.

As already noted, some arrays exhibit a high entropy (e.g., those containing

the absolute and relative positions) and are usually encoded as plain numbers

(N) or with arithmetic coding (A) [171] or Hu�man (H). Others show long runs

of equal numbers (for example, those storing substring length and the number

of occurrences) and are signi�cantly compressed by a cascade of run-length and

Hu�man encoding (R+H).

40 4.5. STATISTICAL ENCODERS

File te
xt

su
bl
en

su
bs
tr

oc
cu
rr

ab
sp
ol

ab
sp
oh

re
lp
ol

re
lp
oh

chrI A A H H A A A A

chrII A Z A H A H A A

chrIII A Z H Z A A A A

chrIV A Z A R+H A A A A

chrV A Z A H A A A A

chrVI A H A A A A A A

chrVII A Z A R+H A A A A

chrVIII A Z H H A A A A

chrIX A A A A A A A A

chrX A Z A H A A A A

chrXI A A H A A A A A

chrXII A Z A R+H A A A A

chrXIII A Z A R+H A A A A

chrXIV A A H R+A A Z A A

chrXV A Z A H A A A A

chrXVI A Z A R+H A A A A

Table 4.3: Statistical encoders used in Off-Line1 for the DNA dataset: \A" is

arithmetic coding, \R" is run-length encoding, \H" is Hu�man encoding, \Z" is

De
ate encoding (Gzip)

4.5.2 Off-Line2

An example of output produced by the second scheme is shown in Figure 4.7.

The �rst iteration results in the choice of aba. One reference copy of aba

remains in the text. However in the second iteration, the word ba is not sub-

stituted because the size of the pointer is more expensive than the plain text

representation (i.e., G2(ba) < 0).

1: abaababaabaababaababa$ Substituted substring: "aba"

----------------------------- Final encoding:

text = [baabababa$]

text_bit_vector = [0 0 1 1 1 1 1 0 1 1 0 1 1 1]

text_low = [8 5 -3 -8] text_high = [0 0 0 0]

sublen = [3 3 3 3]

Figure 4.7: A run of Off-Line2 on the string abaababaabaababaababa$

During the iterative process the text is composed of a sequence of literals

interspersed by pointers that can be distinguished by a bit-vector. At the end

of the process the text appears as decomposed in two parts. The leftover of

literals in the text forms the array text. The pointers are saved in the arrays

text low, text high and sublen. Speci�cally, text low stores the lower byte

of the displacement, text high the higher byte of the displacement, and sublen

the length of the target of the pointer.

4.5. STATISTICAL ENCODERS 41

Therefore, Off-Line2 produces �ve arrays that contains all the information

we need in order to retrieve the original text. In particular, the original linear

ordering of pointers and literals is preserved during the decomposition so we

can reverse the process using the text bit vector.

Figure 4.7 shows the contents of the arrays after the decomposition. A \0"

in the bit-vector indicates a pointer, a \1" indicates a literal. In text low we

can read the displacements of the four pointers that substituted the substring

aba.

The speci�c statistical encoders chosen for the two datasets are summarized

in Tables 4.4 and 4.5. Additional experimental results are reported in Section

4.9.

File text text bit vector text low text high sublen

bib Z A Z Z H

book1 Z A Z Z Z

book2 Z A Z Z H

geo Z A Z Z Z

news Z A Z Z Z

obj1 Z Z Z Z Z

obj2 Z Z Z Z Z

paper1 Z A A Z H

paper2 Z A A A H

pic Z R+Z Z Z Z

progc Z A Z Z H

progl Z A Z Z Z

progp Z A Z Z Z

trans Z A Z Z Z

Table 4.4: Statistical encoders used in Off-Line2 for the Calgary Corpus: \A" is

arithmetic coding, \R" is run-length encoding, \H" is Hu�man encoding, \Z" is

De
ate encoding (Gzip)

4.5.3 Off-Line3

An example of the output produced by the third scheme is shown in Figure

4.8. This time, the string abaab is selected. This substring becomes the �rst

word in the dictionary (indexed by \0"), and all the occurrences of abaab are

replaced by the pointer (0). After the substitution of abaab, all the substrings

in the text result in G3(w) < 0, so the process is terminated. The dictionary is

augmented by the words a with index \1", b with index \2", and $ with index

\3" as explained in detail later.

A critical issue in this scheme is the size of the pointer used in the text.

Unfortunately, only at the end of the substitution process we know the exact

value of d (see the de�nition of G3 in Section 3.2.3). We solve the problem as

follows. We assign some tentative size to the pointers during the substitution

process, say, by allocating two bytes for each one. Once the iterative process

42 4.5. STATISTICAL ENCODERS

File text text bit vector text low text high sublen

chrI A Z A A H

chrII A R+Z A A H

chrIII A Z A A H

chrIV A Z A A H

chrV A R+Z A A H

chrVI A Z A A H

chrVII A Z A A H

chrVIII A R+Z A A H

chrIX A Z A A H

chrX A R+Z A A H

chrXI A R+Z A A H

chrXII A R+Z A A H

chrXIII A Z N A H

chrXIV A R+Z A A H

chrXV A Z N A H

chrXVI A Z A A H

Table 4.5: Statistical encoders used in Off-Line2 for the DNA dataset: \N" is no

encoding, \A" is arithmetic coding, \R" is run-length encoding, \H" is Hu�man

encoding, \Z" is De
ate encoding (Gzip)

is �nished we decompose the pointers in lower and higher byte in the arrays

text low and text high respectively.

At this point, the �nal encoding should have a bit-vector to distinguish

literal from pointers in text. To get rid of it, we add to the dictionary the

words composed by each symbol that appears in the leftover. Then we are

entitled to substitute all the symbols with pointers. As a result the encoding

is composed only by a sequence of pointers (see Figure 4.8). It means that the

original string can be expressed by means of a new alphabet of cardinality d,

the symbols of which are the words in the dictionary.

Note that the \name" of the pointers, that is, the index associated with

1: abaababaabaababaababa$ Substituted substring: "abaab"

Appending to dictionary "a" - 1

Appending to dictionary "b" - 2

Appending to dictionary "$" - 3

------------------------------- Final encoding:

text_low = [0 0 1 1 2 0 1 2 1 3]

text_high = [0 0 0 0 0 0 0 0 0 0]

dict = [abaabab$]

sublen = [5 1 1 1]

Figure 4.8: A run of Off-Line3 on the string abaababaabaababaababa$

4.6. DECODING 43

File te
xt
l

te
xt
h

su
bs
tr

su
bl
en

bib Z A Z Z

book1 Z Z Z Z

book2 Z Z Z Z

geo Z Z Z R+A

news Z Z Z Z

obj1 Z Z Z Z

obj2 Z Z Z Z

paper1 Z Z Z Z

paper2 Z A Z Z

pic Z R+Z Z Z

progc Z Z Z Z

progl Z Z Z Z

progp Z R+Z Z Z

trans Z Z Z R+H

Table 4.6: Statistical encoders used in Off-Line3 for the Calgary Corpus: \A" is

arithmetic coding, \R" is run-length encoding, \H" is Hu�man encoding, \Z" is

De
ate encoding (Gzip)

each word in the dictionary, is arbitrary. We can exploit this observation by

reshu�ing the names of the pointers in such a way that the words in the dictio-

nary are sorted in order of increasing length, so that smaller indices correspond

to shorter words. Then the array sublen contains a sequence of monotonically

increasing numbers which can be highly compressed by a statistical encoder if

represented in terms of consecutives increments.

The statistical encoders used for each array are summarized in Table 4.6 and

4.7. In the case of Calgary Corpus, most of the arrays retain some redundancy

that is conveniently compressed by a LZ-77 encoding. Final results are discussed

in Section 4.9.

4.6 Decoding

Decoding a string given in the Off-Line2 and Off-Line3 compressed rep-

resentation can be done in linear time, because these schemes forbid pointer

recursion. In particular, Off-Line3 has an on-line, linear time decoding algo-

rithm.

For Scheme 2 we �rst reconstruct the original sequence of literals and point-

ers using the bit-vector. We scan the sequence left to right. A literal is copied in

the decompressed representation. A pointer suggests to copy the corresponding

string. Since pointers are bidirectional then the decoding has to be o�-line.

Scheme 3 is even easier to decode because the �nal compressed string is

composed only by pointers. We examine the sequence of pointers left to right.

For each pointer we copy the corresponding word from the dictionary in the

decompressed string. The algorithm takes linear time in the size of the output

44 4.7. HEURISTICS

File te
xt
l

te
xt
h

su
bs
tr

su
bl
en

chrI A R+Z H H

chrII A R+Z A H

chrIII A R+Z H H

chrIV A R+Z A Z

chrV A R+Z A H

chrVI A R+Z H A

chrVII A R+Z A H

chrVIII A R+Z H H

chrIX A R+Z H A

chrX A R+Z A H

chrXI A R+Z H H

chrXII A R+Z A Z

chrXIII A R+Z A H

chrXIV A R+Z H H

chrXV A R+Z A H

chrXVI A R+Z A H

Table 4.7: Statistical encoders used in Off-Line3 for the DNA dataset: \A" is

arithmetic coding, \R" is run-length encoding, \H" is Hu�man encoding, \Z" is

De
ate encoding (Gzip)

and it is on-line.

