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Abstract

In this paper we study the average behavior of the number of distinct substrings in a text of size
n over an alphabet of cardinalityk. This quantity is called thecomplexity indexand it captures the
“richness of the language” used in a sequence. For example, sequences with low complexity index
contain a large number of repeated substrings and they eventually become periodic (e.g., tandem
repeats in a DNA sequence). In order to identify unusually low- or high-complexity strings one needs
to determine how far are the complexities of the strings under study from the average or maximum
string complexity.While the maximum string complexity was studied quite extensively in the past, to
thebest of our knowledge thereareno results concerning theaveragecomplexity.Wefirst prove that for
a sequence generated by a mixing model (which includes Markov sources) the average complexity
is asymptotically equal ton2/2 which coincides with the maximum string complexity. However,
for a memoryless source we establish a more precise result, namely the average string complexity is
n2/2−n logk n+(1+ (1− �)/ ln k + �k(logk n)+ o(1)) nwhere� ≈ 0.577and�k(x) is a periodic
function with a small amplitude for small alphabet size.
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1. Introduction

In the last decades, several attemptshavebeenmade tocapturemathematically theconcept
of “complexity” of a sequence. The notion is related to quite deep mathematical properties,
including the rather elusive concept of randomness of a string (see, e.g.,[14,19,22]).
In this paper, we are interested in studying a measure of complexity of a sequence called

thecomplexity index. The complexity index captures the “richness of the language” used in a
sequence. Formally, thecomplexity indexc(x) of a stringx is equal to the number of distinct
substrings inx (see e.g.,[20]). Themeasure is simple but quite intuitive. Sequenceswith low
complexity index contain a large number of repeated substrings and they eventually become
periodic. However, in order to classify low complexity sequences one needs to determine
average andmaximum string complexity. In this paper we concentrate on the average string
complexity.
We assume that sequences are generated by some probabilistic source (e.g., Bernoulli,

Markov, etc.). As a consequence, the numberc(x) of distinct substrings can be modeled by
a random variable over a discrete domain. Given a source emitting strings of sizen over
an alphabet of cardinalityk, we call this random variableCn,k. The main objective of this
study is to give a detailed characterization of the expectation of the random variableCn,k.
A related notion is that of thel-subword complexityor l-spectrumcl(x) of a stringx,

which is the number of distinct substrings of lengthl in x, for 1� l� |x|. We defineCln,k to
be the random variable associated with the number of distinct words of sizel in a random
string of sizen over an alphabet of cardinalityk. Clearly,Cn,k = ∑n

l=1Cln,k.
The idea of using the complexity index or thel-spectrum to characterize sequence sta-

tistically has a long history of applications in several fields, such as data compression,
computational biology, data mining, computational linguistics, among others.
In dictionary-based data compression, the average length of the pointer is connected with

theexpectedsizeof thedictionarywhich in turnsdependson thenumberof distinct subwords
(see, e.g.,[6]). Low-complexity strings contain more repeated substrings and therefore one
can expect them to be more compressible than strings with high complexity index. For
example, in[14] bounds between subword complexity and Lempel–Ziv complexity are
established.
In the analysis of biosequences, the problemof characterizing the “linguistic complexity”

of DNA or proteins is quite old. In the early days of computational biology, it was almost
routine to compute the number and/or the frequency of occurrences of substrings and draw
conclusions about the string under study based on those counts (see[7,12,15,16,23], just to
mention a few).
In these and several other application domains, the typical problem associated with the

complexity index is to determine whether a particular sequencex has astatistically sig-
nificantcomplexity index. An example of a significance score proposed in a recent paper
by Troyanskaya et al.[31] in the context of the analysis of prokaryotic genomes, is the
following:

s(x) = c(x)−max{Cn,k} = c(x)−
n∑
i=1

min(ki, n− i + 1).
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Here, the authors compare the observed complexityc(x) with the maximum possible com-
plexity for a string of sizen over an alphabet of cardinalityk. Note however, that the score
disregards both the distribution ofCn,k, and the probabilistic characteristics of the source.
A more statistically sound approach would entail the following steps. First, select an

appropriate model for the source that emittedx (Bernoulli, Markov, etc.). Then, measure
the statistical significance as a function of the discrepancy between the observed complexity
c(x) and the model-based expectation.
This approach of standardizing the value of an observation with respect to the expecta-