Scheme 1 is slightly more complicated. We allocate an empty array of size n

and �ll the array starting from the �rst string in the dictionary. Once the �rst

word has been stored in the appropriate positions, we are left with a number of

empty fragments that should be �lled by the next words. The problem is that

the positions of the occurrences of the i-th word in the dictionary are expressed

with respect to the \white space" in the array after the insertion of the �rst i�1
words. For example, it is entirely possibile that the some occurrences of the i-th

word could span multiple fragments. Even if we were keeping the fragments in

a linked list, the time complexity of one iteration the decoding would be more

than linear. We should resort to a data structure called �nger tree (see e.g.,

[91, 29, 28]). A �nger search tree is a data structure which stores a sorted list of

elements in such a way that searches are fast in the vicinity of a �nger, where a

�nger is a pointer to an arbitrary element of the list. If we organize the empty

fragments in a �nger tree, then the decoding of one iteration takes linear time,

the reason being that the algorithm visits a linear number of nodes in the �nger

tree.

4.7 Heuristics

The most time-consuming activity of the compression phase is the construction

of the augmented su�x tree and its annotation with the values of the gain. We

employed three heuristics to overcome the high computational demands of the

4.7. HEURISTICS 45

original \full-
edged" version of the compressor [12].

Instead of selecting only one word from a freshly built su�x tree and then

quickly dispose of the tree, we could extract several candidate substitutions.

In the latter case, we could utilize more than one substring between any two

consecutive updates of the statistical index.

Another way to cut the computation time is to build a pruned version

of the tree instead of a complete version. In principle, we could miss some

advantageous substitution of a very long repeated string, but we could use

much less storage space and time.

Finally, we could try to use a standard su�x tree instead of an augmented

tree to store the statistics of the subwords.

In the following Subsections, we will evaluate the e�ect on the compression

e�ciency of each strategy separately on two �les, using Off-Line1. The two

test �les are paper2 from the Calgary Corpus and the mitochondrial DNA

of the yeast S. cerevisiae. These two texts have been selected because of their

radically di�erent nature. The �le paper2 contains English text, it is structured

and it has a large alphabet, while mito could be regarded as a pseudo-random

sequence of �ve symbols (A,T,C,G,N).

The overall speed-up of the above heuristics combined together is impressive:

our original implementation took several hours to compress each of those �les

while now it runs in the order of some minutes. What is even better, the

corresponding loss of e�ciency in terms of compression is almost negligibile.

4.7.1 Priority queue

To store multiple candidates for substitution we use a queue that can grow to

a maximum size queue and that contains the words that result in the maximal

gain. The priority is the value of the gain: at the front of the queue we �nd the

most pro�table substitutions.

The strings are retrieved one at time from the queue and used in the con-

traction step. It is entirely possible that at some point a string from the queue

could not be found in the contracted text because of previous deletions. In fact,

part of the words in the queue end up unused. In any case, as soon as all the

words in the queue have been considered, a new augmented su�x tree is built

on the contracted text.

To avoid �lling up the queue with words that will not be used because of

the e�ect of previous substitutions, we check whether the word we are inserting

in the queue is a su�x or a pre�x of some other word already in the queue. If

it is not, we insert the word and possibly drop the word in position queue+1.

If it is, we keep only the one which gives the best gain and discard the other.

The speed-up factor of this heuristic is proportional to the value of queue

until the size of the queue becomes too large and the cost of searching for words

which will not be substituted overcomes the bene�t of building less trees (see

Figure 4.8). The loss in compression is negligible for sizes in the range 5 : : : 20.

46 4.7. HEURISTICS

paper2 mito

queue size time [min] size time [min]
1 30,773 19.70 16,326 7.06

2 30,780 10.36 16,367 4.06

5 30,785 5.06 16,405 2.24

10 30,787 3.21 16,446 1.66

20 30,826 2.39 16,476 1.36

50 30,904 1.97 16,632 1.28

100 30,923 1.86 16,702 1.37

1,000 30,923 1.98 16,702 1.47

Table 4.8: Comparing the performance of Off-Line1. We �xed min occ = 2,

min length = 2, max length = 100. The tree is augmented

We usually employ queue = 10, but a careful study of the optimal value has

not been carried out.

To summarize, the overall result is a considerable speed up with respect to

the eager version without a substantial penalty in the compression performance.

4.7.2 Pruned tree

The observation that it is highly unlikely that very long words occur frequently

in a text suggests that building the statistics for all the substrings can be a waste

of resources. Pruning the tree speeds up considerably the implementation and

saves large amounts of memory.

Pruning the tree does not mean that we could completely miss the word

involved in a long substitution. If the current best substitution is a word w

longer than the threshold max length then the encoder will eventually choose

some substring of w of length max length because that substring occurs without

overlap at least as many times as w.

paper2 mito

max length size time [min] size time [min]
10 30,986 2.58 17,044 0.29

50 30,664 2.62 16,491 1.32

100 30,636 2.68 16,470 1.38

1 30,636 19.39 16,470 10.34

Table 4.9: Comparing the performance of Off-Line1. We �xed min occ = 4,

min length = 4, queue = 10. The tree is augmented

Table 4.9 shows that the pruned version of Off-Line1 at max length = 100

performs almost ten time faster and achieves exactly the same compression as

the version that builds the complete tree. Again, the speed up is an order of

magnitude without any penalty in the e�ciency.

4.8. SOFTWARE 47

4.7.3 Su�x tree

The knowledge of the statistics of all the words in the text is a fundamental

prerequisite of our algorithm. In Section 4.3 we describe how to use the aug-

mented su�x tree, a data structure that compactly embodies all the words in

a text with their non-overlapping frequencies.

A \standard" su�x tree (see Section 4.2) gives the number of overlapped oc-

currences of w that is not what we really need. In principle, using the incorrect

statistics could degrade the performance of the encoder.

However, the standard su�x tree can be built in linear time (see [165, 112,

160]), while the best known result for the augmented su�x tree is O(n log2 n)

[13].

type of tree min length min occ paper2 mito

augmented 2 2 30798 16445

augmented 2 4 30661 16487

augmented 4 2 30798 16445

augmented 4 4 30660 16487

augmented 10 10 29913 16659

standard 2 2 30837 16521

standard 2 4 30680 16462

standard 4 2 30833 16521

standard 4 4 30680 16462

standard 10 10 29996 16826

standard - augmented 2 2 39 76

standard - augmented 2 4 19 -25

standard - augmented 4 2 35 76

standard - augmented 4 4 20 -25

standard - augmented 10 10 83 167

Table 4.10: Comparing the performance of Off-Line1 between standard su�x

tree and augmented su�x tree. We �xed max length = 40, queue = 10

Table 4.10 shows the performance of Off-Line1 using augmented and stan-

dard trees and the di�erence in the �nal sizes. The maximum loss in perfor-

mance is around 1%. Surprisingly, there are two cases where the overlapping

statistics gives a better result.

4.8 Software

The whole project is written in C++ and is based on the Standard Template

Library (STL). STL is a clean template library of containers and generic func-

tions endowing C++ with some features of higher-order imperative languages

[119]. We mainly used containers for dynamic arrays of characters and boolean,

priority queues, and red-black trees.

48 4.8. SOFTWARE

The three versions of the program for the general schemes described in

Sections 3.2.1, 3.2.2 and 3.2.3 can be obtained through conditional compilation.

The general structure of Off-Line is shown in the pseudo-code of Figure 4.9.

i 0;

x text;

while (forever) f

if (queue Q is empty) f

if (no substitution has been performed)

break;

T create min augm su�x tree(x);

Q compute gain(T);

g else

(w; occ) Q.pop();

ifdef Off-Line1
if ((G1(w) > 0) and (occ > min occ)) f

save w in the dictionary;

save the positions of the occurrences;

x delete all the occurrences of w from x;

g

endif

ifdef Off-Line2
if ((G2(w) > 0) and (occ > min occ))

x substitute all the occurrences of w, except one, with

pointers to the reference copy;

endif

ifdef Off-Line3

if ((G3(w) > 0) and (occ > min occ)) f

append w in the dictionary at position i;

x substitute all the occurrences of w with the pointer i;

i i+ 1;

g

endif

g;

run a statistical compressor on the encoding;

Figure 4.9: The top level structure of Off-Line

The main data structures are class symbol, class Text, and class Tree.

The class symbol de�nes the structure and the methods to handle a symbol from

the alphabet. It is composed by a char which stores the symbol itself, and a

bool that indicates if the symbol should be interpreted as a literal or as a

pointer.

Text is the class the instances of which store and process the text. It is

4.9. RESULTS 49

composed by the fragment tree, a red-black tree of nodes representing fragments

of text created during the substitution process and by a vector of symbols

(the text itself). The most frequent operations are erase(vector<symbol>

pattern), that searches and deletes all the non-overlapping occurrences of some

given pattern and substitute(vector<symbol> old, vector<symbol> new)

that searches and substitutes all the non-overlapping occurrences of the old

pattern with the new one.

The su�x tree is built from the Text once it has been compacted to a single

contiguous array. The tree is stored in an instance of the class Tree. The

de�nition of the class Tree is shown in Figure 4.10. There are two pointers to

the beginning and to the end of the string represented by that node, two pointers

to siblings and children and the counter of non-overlapping occurrences. The

prominent methods de�ned in the class Text are the function that builds the

su�x tree and the procedure that annotates the tree with the gain values.

class Tree {

vector<symbol>::iterator

begin, // pointer to the starting position

end; // pointer to the ending position

Tree

*sibling, // sibling pointer

*child; // child pointer

int

counter; // number of non-overl occurrences

...

}

Figure 4.10: The de�nition of the class Tree

4.9 Results

The encoders described in the previous Sections have been subject to extensive

experimentation and tuning. The �les on which we performed most of the

experiments are paper2 from the Calgary Corpus and mito, the mitochondrial

DNA sequence of the yeast. Table 4.11 compares directly the three encoders

on these two �les.