tion and the standard deviation of the associated random variable is common practice in
statistics. The underlying assumption is that the random variable is normally distributed.
The standardizedz-score for the complexity index would be

z(x) = c(x)− E(Cn,k)√
Var (Cn,k)

for a given stringx. Although we do not know under which conditionsCn,k is distributed
normally, such a score is nonetheless more sound that otherad hocscores.
A similar situation takes place when describing the significance of other events in texts,

like the number of occurrences, periodicities, etc. Although the normality of the corre-
sponding random variables can be proved under specific conditions, there is a consensus
that standardizedz-scores should be always preferred over simpler scores (see, e.g.,[25]
and references therein).
Given an observationx of the source, we would like to compute the statistical signifi-

cancez(x) of its complexity index. As far as we know, however, the momentsE(Cn,k) and
Var (Cn,k) have never been characterized before. The goal of this paper is to studyE(Cn,k).
The asymptotic analysis of the variance remains an open problem.
In order to proceed, we need to introduce some standard concepts and notation about

strings. The set� denotes a nonemptyalphabetof symbolsand astringover� is an ordered
sequence of symbols from the alphabet. In the rest of the paper, we assume that|�| = k.
Given a stringx, the number of symbols inx defines thelength |x| of x. Henceforth, we
assume|x| = n.
Theconcatenation(or product) of two stringsx andy is denoted byxy, and corresponds

to the operation of appendingy to the last symbol ofx. Let us decompose a textx in uvw,
i.e.,x = uvw whereu, v andw are strings over�. Stringsu, v andw are calledsubstrings,
orwords, of x.
We write x[i], 1� i� |x| to indicate theith symbol inx. We usex[i,j ] shorthand for

the substringx[i]x[i+1] . . . x[j ] where 1� i� j� |x|, with the convention thatx[i,i] = x[i].
Substrings in the formx[1,j ] corresponds to theprefixesof x, and substrings in the form
x[i,n] to thesuffixesof x.
Finally, we recall that thesubword complexityfunctioncl(x) of a stringx is defined as

the number of distinct substrings ofx of length l. The quantityc(x) = ∑n
l=1 cl(x) is the

complexity indexof x. Observe first thatcl(x) is upper bounded by min(kl, n− l+ 1) since
there are preciselyn− l+1 words of lengthl, of which at mostkl can be distinct. Therefore

c(x)�
n∑
l=1
min(kl, n− l + 1).
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Fig. 1. The non-compact suffix trieTx for x = abaababa . There are 24 internal non-root nodes, therefore
c(x) = 24.

Note that if we choosen� k, then min(kl, n− l+1) = n− l+1 for all 1� l� n. Therefore
whenn� k, the bound simplifies toc(x)� n(n+ 1)/2.
The valuec(x) is strongly connected with the structure of thenon-compact suffix triefor

x. A non-compact suffix trie of a stringx is a digital search tree built from all the suffixes
of x. The trie for a string of sizen hasn+ 1 leaves, numbered 1 ton+ 1, where leafn+ 1
correspond to an extra unique symbol $/∈ �, and each edge is labeled with a symbol in�.
No two edges outgoing from a node can have the same label. The trie has the property that
for any leafi, the concatenation of the labels on the path from the root the leafi spells out
exactly the suffix ofx that starts at positioni, that isx[i,n]. The substrings ofxcan be obtained
by spelling out the words from the root to any internal node of the tree. In other words, each
internal node (except the root) is in one-to-one correspondence with each distinct substring
of x. As a consequence,the complexity indexc(x) can be obtained by counting the non-root
internal nodes in the non-compact suffix trie for x. This would take, however, O(n2) time
and space. The non-compact suffix trie forabaababa is illustrated in Fig.1.
A faster solution to computec(x) involves the use of thesuffix treeT̄x of x. The suffix

tree can obtained by “path-compression” of the non-compact suffix trie, that is, by deleting
internal nodeswith only one child and coalescing consecutive edges in a single edge labeled
by the concatenation of the symbols. If one deletes unary nodes only at thebottomof the
non-compact suffix tries, the resulting tree is calledcompact suffix trie. The compact suffix
trie and the suffix tree forabaababa are shown in Fig.2.
In practice, suffix trees can be built without the need of building the suffix trie first.