The running times are in the order of 2-3 minutes for �les of the size of

80 KB on a 300 Mhz machine running Solaris. When comparing compression,

the best encoder is Off-Line3, followed by Off-Line1 and, at some distance,

Off-Line2.

Table 4.12 displays the same ranking among the three encoders. The data

set is the Calgary Corpus, a standard benchmark for testing lossless compression

programs. Off-Line3 outperforms the other two encoders on most of the �les.

50 4.9. RESULTS

paper2 (82,199) mito (78,521)

encoder size time [min] size time [min]
Off-Line1 30,848 3.21 16,426 1.66

Off-Line2 33,757 3.01 17,741 2.24

Off-Line3 30,219 2.38 16,086 2.38

Table 4.11: Comparing the performance of Off-Line encoders. We �xed min occ

= 2, min length = 2, max length = 100, queue = 10 and the tree is augmented.

Running times are for a 300Mhz Solaris machine.

When compared with other textual substitution programs, the Off-Line

family performs better on most of input �les. In all the other cases, GZip is

the winner: however, the results of Off-Line are still comparable with GZip.

Moreover, a faithful comparison toGzip is made di�cult by the many heuristics

employed in the latter.

File Size Hu�man LZ-78 LZ-77

(bytes) Pack Compress GZip Off-Line1 Off-Line2 Off-Line3

bib 111,261 72,868 46,528 35,063 36,145 39,226 34,442

book1 768,771 438,487 332,056 313,376 305,185 323,007 298,735

book2 610,856 368,423 250,759 206,687 203,249 216,494 204,703

geo 102,400 72,836 77,777 68,493 68,229 69,983 68,726

news 377,109 246,516 182,121 144,840 141,257 150,462 143,246

obj1 21,504 16,330 14,048 10,323 10,845 11,271 11,088

obj2 246,814 194,378 128,659 81,631 88,179 93,915 87,574

paper1 53,161 33,457 25,077 18,577 19,994 21,607 19,289

paper2 82,199 47,731 36,161 29,753 30,848 33,757 30,219

pic 513,216 106,737 62,215 56,442 52,036 55,427 50,885

progc 39,611 26,030 19,143 13,275 14,758 15,527 14,127

progl 71,646 43,093 27,148 16,273 18,508 18,919 16,153

progp 49,379 30,328 19,209 11,246 12,890 13,282 11,160

trans 93,695 65,343 38,240 18,985 21,170 21,170 19,662

Table 4.12: Comparing Off-Line with other compression programs via textual

substitution on the Calgary Corpus

If we cross the boundary of textual substitution methods, the block-sorting

technique Bzip and Bzip2 based on [30] outperform Gzip and Off-Line on

the whole Calgary Corpus (see Table 4.13). A di�erent scenario is shown by

with other datasets, as explained in the following Section.

4.9.1 DNA sequences

A class of data where we extensively tested our encoders are DNA sequences.

The deoxyribonucleic acid (DNA) constitutes the physical medium in which

all properties of living organisms are encoded. The knowledge of its sequence

is fundamental in molecular biology. Important molecular biology databases

(e.g., EMBL, Genbank, DDJB, Entrez, SwissProt, etc.) have been developed

4.9. RESULTS 51

File Size BWT BWT

(bytes) BZip BZip2 Off-Line1 Off-Line2 Off-Line3

bib 111,261 27,097 27,467 36,145 39,226 34,442

book1 768,771 230,247 232,598 305,185 323,007 298,735

book2 610,856 155,944 157,443 203,249 216,494 204,703

geo 102,400 57,358 56,921 68,229 69,983 68,726

news 377,109 118,112 118,600 141,257 150,462 143,246

obj1 21,504 10,409 10,787 10,845 11,271 11,088

obj2 246,814 76,017 76,441 88,179 93,915 87,574

paper1 53,161 16,360 16,558 19,994 21,607 19,289

paper2 82,199 24,826 25,041 30,848 33,757 30,219

pic 513,216 49,422 49,759 52,036 55,427 50,885

progc 39,611 12,379 12,544 14,758 15,527 14,127

progl 71,646 15,387 15,579 18,508 18,919 16,153

progp 49,379 10,533 10,710 12,890 13,282 11,160

trans 93,695 17,561 17,899 21,170 21,170 19,662

Table 4.13: Comparing Off-Line with context-sorting encoders on the Calgary

Corpus

to collect hundreds of thousand of sequences of nucleotides and amino-acids

from biological laboratories all over the world.

The size of these databases, that is currently in the order of thousands of

gigabytes, increases exponentially fast. Unluckily, DNA �les have shown to be

di�cult to compress with Lempel-Ziv schemes because of their unstructured

nature. The compression of genetic sequences constitutes, therefore, a very

challenging task [73].

In other contexts, the amount of compression achievable on genetic se-

quences has been used as a possible measure of biological signi�cance [54, 129,

130] or as a classi�er [103, 101, 102].

Due to mutations, errors in the sequencing, and other biological events, the

redundancy in the DNA should be modeled mainly as consecutive (tandem)

repeats of the same word (motif) and palindromes. However, tandem repeats

and palindromes are not exact but they can occur with substitutions, insertions

or deletions of symbols. Moreover, palindromes are complemented, that is, the

word is reversed and the base A is substituted with T (and vice-versa), while C

is substituted with G (and vice-versa).

A corpus of novel approaches for compressing DNA has been established in

the past few years. The �rst attempt by Grumbach and Tahi [72, 73], called

BioCompress2, extends LZ-77 to catch very distant repeats and complemen-

tary palindromes.

Loewenstern and Yianilos [101] attack the problem of computing good es-

timates of the entropy of DNA sequences by building a predictive model Ppm-

style [34, 33, 116]. With respect to the original Ppm, they extend the context

model by allowing mismatches. Their algorithm estimates the parameters of

52 4.9. RESULTS

the model, called Cdna, via a learning process that tries to optimize a complex

objective function. The general problem is known to be NP-complete, but they
devise some approximation schemes.

Allison, Edgoose and Dix propose the most time expensive approach to

DNA compression [3]. They search for approximate repeats and approximate

palindromes. Their primary purpose is not to compress the text, but rather

to model the statistical property of the data as accurately as possible and to

�nd patterns and structures within them. They build a model with parameters

such as the probability of repeats, the probability of the length of repeats, and

the probability of mismatches within repeats. The parameters of the model are

estimated by an expectation maximization algorithm that takes O(n2) at each

iteration. Their results are the current \state of the art", but the algorithm is

extremely slow (the computation is in the order of days).

We compare the performance of Off-Line encoders with standard com-

pression programs in Table 4.14. The encoder Off-Line3 outperforms each

and every general purpose encoder on the fourteen chromosomes and the mito-

chondrial DNA of the yeast (Saccharomyces Cerevisiae strain S288).

Even comparing our encoders with programs designed to compress only

DNA, our performance is not very distant (see Table 4.15). We believe that a

specialized version of Off-Line augmented with some \biological knowledge"

could come very close to the best DNA compressors.

4.9. RESULTS 53

F
il
e

S
iz
e

H
u
�
m
a
n

L
Z
-7
8

L
Z
-7
7

B
W
T

B
W
T

(b
y
te
s)

P
a
c
k

C
o
m
p
r
e
ss

G
Z
ip

B
Z
ip

B
Z
ip
2

O
f
f
-L
in
e
1

O
f
f
-L
in
e
2

O
f
f
-L
in
e
3

c
h
r
I

2
3
0
,1
9
5

6
3
,1
4
4

6
2
,9
3
5

6
6
,2
6
4

6
1
,6
7
4

6
2
,3
7
3

5
7
,0
9
8

5
8
,6
3
1

5
6
,9
1
5

c
h
r
I
I

8
1
3
,1
3
7

2
2
2
,5
9
7

2
1
9
,8
4
5

2
3
6
,8
3
7

2
1
8
,4
6
3

2
2
1
,0
3
2

2
0
1
,6
1
7

2
0
3
,4
5
6

2
0
1
,1
8
0

c
h
r
I
I
I

3
1
5
,3
4
4

8
6
,2
8
1

8
6
,0
0
9

9
1
,8
2
7

8
4
,8
0
9

8
5
,7
0
5

7
7
,9
1
6

7
8
,9
8
3

7
7
,7
6
4

c
h
r
I
V

1
,5
2
2
,1
9
1

4
1
6
,5
1
6

4
0
9
,9
5
7

4
4
0
,0
5
6

4
0
7
,7
9
9

4
1
1
,2
5
0

3
7
1
,2
3
0

3
7
4
,4
1
3

3
7
0
,7
9
6

c
h
r
V

5
7
4
,8
6
0

1
5
7
,4
1
5

1
5
5
,9
4
4

1
6
7
,7
4
9

1
5
4
,5
8
0

1
5
5
,7
3
1

1
4
2
,3
6
4

1
4
3
,7
7
5

1
4
1
,9
1
9

c
h
r
V
I

2
7
0
,1
4
8

7
4
,0
7
7

7
3
,8
7
3

7
8
,9
2
5

7
2
,8
3
8

7
3
,6
5
1

6
7
,4
5
1

6
8
,1
5
1

6
7
,3
9
1

c
h
r
V
I
I

1
,0
9
0
,9
3
6

2
9
8
,6
8
0

2
9
4
,4
1
7

3
1
7
,2
8
2

2
9
3
,0
7
9

2
9
6
,2
4
5

2
7
0
,0
5
1

2
7
2
,9
7
2

2
6
9
,2
6
5

c
h
r
V
I
I
I

5
6
2
,6
3
8

1
5
4
,1
1
0

1
5
2
,2
6
5

1
6
3
,1
3
5

1
5
1
,2
4
0

1
5
2
,9
9
2

1
3
9
,5
8
8

1
4
0
,9
2
4

1
3
9
,2
7
1

c
h
r
I
X

4
3
9
,8
8
5

1
2
0
,6
6
9

1
1
8
,9
6
5

1
2
7
,8
0
5

1
1
8
,1
8
2

1
1
9
,5
5
3

1
0
9
,5
0
7

1
1
0
,8
7
1

1
0
9
,3
0
3

c
h
r
X

7
4
5
,4
4
3

2
0
4
,1
5
2

2
0
1
,7
8
3

2
1
6
,1
4
8

2
0
0
,3
2
5

2
0
2
,2
2
3

1
8
4
,7
0
9

1
8
6
,4
7
1

1
8
4
,2
8
7

c
h
r
X
I

6
6
6
,4
4
8

1
8
2
,3
7
7

1
8
0
,1
0
0

1
9
4
,1
1
9

1
7
9
,3
0
6

1
8
0
,9
0
1

1
6
5
,7
8
0

1
6
6
,7
5
2

1
6
5
,4
7
8

c
h
r
X
I
I

1
,0
7
8
,1
7
1

2
9
5
,4
4
1

2
9
1
,7
5
4

3
0
5
,6
5
3

2
8
8
,1
1
2

2
9
0
,8
0
0

2
6
0
,1
7
2

2
6
1
,3
4
6

2
5
9
,8
9
8

c
h
r
X
I
I
I

9
2
4
,4
3
0

2
5
3
,1
7
6

2
4
9
,0
9
9

2
6
7
,1
2
7

2
4
8
,4
5
0

2
5
0
,7
3
5

2
2
8
,2
3
3

2
3
1
,4
7
4

2
2
7
,6
1
0

c
h
r
X
I
V

7
8
4
,3
2
8

2
1
5
,0
2
0

2
1
2
,2
1
9

2
2
8
,7
5
7

2
1
0
,9
8
8

2
1
2
,8
1
6

1
9
5
,2
9
1

1
9
6
,7
1
9

1
9
4
,9
4
7

c
h
r
X
V

1
,0
9
1
,2
8
2

2
9
8
,7
6
2

2
9
4
,9
2
1

3
1
7
,9
7
1

2
9
3
,8
3
8

2
9
7
,2
7
9

2
7
0
,6
2
6

2
7
3
,3
6
6

2
6
9
,9
2
1

c
h
r
X
V
I

9
4
8
,0
6
1

2
8
6
,5
7
9

2
6
4
,1
1
3

2
7
8
,6
5
1

2
5
4
,9
4
7

2
5
7
,5
9
0

2
3
4
,0
9
9

2
3
7
,3
6
5

2
3
3
,1
5
0

m
i
t
o

7
8
,5
2
1

1
8
,1
4
9

1
7
,8
9
0

1
9
,3
6
9

1
7
,9
6
2

1
8
,0
9
4

1
6
,4
2
6

1
7
,7
4
1

1
6
,0
8
6

T
ab
le
4.
14
:
C
om
p
ar
in
g
O
f
f
-L
in
e
w
it
h
ot
h
er
co
m
pr
es
si
on
pr
og
ra
m
s
on
th
e
ch
ro
m
o
so
m
es
o
f
th
e
ye
as
t

54 4.9. RESULTS

Encoder Size bpc

GZip 91,827 2.33

Pack 86,281 2.19

Compress 86,009 2.18

BZip2 85,705 2.17

BZip 84,809 2.15

Off-Line3 77,764 1.97

CDNA [101] 76,471 1.94

Biocompress2 [73] 75,682 1.92

AED [3] 75,407 1.913

Table 4.15: Comparing Off-Line with DNA-speci�c compression programs on

third chromosome (chrIII) of the yeast (315,344 bps). bpc is the average number

of bits per character in the compressed representation

Chapter

5

Conclusions

In this Thesis, we showed that o�-line textual substitution can be a feasible

approach to lossless data compression when the user can a�ord to spend time

and memory for the encoding while the decoding should be still fast. Situations

such as distribution of data on Cd-Roms could take advantage of the higher

e�ciency of compression shown by our programs.

The results of our experiments are encouraging. Off-Line encoders outper-

formed all other general purpose compression programs on DNA benchmarks,

and textual substitution programs on the Calgary Corpus in most of the cases.

A specialized version of Off-Line for compressing genetic sequences is expected

soon.

When compared with the context-sorting encoders on general �les, the per-

formance of Off-Line seems to fade. We believe that the gap will be closed

when we exploit more the \context". The �les of the Calgary Corpus contains

natural language, Pascal code, Lisp code, object code, etc. In these �les there

is always a strong correlation between adjacent symbols, that is the probability

of occurrence of a symbols is strongly tied on the preceding/following context.

Off-Line removes repetitions in a new and clever way, but it does not remove

redundancy hidden in the correlation of a symbol with its context. More work

should be done in this direction.

Many interesting questions have been answered by the discussions and ex-

periments reported in this Thesis. Some of these answers have raised new and

more challenging questions which would warrant additional e�ort.

These include more precise de�nitions of gain functions G or alternative

approaches to the minimization problem, a clever procedure for the selection

of the string to store in the queue, the usefulness of reiteration of treatment

following the �rst application of Off-Line, and several issues pertaining to the

computational e�ciency achievable by sequential and parallel implementations.

Among the latter, a prominent concern would be to devise e�cient algorithms

that avoid building the statistical index from scratch, and better storage and

matching algorithms for the data structures.

55

56 5.1. BOUNDS

We conclude by describing some of the research directions that we are plan-

ning to pursue in the near future.

5.1 Bounds

In order to be entitled to call our steepest descent strategy an approximation

scheme of the optimal encoding we should prove formally bounds on the ap-

proximation. Speci�cally, we would like to prove that

jx̂OPT j
jx̂Off-Linej < C

for some constant C.

This line of research could converge towards some of the recent works by

De Agostino, Storer, and Silvestri [46, 44].

5.2 Parallel implementation

Several papers studied parallel algorithms for data compression via textual

substitution on the PRAM (see e.g., [153, 45, 42, 70, 43, 147, 39, 120]).

In a parallel architecture with a su�cient number of processor, we could

imagine to assign to each processor a textual substitution. Tables 5.1 and 5.2

show the modest number of iterations of the main loop of Off-Line encoders.

They correspond to the number of substitutions in the text.

The problem of performing the substitutions in parallel is that the each

substitution is tied to the history of the contraction steps1, so we cannot pre-

compute all the substitutions from the tree that was built on the original string.

However, we have shown that using a careful selection of the words from the

tree we can get a signi�cant speed up without substantial penalty. Moreover,

the su�x tree can be built in parallel very e�ciently [95, 11, 76]. Therefore, we

believe that a parallel implementation of Off-Line might result in relatively

clean and very fast real-time application.

5.3 Grammatical inference

Grammatical inference is an inductive inference problem where the target do-

main is a formal language and the representation class is a family of grammars.

The learning task is to identify a \correct" grammar for the (unknown) target

language, given a �nite number of examples of the language. This has been

investigated within many research �elds, including machine learning, compu-

tational learning theory, pattern recognition, computational linguistics, neural

networks, formal language theory, information theory, and many others. There

are several surveys on the �eld of grammatical inference [63, 64, 5, 114, 137].

1Recall that G changes after each substitution

5.3. GRAMMATICAL INFERENCE 57

File Size Off-Line1 Off-Line2 Off-Line3

bib 111,261 504 634 465

book1 768,771 2997 2857 2990

book2 610,856 2305 2408 2378

geo 102,400 407 473 503

news 377,109 1789 1634 1619

obj1 21,504 125 111 337

obj2 246,814 1219 1207 1055

paper1 53,161 373 475 342

paper2 82,199 506 717 505

pic 513,216 94 125 222

progc 39,611 255 261 308

progl 71,646 312 267 273

progp 49,379 208 210 252

trans 93,695 340 253 318

Table 5.1: Iterations of the main loop of Off-Line for the Calgary corpus �les

Recently, grammatical inference has been applied to computational biology

[93, 143, 138, 139].

It is interesting to examine the behavior of Off-Line1 when used as a tool

for inferring hierarchical grammar in sequences. The rationale to build grammar

based on some measure of compression can be justi�ed by the \Occam's Razor"

paradigm. When more than one explanation is possible, choose the simplest.

The grammar that our encoder is looking for is the shortest \explanation" of

the original string in terms of information content.

Another algorithm called Sequitur developed by Nevill-Manning et al.

[125, 123, 126, 124], is based on the inference of grammar to achieve compres-

sion. Sequitur implements an on-line algorithm capable to infer a hierarchi-

cal grammar from the text, looking for the longest repeated substring as in

Lempel-Ziv schemes. Except for the starting production, the inferred gram-

mar is constrained to have the right hand sides of the productions composed of

digrams.

As a preliminary experiment we analyzed the �rst paragraph of \Alice's Ad-

ventures in Wonderland" by Lewis Carroll, which is part of the new Canterbury

Corpus (see Figure 5.1).

Alice was beginning to get very tired of sitting by her sister

on the bank, and of having nothing to do: once or twice she had

peeped into the book her sister was reading, but it had no

pictures or conversations in it, `and what is the use of a book,'

thought Alice `without pictures or conversation?'