In fact, several O(n log |�|) constructions are available. The algorithm by McCreight[21]
and the one by Chen and Seiferas[9] are variations of the Weiner’s algorithm[34]. Note
that these algorithms take only linear time for finite alphabets. All these constructions are
off-line because they process the text right to left. An on-line algorithm by Ukkonen[32]
achieves also linear time. Recently, Farach[11] proposed an optimal construction for large
alphabets.
The unary nodes that have been removed in the compaction process are calledimplicit

nodes. An edge labeled by a string of lengthm + 1 hasm implicit nodes. The complexity
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Fig. 2. The compact suffix trie (LEFT) and the suffix tree (RIGHT) forx = abaababa .

indexc(x) of a text-stringx can be computed on the suffix tree by counting the number of
implicit and explicit (non-root) nodes in the tree. As a consequence,c(x) can be computed
in O(n) time and space. The relation between non-compact suffix tries and suffix trees
will be used later in the paper to obtain the leading term of the complexity for a general
probabilistic model.
Finally, we briefly describe some recent results regarding the maximum ofcl(x). It is

known thatcl(x) is also strongly connected with the structure of the suffix treeT̄x . De Luca
[10] proved that

max{cl(x) : 1� l� n} = n−max{R,K} + 1= n−max{L,H } + 1,
whereK is the length of the shortest suffix ofx that occurs only once,H is the length of the
shortest prefix ofx that occurs only once,R−1 is the height of the deepest branching node
in the suffix treeT̄x andL− 1 is the height of the deepest branching node in the suffix tree
T̄xR . De Luca also gave a closed form forc(x)

c(x) = 1+ (n+K)(n−K + 1)
2

−
|�|∑
j=2

R∑
i=0

ig(j, i),

whereg(j, i) is the count of the words of lengthi which are branching nodes of the suffix
tree with at leastj children[10].
Shallit [26] derived a simpler bound forc(x) for binary alphabets (k = 2)

c(x)� (n− d + 1)(n− d)

2
+ 2d+1− 1∼ n2

2
,

whered is the unique integer such that 2d + d − 1� n < 2d+1 + d. More importantly, he
proved that the upper bound is attained for allnby using a property of thede Bruijngraphs.
An extension of this result to larger alphabets was recently described in[13].
Kása[17] studied the probability distribution of random variable associated with the

complexity index for the family of words of length equal to the size of the alphabet
(n = k). He proved several facts about the random variableCk,k, and he also conjectured
a property of the smallest value of the complexity after which all the frequencies are
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non-zero. The conjecture, proved later by Leve and Séébold[18], states that if one chooses
k = l(l + 1)/2+ 2+ i wherel�2 and 0� i� l then

P
(
Ck,k = t

)
> 0 for all t such that

l(l2−1)
2

+3l+2+i(l+1)� t� k(k + 1)
2

.

In this paper wemostly deal with average string complexity. First, for a general probabilistic
model (e.g., Markov source) we prove that the average complexity is asymptotically equal
to n2/2 which coincides with the maximum string complexity. We shall strengthen this
result for unbiased memoryless sources. In particular, we prove that

E(Cn,k) =
(
n+ 1
2

)
− n logk n+

(
1

2
+ 1− �
ln k

+ �k(logk n)
)
n+O(√n log n),

where� ≈ 0.577 and�k(x) is a continuous function with period 1 and small amplitude for
small alphabet size (e.g.,|�2(x)| < 2× 10−7). To prove this result we use the Stein–Chen
method together with the Mellin transform approach.

2. Main results

As awarm-up exercise, we studied the closed forms forE
(
Cn,k

)
andVar

(
Cn,k

)
for short

strings (e.g.,n�5) for a symmetric memoryless source. Some facts aboutP(Cn,k = t) are
immediate. For example

P
(
Cn,k < n

)= 0,
P
(
Cn,k = n

)= k1−n,

P
(
Cn,k >

n(n+ 1)
2

)
= 0 whenn� k,

P
(
Cn,k >

∑n
i=1min(ki, n− i + 1)

)
= 0 whenn > k.

Following the lines by Kása[17], we were able to obtain closed form for the cases shown in
Table1assumingasymmetricBernoullimodel for the source.Given thediscrete distribution
of Cn,k one can easily compute the expectation and the variance ofCn,k.