Figure 5.1: The text analyzed

Figure 5.2 shows the grammar generated by Off-Line1, while in Figure

5.3 the grammar is created by Sequitur. Note that Off-Line1 generates a

58 5.3. GRAMMATICAL INFERENCE

File Size Off-Line1 Off-Line2 Off-Line3

chrI 230,195 78 603 80

chrII 813,137 112 474 128

chrIII 315,344 61 309 68

chrIV 1,522,191 383 1297 441

chrV 574,860 109 276 118

chrVI 270,148 22 226 30

chrVII 1,090,936 144 1009 162

chrVIII 562,638 91 264 102

chrIX 439,885 54 543 63

chrX 745,443 108 376 123

chrXI 666,448 49 302 58

chrXII 1,078,171 444 1443 499

chrXIII 924,430 187 706 212

chrXIV 784,328 24 441 72

chrXV 1,091,282 128 924 147

chrXVI 948,061 193 755 217

Table 5.2: Iterations of the main loop of Off-Line for the chromosomes of the

yeast

more compact representation than Sequitur. However, because of the iterated

substitutions it is entirely possible that the target of some production could

overlap.

5.3. GRAMMATICAL INFERENCE 59

Al<LL><II>beg<D<<NN>E>>get_very_td<KK>sitt<NN>by<OOOOOOOOOO>on<MMM>bank,

<A><KK>hav<NN>noth<NN>to_do:__once_or_tw<LL>sh<<JJJ>F><F>d_<<E><MMM><HH>

<OOOOOOOOOO><II>B>ading,_bu<C>t<JJJ>no<PPPPPPPPPPPPPPPPP>s_<D>it,

_`<A>_wha<C>s<MMM>use<KK>a_<HH>,'<GG>ght_Al<LL>`wi<GG>t<PPPPPPPPPPPPPPPPP>?'

<A> --> "and"

 --> "ire"

<C> --> "t_i"

<D> --> "in_"

<E> --> "nto"

<F> --> "epe"

<GG> --> "thou"

<HH> --> "book"

<II> --> "was_"

<JJJ> --> "_had_"

<KK> --> "_of_"

<LL> --> "ice_"

<MMM> --> "_the_"

<NN> --> "ing_"

<OOOOOOOOOO> --> "_her_sister_"

<PPPPPPPPPPPPPPPPPPP> --> "_pictures_or_conversation"

Figure 5.2: The inferred grammar produced by Off-Line1 (blanks are substituted

by)

60 5.3. GRAMMATICAL INFERENCE

A100 --> A136 A116 A123 A104 "eg" A101 "n" A103 A102 A113 "ge" A126

A129 "y" A102 "i" A124 A110 A106 "tt" A103 A104 "y" A122

A114 A102 A117 "b" A109 "k" A125 A109 A110 A111 "av" A112

A128 A121 A112 A120 "do:_" A114 A115 "or" A102 "w" A116 "s"

A117 A127 A118 "e" A118 A119 A101 A120 A134 "b" A135 A122

"_" A123 "_" A124 "ad" A103 A125 "bu" A132 A126 A127 A128

"_" A140 A133 A101 "_" A138 A125 "`" A109 A119 "w" A131

A132 A133 A134 "us" A108 "of_a" A104 A135 ",'" A102 A139

"gh" A126 A136 A137 A108 "`w" A138 A139 A126 A140 "?'"

A101 --> "in" A102 --> "_t"

A103 --> A101 "g" A104 --> "_b"

A105 --> "er" A106 --> "_si"

A107 --> "_o" A108 --> "e_"

A109 --> "an" A110 --> d A107 f

A111 --> "_h" A112 --> A103 "_"

A113 --> "o_" A114 --> A107 "n"

A115 --> "c" A108 A116 --> "i" A115

A117 --> "h" A108 A118 --> "pe"

A119 --> "d_" A120 --> "t" A113

A121 --> "th" A122 --> A111 A105 A106 "st" A105

A123 --> "was" A124 --> "re"

A125 --> ",_" A126 --> "t_"

A127 --> A131 A119 A128 --> "no"

A129 --> "v" A105 A130 --> "on"

A131 --> "ha" A132 --> A126 i

A133 --> "s_" A134 --> A121 A108

A135 --> "ook" A136 --> "Al"

A137 --> "ic" A138 --> "it"

A139 --> "hou"

A140 --> "p" A137 "tu" A124 "s" A107 "r_c" A130 A129 "sati" A130

Figure 5.3: The inferred grammar produced by Sequitur (blanks are substituted

by)

Bibliography

[1] Aberg, J., and Shtarkov, Y. M. Text compression by context tree weight-

ing. In Data Compression Conference (Snowbird, Utah, 1997), J. A. Storer and

M. Cohn, Eds., IEEE Computer Society Press, TCC, pp. 337{386.

[2] Aberg, J., Shtarkov, Y. M., and Smeets, B. J. M. Non-uniform PPM and

contex tree models. In Data Compression Conference (Snowbird, Utah, 1998),

J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC, pp. 279{

288.

[3] Allison, L., Edgoose, T., and Dix, T. I. Compression of strings with

approximate repeats. Intell. Sys. in Mol. Biol. '98 (June 1998), 8{16.

[4] Andersson, A., and Nilsson, S. E�cient implementation of su�x trees.

Softw. Pract. Exp. 25, 2 (Feb. 1995), 129{141.

[5] Angluin, D., and Smith, C. H. Inductive inference: Theory and methods.

ACM Computing Surveys 15, 3 (Sept. 1983), 237{269.

[6] Apostolico, A. Linear pattern matching and problems of data compression.

In IEEE International Symposium on Information Theory (1979).

[7] Apostolico, A. The myriad virtues of su�x trees. In Combinatorial Algorithms

on Words, A. Apostolico and Z. Galil, Eds., vol. 12 of NATO Advanced Science

Institutes, Series F. Springer-Verlag, Berlin, 1985, pp. 85{96.

[8] Apostolico, A., Bock, M. E., and Lonardi, S. E�cient detection of unusual

words. Tech. Rep. TR-98, Purdue University, 1998.

[9] Apostolico, A., Bock, M. E., and Lonardi, S. Linear global detectors of

redundant and rare substrings. In to appear in the Proceedings of Data Compres-

sion Conference (Snowbird, Utah, 1999), J. A. Storer and M. Cohn, Eds., IEEE

Computer Society Press, TCC.

[10] Apostolico, A., and Fraenkel, A. Robust transmission of unbounded

strings using Fibonacci representations. IEEE Trans. Inf. Theory 33, 2 (1987),

238{245.

[11] Apostolico, A., Iliopoulos, C., Landau, G. M., Schieber, B., and

Vishkin, U. Parallel construction of a su�x tree with applications. Algorithmica

3 (1988), 347{365.

[12] Apostolico, A., and Lonardi, S. Some theory and practice of greedy o�-

line textual substitution. In Data Compression Conference (Snowbird, Utah,

1998), J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC,

pp. 119{128.

61

62 BIBLIOGRAPHY

[13] Apostolico, A., and Preparata, F. P. Data structures and algorithms for

the strings statistics problem. Algorithmica 15, 5 (May 1996), 481{494.

[14] Apostolico, A., and Szpankowski, W. Self-alignment in words and their

applications. J. Algorithms 13, 3 (1992), 446{467.

[15] Arnavut, Z., and Magliveras, S. S. Block sorting and compression. In Data

Compression Conference (Snowbird, Utah, 1997), J. A. Storer and M. Cohn,

Eds., IEEE Computer Society Press, TCC, pp. 181{190.

[16] Balkenhol, B., Kurtz, S., and Shtarkov, Y. Modi�cation of the bur-

rows and wheeler data compression algorithm. In Data Compression Conference

(Snowbird, Utah, 1999), J. A. Storer and M. Cohn, Eds., IEEE Computer Society

Press, TCC, pp. 124{136.

[17] Barnsley, M. Fractals Everywhere. Academic Press, New York, NY, USA,

1988.

[18] B�ek�esi, J., Galambos, G., Pferschy, U., and Woeginger, G. J. Greedy

algorithms for on-line data compression. J. Algorithms 25, 2 (Nov. 1997), 274{

289.

[19] Bell, T., and Kulp, D. Longest-match string searching for Ziv-Lempel com-

pression. Softw. Pract. Exp. 23, 7 (July 1993), 757{771.

[20] Bell, T. C., Cleary, J. G., and Witten, I. H. Text Compression. Prentice

Hall, 1990.

[21] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. A locally

adaptive data compression scheme. Commun. ACM 29, 4 (Apr. 1986), 320{330.

[22] Bloom, C. LZP: A new data compression algorithm. In Data Compression

Conference (Snowbird, Utah, 1996), J. A. Storer and M. Cohn, Eds., IEEE

Computer Society Press, TCC, pp. 425{434.

[23] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., and Mc-

Connel, R. Linear size �nite automata for the set of all subwords of a word:

an outline of results. Bull. Eur. Assoc. Theor. Comput. Sci. 21 (1983), 12{20.

[24] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., and Mc-

Connel, R. Complete inverted �les for e�cient text retrieval and analysis.

J. Assoc. Comput. Mach. 34, 3 (1987), 578{595.

[25] Blumer, A., Ehrenfeucht, A., and Haussler, D. Average size of su�x

trees and DAWGS. Discret. Appl. Math. 24 (1989), 37{45.

[26] Boyer, R. S., and Moore, J. S. A fast string searching algorithm. Commun.

ACM 20, 10 (1977), 762{772.

[27] Breslauer, D. Personal Communication. .

[28] Brodal, G. S. Finger search trees with constant insertion time. In ACM-SIAM

Annual Symposium on Discrete Algorithms (San Francisco, California, 25{27

Jan. 1998), pp. 540{549.

[29] Brown, M., and Tarjan, R. E. Design and analysis of a data structure for

representing sorted lists. SIAM J. Comput. 9 (1980), 594{614.

[30] Burrows, M., and Wheeler, D. J. A block-sorting lossless data compression

algorithm. TR Digital Equipments Corporation, 124 (May 1994).

BIBLIOGRAPHY 63

[31] Chang, W. I., and Lawler, E. L. Sublinear approximate string matching

and biological applications. Algorithmica 12, 4/5 (Oct./Nov. 1994), 327{344.

[32] Chen, M. T., and Seiferas, J. E�cient and elegant subword tree construction.

In Combinatorial Algorithms on Words, A. Apostolico and Z. Galil, Eds., vol. 12

of NATO Advanced Science Institutes, Series F. Springer-Verlag, Berlin, 1985,

pp. 97{107.

[33] Cleary, J. G., Teahan, W. J., and Witten, I. H. Unbounded length

contexts for PPM. In Data Compression Conference (Snowbird, Utah, 1995),

J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC, pp. 52{61.

[34] Cleary, J. G., and Witten, I. H. Data compression using adaptive coding

and partial string matching. IEEE Trans. Comput. 32 (1984), 396{402.

[35] Cohn, M., and Khazan, R. Parsing with su�x and pre�x dictionaries. In Data

Compression Conference (Snowbird, Utah, 1996), J. A. Storer and M. Cohn,

Eds., IEEE Computer Society Press, TCC, pp. 180{189.

[36] Cormack, G. V., and Horspool, R. N. S. Data compression using dynamic

Markov modelling. Comput. J. 30, 6 (Dec. 1987), 541{550.

[37] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algo-

rithms. MIT Press, 1990.

[38] Cover, T. M., and Thomas, J. A. Elements of Information Theory. Wiley

Series in Telecommunication. John Wiley & Son, New York, NY, USA, 1991.

[39] Crochemore, M., and Rytter, W. E�cient parallel algorithms to test

square-freeness and factorize strings. Inf. Process. Lett. 38, 2 (1991), 57{60.

[40] Crochemore, M., and Rytter, W. Text Algorithms. Oxford University

Press, 1994.

[41] Crochemore, M., and Verin, R. Direct construction of compact directed

acyclic word graphs. Lecture Notes in Computer Science 1264 (1997), 116{??

[42] De Agostino, S. P-complete problems in data compression. Theor. Comput.

Sci. 127, 1 (May 1994), 181{186.

[43] De Agostino, S. A parallel decoding algorithm for LZ2 data compression.

Parallel Comput. 21, 12 (Dec. 1995), 1957{1961.

[44] De Agostino, S., and Silvestri, R. A worst-case analysis of the LZ2 com-

pression algorithm. Information and Computation 139 (1997), 258{268.

[45] De Agostino, S., and Storer, J. A. Parallel algorithms for optimal compres-

sion using dictionaries with the pre�x property. In Data Compression Conference

(Snowbird, Utah, 1992), J. A. Storer and M. Cohn, Eds., IEEE Computer Society

Press, TCC, pp. 52{61.

[46] De Agostino, S., and Storer, J. A. On-line versus o�-line computation in

dynamic text compression. Inf. Process. Lett. 59, 3 (1996), 169{174.

[47] DeVore, R. A., Jawerth, B., and Lucier, B. J. Image compression through

wavelet transform coding. IEEE Trans. Inf. Theory 38, 2 (Mar. 1992), 719{746.

[48] Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Heide, F. M. A. D.,

Rohnert, H., and Tarjan, R. E. Dynamic perfect hashing: Upper and lower

bounds. SIAM J. Comput. 23, 4 (1994), 738{761.

64 BIBLIOGRAPHY

[49] Elias, P. Universal codeword sets and representations of the integers. IEEE

Trans. Inf. Theory 21 (1975), 194{202.

[50] Elias, P. Interval and recency rank source coding: two on-line adaptive variable-

length schemes. IEEE Trans. Inf. Theory 33, 1 (1987), 3{10.

[51] Even, S., and Rodeh, M. Economical encoding of commas between strings.

Commun. ACM 21, 4 (Apr. 1978), 315{317.

[52] Farach, M. Optimal su�x tree construction with large alphabets. In 38th

Annual Symposium on Foundations of Computer Science (Miami Beach, Florida,

20{22 Oct. 1997), IEEE, pp. 137{143.

[53] Farach, M., and Muthukrishnan, S. Optimal logarithmic time randomized

su�x tree construction. Lecture Notes in Computer Science 1099 (1996), 550.

[54] Farach, M., Noordewier, M., Savari, S., Shepp, L., Wyner, A., and

Ziv, J. On the entropy of DNA: Algorithms and measurements based on mem-

ory and rapid convergence. In ACM-SIAM Annual Symposium on Discrete Al-

gorithms (San Francisco, California, 22{24 Jan. 1995), pp. 48{57.

[55] Fenwick, P. M. The Burrows-Wheeler transform for block sorting text com-

pression: Principles and improvements. Comput. J. 39, 9 (1996), 731{740.

[56] Fenwick, P. M. Symbol ranking text compression with Shannon recodings. J.

Universal Computer Science 3, 2 (1997), 70{85.

[57] Fenwick, P. M. Symbol ranking text compressors: Review and implementation.

Softw. Pract. Exp. 28, 5 (1998), 547{559.

[58] Ferragina, P. Dynamic text indexing under string updates. J. Algorithms 22,

2 (Feb. 1997), 296{328.

[59] Ferragina, P., and Grossi, R. A fully-dynamic data structure for external

substring search. In Proceedings of the 27th ACM Symposium on the Theory of

Computing (Las Vegas, Nevada, 1995), ACM Press.

[60] Fiala, E. R., and Greene, D. H. Data compression with �nite windows.

Commun. ACM 32, 4 (Apr. 1989), 490{505.

[61] Fraenkel, A. S., Simpson, J., and Paterson, M. S. On weak circular

squares in binary words. In Annual Symposium on Combinatorial Pattern Match-

ing (Aarhus, Denmark, 30 June{2 July 1997), A. Apostolico and J. Hein, Eds.,

vol. 1264 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 76{

82.

[62] Fredman, M. L., Komlos, J., and Szemeredi, E. Storing a sparse table with

O(1) worst case access time. J. Assoc. Comput. Mach. 31, 3 (1984), 538{544.

[63] Fu, K. S., and Booth, T. L. Grammatical inference: Introduction and survey

{ Part I. IEEE Trans. on Systems, Man and Cybernetics 5 (1975), 95{111.

[64] Fu, K. S., and Booth, T. L. Grammatical inference: Introduction and survey

{ Part II. IEEE Trans. on Systems, Man and Cybernetics 5 (1975), 112{127.

[65] Gailly, J. L., and Adler, M. ZLib compression library. Available at

http://www.cdrom.com/pub/infozip/zlib/.

[66] Gall, D. L. MPEG: a video compression standard for multimedia applications.

Commun. ACM 34, 4 (1991), 46{58.

BIBLIOGRAPHY 65

[67] Gallager, R. G. Variations on a theme by Hu�man. IEEE Trans. Inf. Theory

24, 6 (Nov. 1978), 668{674.

[68] Gallant, J. String Compression Algorithms. PhD thesis, Dept. of Electrical

Engineering and Computer Sciences, Princeton University, Princeton, NJ, 1982.

[69] Gersho, A., and Gray, R. M. Vector Quantization and Signal Compression.

Kluwer Academic Publishers, Boston, 1992.

[70] Gonzalez Smith, M. E., and Storer, J. A. Parallel algorithms for data

compression. J. Assoc. Comput. Mach. 32, 2 (Apr. 1985), 344{373.

[71] Grinberg, D., Rajagopalan, S., Venkatesan, R., and Wei, V. K. Splay

trees for data compression. In ACM-SIAM Annual Symposium on Discrete Al-

gorithms (San Francisco, California, 22{24 Jan. 1995), pp. 522{530.

[72] Grumbach, S., and Tahi, F. Compression of DNA sequences. In Data Com-

pression Conference (Snowbird, Utah, 1993), J. A. Storer and M. Cohn, Eds.,

pp. 340{350.

[73] Grumbach, S., and Tahi, F. A new challenge for compression algorithms:

genetic sequences. Inf. Proc. and Mngm. 30, 6 (1994), 875{886.

[74] Gu, M., Farach, M., and Beigel, R. An e�cient algorithm for dynamic text

indexing. In ACM-SIAM Annual Symposium on Discrete Algorithms (Arlington,

VA, 1994), pp. 697{704.

[75] Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology. Cambridge University Press, 1997.

[76] Hariharan, R. Optimal parallel su�x tree construction. In Proceedings of the

26th ACM Symposium on the Theory of Computing (Montr�eal, Canada, 1994),

ACM Press, pp. 290{299.

[77] Hartman, A., and Rodeh, M. Optimal sparsing of strings. In Combinatorial

Algorithms on Words, A. Apostolico and Z. Galil, Eds., vol. 12 of NATO Ad-

vanced Science Institutes, Series F. Springer-Verlag, Berlin, 1985, pp. 155{167.

[78] Horspool, R. N. The e�ect of non-greedy parsing in Ziv-Lempel compression

methods. In Data Compression Conference (Snowbird, Utah, 1995), J. A. Storer

and M. Cohn, Eds., IEEE Computer Society Press, TCC, pp. 302{311.

[79] Horspool, R. N., and Cormack, G. V. Data compression based on token

recognition. manuscript, Oct. 1983.

[80] Huffman, D. A. A method for the construction of minimum-redundancy codes.

Proc. I.R.E. 40, 9 (1952), 1098{1101.

[81] Hunt, J. J., Vo, K.-P., and Tichy, W. F. An empirical study of delta

algorithms. In IEEE Soft. Con�g. and Maint. Workshop (1996).

[82] Irving, R. Su�x binary search trees. Tech. rep., University of Glasgow, Com-

puting Science Department, April 1996. http://www.dcs.gla.ac.uk/ rwi/papers/.

[83] Jacquet, P., and Szpankowski, W. Asymptotic behavior of the Lempel-Ziv

parsing scheme and digital search trees. Theor. Comput. Sci. 144, 1{2 (June

1995), 161{197.

[84] Jones, D. W. Application of splay trees to data compression. Commun. ACM

31, 8 (Aug. 1988), 996{1007.

66 BIBLIOGRAPHY

[85] K�aerkk�aeinen, J. Su�x cactus: A cross between su�x tree and su�x array.

In Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching

(Espoo, Finland, 1995), Z. Galil and E. Ukkonen, Eds., vol. 937 of Lecture Notes

in Computer Science, Springer-Verlag, Berlin, pp. 191{204.

[86] K�aerkk�aeinen, J., and Ukkonen, E. Sparse su�x trees. Lecture Notes in

Computer Science 1090 (1996), 219{230.

[87] Katajainen, J., and Raita, T. An approximation algorithm for space-optimal

encoding of a text. Comput. J. 32, 3 (June 1989), 228{237.

[88] Katajainen, J., and Raita, T. An analysis of the longest match and the

greedy heuristics in text encoding. J. Assoc. Comput. Mach. 39, 2 (Apr. 1992),

281{294.

[89] Knuth, D. E. Dynamic Hu�man coding. J. Algorithms 6, 2 (June 1985),

163{180.

[90] Knuth, D. E., Morris, Jr, J. H., and Pratt, V. R. Fast pattern matching

in strings. SIAM J. Comput. 6, 1 (1977), 323{350.

[91] Kosaraju, S. R. Localized search in sorted lists. In Conference Proceedings of

the Thirteenth Annual ACM Symposium on Theory of Computation (Milwaukee,

Wisconsin, 11{13 May 1981), pp. 62{69.

[92] Kosaraju, S. R., and Manzini, G. Compression of low entropy strings with

Lempel-Ziv algorithms. In Compression and Complexity of Sequences (1998),

B. Carpentieri, A. D. Santis, U. Vaccaro, and J. A. Storer, Eds.

[93] Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D.

Hidden markov models in computational biology: applications to protein mod-

elling. J. Mol. Biol. 235 (1994), 1501{1531.

[94] Kurtz, S. Reducing the space requirments of su�x trees. Tech. Rep. 98-03,

Technischen Fakult�at, Universit�at Bielefeld, 1998.

[95] Landau, G. M., Schieber, B., and Vishkin, U. Parallel construction of a

su�x tree. In Proceedings of the 14th International Colloquium on Automata,

Languages and Programming (Karlsruhe, Germany, 1987), T. Ottmann, Ed.,

no. 267 in Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 314{

325.

[96] Langdon, Jr., G. G. Erratum: \An introduction to arithmetic coding". IBM

Journal of Research and Development 28, 4 (1984), 498{498.

[97] Langdon, Jr., G. G. An introduction to arithmetic coding. IBM Journal of

Research and Development 28, 2 (Mar. 1984), 135{149.

[98] Larsson, N. J. Extended application of su�x trees to data compression. In

Data Compression Conference (Snowbird, Utah, 1996), J. A. Storer andM. Cohn,

Eds., IEEE Computer Society Press, TCC, pp. 190{199.

[99] Larsson, N. J. The context tree of block sorting compression. In Data Com-

pression Conference (Snowbird, Utah, 1998), J. A. Storer and M. Cohn, Eds.,

IEEE Computer Society Press, TCC, pp. 189{198.

[100] Li, M., and Vitanyi, P. Introduction to Kolmogorov Complexity and its Ap-

plications. Springer-Verlag, Aug. 1993.

BIBLIOGRAPHY 67

[101] Loewenstern, D., and Yianilos, P. N. Signi�cant lower entropy estimates

for natural DNA sequences. In Data Compression Conference (Snowbird, Utah,

1997), J. A. Storer and M. Cohn, Eds., pp. 151{160.

[102] Loewenstern, D. M., Berman, H. M., and Hirsch, H. Maximum a pos-

teriori classi�cation of DNA structure from sequence information. Paci�c Symp.

Biotech. (Jan. 1998).

[103] Loewenstern, D. M., Hirsh, H., Yianilos, P., and Noordewier, M.

DNA sequence classi�cation using compression-based induction. Tech. Rep. 95-

04, DIMACS, Apr. 1995.

[104] Lonardi, S., and Sommaruga, P. Fractal image approximation and orthog-

onal bases. Image Communications 15, 4 (March 1999), 413{423.

[105] Louchard, G., and Szpankowski, W. Average pro�le and limiting distri-

bution for a phrase size in the Lempel-Ziv parsing algorithm. IEEE Trans. Inf.

Theory 41 (1995).

[106] Louchard, G., and Szpankowski, W. Averaged redundancy rate of the

Lempel-Ziv code. In Data Compression Conference (Snowbird, Utah, 1996),

J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC.

[107] Louchard, G., and Szpankowski, W. On the average redundancy rate of the

Lempel-Ziv code. IEEE Trans. Inf. Theory 43 (1997).

[108] Manber, U., and Myers, G. Su�x arrays: A new method for on-line string

searches. SIAM Journal on Computing 22 (1993).

[109] Matias, Y., and Cenk Sahinalp, S. On the optimality of parsing in dy-

namic dictionary based data compression. In to appear in ACM-SIAM Annual

Symposium on Discrete Algorithms (1999).

[110] Matias, Y., Muthukrishnan, S., Sahinalpk, S. C., and Ziv, J. Augment-

ing su�x trees with applications. In Proceedings of the 6th Annual European

Symposium (Venice, Italy, 1998), G. Bilardi, G. F. Italiano, A. Pietracaprina,

and G. Pucci, Eds., no. 1461 in Lecture Notes in Computer Science, Springer-

Verlag, Berlin, pp. 67{78.

[111] Matias, Y., Rajpoot, N., and Cenk Sahinalp, S. Implementation and

experimental evaluation of
exible parsing for dynamic dictionary based data

compression. In Workshop on Algorithm Engineering (Saarbrucken, Germany,

1998), pp. 49{61.

[112] McCreight, E. M. A space-economical su�x tree construction algorithm. J.

Assoc. Comput. Mach. 23, 2 (Apr. 1976), 262{272.

[113] Mewes, H. W., and Heumann, K. Genome analysis: pattern search in bio-

logical macromolecules. In Proceedings of the 6th Annual Symposium on Com-

binatorial Pattern Matching (Espoo, Finland, 1995), Z. Galil and E. Ukkonen,

Eds., no. 937 in Lecture Notes in Computer Science, Springer-Verlag, Berlin,

pp. 261{285.

[114] Miclet, L. Grammatical inference. In Syntactic and Structural Pattern Recog-

nition; Theory and Applications, H. Bunke and A. Sanfeliu, Eds. World Scienti�c,

Singapore, 1990, ch. 9.

68 BIBLIOGRAPHY

[115] Miller, V. S., and Wegman, M. N. Variations on a theme by Ziv and Lempel.

In Combinatorial Algorithms on Words, A. Apostolico and Z. Galil, Eds., NATO

Advanced Science Institutes, Series F. Springer-Verlag, 1985, pp. 131{140.

[116] Moffat, A. Implementing the PPM data compression scheme. IEEE Trans.

Comput. 38, 11 (1990), 1917{1921.

[117] Mohtashemi, M. On the cryptanalysis of Hu�man codes. Thesis (m.s.), Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, USA, May 1992. Also published as Technical

report MIT/LCS/TR-617.

[118] Morrison, D. R. PATRICIA - practical algorithm to retrieve coded in alphanu-

meric. J. Assoc. Comput. Mach. 15, 4 (1968), 514{534.

[119] Musser, D. R., and Stepanov, A. A. Algorithm-oriented generic libraries.

Softw. Pract. Exp. 24, 7 (July 1984), 623{642.

[120] Nagumo, H., Li, M., and Watson, K. Parallel algorithms for the static dic-

tionary compression. In Data Compression Conference (Snowbird, Utah, 1995),

J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC, pp. 162{

171.

[121] Nelson, M. Arithmetic coding and statistical modeling. Dr. Dobb's Journal

(February 1991).

[122] Nelson, M. Examining the zlib compression library. Dr. Dobb's Journal (Jan-

uary 1997).

[123] Nevill-Manning, C., and Witten, I. H. Linear-time, incremental hierarchy

inference for compression. In Data Compression Conference (Snowbird, Utah,

1997), J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC,

pp. 3{11.

[124] Nevill-Manning, C., and Witten, I. H. Phrase hierarchy inference and

compression in bounded space. In Data Compression Conference (Snowbird,

Utah, 1998), J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press,

TCC, pp. 179{188.

[125] Nevill-Manning, C., Witten, I. H., and Maulsby, D. Compression by

induction of hierarchical grammars. In Data Compression Conference (Snowbird,

Utah, 1994), J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press,

TCC, pp. 244{253.

[126] Nevill-Manning, C. G., and Witten, I. H. Compression and explanation

using hierarchical grammars. Comput. J. 40, 2/3 (1997), 103.

[127] Pennebaker, W. B., Mitchell, J. L., Langdon, Jr., G. G., and Arps,

R. B. An overview of the basic principles of the Q-coder adaptive binary arith-

metic coder. IBM Journal of Research and Development 32, 6 (Nov. 1988),

717{726.

[128] Raita, T., and Teuhola, J. Predictive text compression by hashing. In Re-

search and Development in Information Retrieval: Proceedings of the Tenth An-

nual International ACM SIGIR Conference (New York, NY 10036, USA, 1987),

C. T. Yu and C. J. Rijsbergen, Eds., Storage/Retrieval Techniques I, ACM Press,

pp. 223{233.

BIBLIOGRAPHY 69

[129] Rivals, E., Delahaye, J. P., Dauchet, M., and Delgrange, O. A guar-

anteed compression scheme for repetitive DNA sequences. In Data Compression

Conference (Snowbird, Utah, 1996), J. A. Storer and M. Cohn, Eds., p. 453.

[130] Rivals, E., Delgrange, O., Delahaye, J. P., Dauchet, M., Delorme,

M. O., Henaut, A., and Ollivier, E. Detection of signi�cant patterns by

compression algorithms: the case of approximate tandem repeats in DNA se-

quences. CABIOS 13, 2 (1997), 131{136.

[131] Rodeh, M., Pratt, V. R., and Even, S. Linear algorithm for data compres-

sion via string matching. J. Assoc. Comput. Mach. 28, 1 (Jan. 1981), 16{24.

[132] Rubin, F. Experiments in text �le compression. Commun. ACM 19, 11 (Nov.

1976), 617{623.

[133] Rubin, F. Cryptographic aspects of data compression codes. Cryptologia 3, 4

(Oct. 1979), 202{205.

[134] Ryabko, B. Y. Data compression by means of a 'book stack'. Problemy

Peredachi Informatsii 16, 3 (1980).

[135] Sadakane, K. A fast algorithm for making su�x arrays and for Burrows-

Wheeler transformation. In Data Compression Conference (Snowbird, Utah,

1998), J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC,

pp. 129{138.

[136] Sadakane, K. Text compression using recency rank with context and relation

to context sorting, block sorting and PPM. In Compression and Complexity of

Sequences, B. Carpentieri, A. D. Santis, U. Vaccaro, and J. A. Storer, Eds. IEEE

Computer Society Press, TCC, 1998.

[137] Sakakibara, Y. Recent advances of grammatical inference. Theor. Comput.

Sci. 185, 1 (Oct. 1997), 15{45.

[138] Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sj�olander, K.,

Underwood, R. C., and Haussler, D. Stochastic context-free grammars for

tRNA modeling. Nucleic Acids Research 22 (1994), 5112{5120.

[139] Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sj�olander, K.,

Underwood, R. C., and Haussler, D. Recent methods for RNA modeling

using stochastic context-free grammars. In Annual Symposium on Combinatorial

Pattern Matching (Asilomar, California, 5-8 June 1994), M. Crochemore and

D. Gus�eld, Eds., vol. 807 of Lecture Notes in Computer Science, Springer-Verlag,

Berlin, pp. 289{306.

[140] Salomon, D. Data Compression: The Complete Reference. Springer-Verlag,

1998.

[141] Savari, S. A. Redundancy of the Lempel-Ziv incremental parsing rule. IEEE

Trans. Inf. Theory 43, 1 (June 1997), 9{21.

[142] Schuegraf, E., and Heaps, H. S. A comparison of algorithms for data base

compression by use of fragments as language elements. Information Storage and

Retrieval 10 (1974), 309{319.

[143] Searls, D. B. The linguistics of DNA. American Scientist. 80, 6 (Nov.-Dec.

1992), 579{591.

70 BIBLIOGRAPHY

[144] Sheinwald, D., Lempel, A., and Ziv, J. On compression with two-way head

machines. In Data Compression Conference (Snowbird, Utah, 1991), J. A. Storer

and M. Cohn, Eds., IEEE Computer Society Press, TCC.

[145] Sheinwald, D., Lempel, A., and Ziv, J. On encoding and decoding with

two-way head machines. Inf. Comput. 116, 1 (Jan. 1995), 128{133.

[146] Sleator, D. S., and Tarjan, R. E. Self-adjusting binary search trees. J.

Assoc. Comput. Mach. 32, 3 (1985), 652{686.

[147] Stauffer, L. M., and Hirschberg, D. S. PRAM algorithms for static dictio-

nary compression. In Proceedings of the 8th International Symposium on Parallel

Processing (Los Alamitos, CA, USA, Apr. 1994), H. J. Siegel, Ed., IEEE Com-

puter Society Press, pp. 344{348.

[148] Stephen, G. A. String Searching Algorithms. Lecture-Notes-Series-on-

Computing. World-Scienti�c-Publishing, Oct. 1994.

[149] Storer, J. A. Np-completeness results concerning data compression. Report

234, Princeton University, 1977.

[150] Storer, J. A. Data Compression: Methods and Complexity Issues. PhD thesis,

Dept. of Electrical Engineering and Computer Sciences, Princeton University,

Princeton, NJ, 1979.

[151] Storer, J. A. Textual substitution techniques for data compression. In Combi-

natorial Algorithms on Words, A. Apostolico and Z. Galil, Eds., NATO Advanced

Science Institutes, Series F. Springer-Verlag, Berlin, 1985.

[152] Storer, J. A. Data Compression: Methods and Theory. Computer Science

Press, 1988.

[153] Storer, J. A., and Reif, J. H. A parallel architecture for high-speed data

compression. Journal of Parallel and Distributed Computing 13, 2 (Oct. 1991),

222{227.

[154] Storer, J. A., and Reif, J. H. Error-resilient optimal data compression.

SIAM J. Comput. 26, 4 (Aug. 1997), 934{949.

[155] Storer, J. A., and Szymanski, T. G. The macro model for data compression.

In Proceedings of the 10th ACM Symposium on the Theory of Computing (San

Diego, CA, 1978), ACM Press, pp. 30{39.

[156] Storer, J. A., and Szymanski, T. G. Data compression via textual substi-

tution. J. Assoc. Comput. Mach. 29, 4 (Oct. 1982), 928{951.

[157] Thomborson, C. The V.42bis standard for data-compressing modems. IEEE

Micro 12, 5 (Oct. 1992), 41{53.

[158] Tjalkens, T., Volf, P., and Willems, F. A context-tree weighting method

for text-generating sources. In Data Compression Conference (Snowbird, Utah,

1997), J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC,

p. 472.

[159] Tjalkens, T., and Willems, F. Implementing the context-tree weighting

method: Arithmetic coding. In International Conference on Combinatorics, In-

formation Theory & Statistics (Portland, Maine, 1997).

BIBLIOGRAPHY 71

[160] Ukkonen, E. On-line construction of su�x trees. Algorithmica 14, 3 (1995),

249{260.

[161] Vitter, J. S. Design and analysis of dynamic Hu�man codes. J. Assoc. Comput.

Mach. 34, 4 (Oct. 1987), 825{845.

[162] Volf, P. A. J., and Willems, F. Switching between two universal source

coding algorithms. In Data Compression Conference (Snowbird, Utah, 1998),

J. A. Storer and M. Cohn, Eds., IEEE Computer Society Press, TCC, pp. 491{

500.

[163] Wagner, R. A. Common phrases and minimum-space text storage. Commun.

ACM 16, 3 (1973), 148{152.

[164] Wallace, G. K. The JPEG still picture compression standard. Commun. ACM

34, 4 (Apr. 1991), 30{44.

[165] Weiner, P. Linear pattern matching algorithm. In Proceedings of the 14th

Annual IEEE Symposium on Switching and Automata Theory (Washington, DC,

1973), pp. 1{11.

[166] Welch, T. A. A technique for high-performance data compression. IEEE

Computer 17, 6 (June 1984), 8{19.

[167] Willems, F., and Tjalkens, T. Complexity reduction of the context-tree

weighting method. In 18th Benelux Symposium on Information Theory (Veld-

hoven, The Netherlands, 1997).

[168] Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J. The context-

tree weighting method: basic properties. IEEE Trans. Inf. Theory (May 1995),

653{664.

[169] Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J. Context weight-

ing for general �nite context sources. IEEE Trans. Inf. Theory (Sept. 1996),

1514{1520.

[170] Williams, R. N. An extremely fast Ziv-Lempel data compression algorithm. In

Data Compression Conference (Snowbird, Utah, 1991), J. A. Storer andM. Cohn,

Eds., IEEE Computer Society Press, TCC, pp. 362{371.

[171] Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding for data

compression. Commun. ACM 30, 6 (June 1987), 520{540.

[172] Wyner, A. J., and Wyner, A. D. Improved redundancy of a version of the

Lempel-Ziv algorithm. IEEE Trans. Inf. Theory 41 (1995).

[173] Wyner, A. J., and Ziv, J. The sliding window Lempel-Ziv algorithm is asymp-

totically optimal. Proceedings of the IEEE 82 (June 1994), 872{877.

[174] Yokoo, H. Improved variations relating the Ziv-Lempel and Welch-type algo-

rithms for sequential data compression. IEEE Trans. Inf. Theory 38 (1992).

[175] Yokoo, H. An adaptive data compression method based on context sorting. In

Data Compression Conference (Snowbird, Utah, 1996), J. A. Storer andM. Cohn,

Eds., IEEE Computer Society Press, TCC.

[176] Yokoo, H. Data compression using a sort-based similarity measure. Comput.

J. 40, 2/3 (1997), 94{100.

72 BIBLIOGRAPHY

[177] Yokoo, H. Context tables: a tool for describing text compression algorithms. In

Data Compression Conference (Snowbird, Utah, 1998), J. A. Storer andM. Cohn,

Eds., IEEE Computer Society Press, TCC, pp. 299{308.

[178] Ziv, J., and Lempel, A. On the complexity of �nite sequences. IEEE Trans.

Inf. Theory 22 (1976), 75{81.

[179] Ziv, J., and Lempel, A. A universal algorithm for sequential data compression.

IEEE Trans. Inf. Theory 23, 3 (May 1977), 337{343.

[180] Ziv, J., and Lempel, A. Compression of individual sequences via variable-rate

coding. IEEE Trans. Inf. Theory 24, 5 (Sept. 1978), 530{536.