Corollary 1. The expectation and the variance of the random variableCn,k for 2� n�5
over any alphabet of size k, under a symmetric Bernoulli source is

E
(
C2,k

)= 3− (1/k),

E
(
C3,k

)= 6− (3/k),

E
(
C4,k

)= 10− (6/k)+ (1/k2)− (1/k3),

E
(
C5,k

)= 15− (10/k)+ (4/k2)− (6/k3)+ (2/k4),

and

Var
(
C2,k

)= (k − 1)/k2,
Var

(
C3,k

)= 3(k − 1)/k2,
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Table 1
The probability distribution ofCn,k for 2� n�5 over any alphabet of sizek, under a symmetric Bernoulli source

n → 2 3 4 5

P
(
Cn,k = 2

)
1/k 0 0 0

P
(
Cn,k = 3

)
1− 1/k 1/k2 0 0

P
(
Cn,k = 4

)
0 0 1/k3 0

P
(
Cn,k = 5

)
0 3(k − 1)/k2 0 1/k4

P
(
Cn,k = 6

)
0 (k − 1)(k − 2)/k2 0 0

P
(
Cn,k = 7

)
0 0 3(k − 1)/k3 0

P
(
Cn,k = 8

)
0 0 4(k − 1)/k3 0

P
(
Cn,k = 9

)
0 0 6(k − 1)(k − 2)/k3 3(k − 1)/k4

P
(
Cn,k = 10

)
0 0 (k − 1)(k − 2)(k − 3)/k3 0

P
(
Cn,k = 11

)
0 0 0 10(k − 1)/k4

P
(
Cn,k = 12

)
0 0 0 2(k − 1)(3k − 5)/k4

P
(
Cn,k = 13

)
0 0 0 19(k − 1)(k − 2)/k4

P
(
Cn,k = 14

)
0 0 0 10(k − 1)(k − 2)(k − 3)/k4

P
(
Cn,k = 15

)
0 0 0 (k − 1)(k − 2)(k − 3)(k − 4)/k4

P
(
Cn,k�16

)
0 0 0 0

Var
(
C4,k

)= (k − 1)(6k4 − 5k3+ 12k2 − k + 1)/k6,
Var

(
C5,k

)= 2(k − 1)(5k6− 10k5+ 33k4 − 28k3+ 16k2 − 10k + 2)/k8.

As it turns out, obtaining a closed form forE
(
Cn,k

)
andVar

(
Cn,k

)
for anyn, k is a very

challenging problem. In practical applications, moreover, having the closed form only for
small values ofn would be of limited interest. It is certainly more valuable to study the
behavior of the moments ofCn,k asymptotically, that is, whenn is very large.
The main result of our study is a characterization ofE

(
Cn,k

)
for largen. In our first

result we show that for quite general sources the average complexity asymptotically
coincides with the maximal string complexity. We consider mixing sources in which the
probability of two eventsA andB defined on two substrings separated byg symbols is
bounded as follows:(1−�(g))P(A)P(B)�P(AB)� (1+�(g))P(A)P(B)where themix-
ing coefficient�(g) → 0 asg → ∞ (cf. [28] for a detailed definition).

Theorem 1. LetCn,k be the complexity index of a string of length n generated by a strongly
mixing stationary source. Then, for large n,

E(Cn,k) =
(
n+ 1
2

)
−O(n log n).

HenceCn,k = n2/2+Op(n log n), i.e.,(n2/2− Cn,k)/n logn is bounded in probability.

Proof. We start with a simple observation. For a given sequencex of sizen, build a non-
compact suffix trie and a compact suffix trie. Recall that in a compact trie we collapse all
unary links at thebottomof the suffix trie. In other words, in a compact suffix trie a path from
the root to an external node (containing a suffix) is the minimal prefix of any two suffixes
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that distinguishes them.Also recall that the string complexity ofx is the number of non-root
internal nodes in the non-compact trie. We shall argue below that the most contribution to
the string complexity comes from the nodes that are in the non-compact trie but not in the
compact trie. The upper bound follows immediately from

Cn,k� n(n+ 1)/2.
To find a matching lower bound, we consider the compact and non-compact suffix tries.We
know that a typical depth and height in a compact suffix trie is O(logn). More precisely
let Hn be the height of a compact suffix tree. It was shown in[27] that (at least for�(g)
satisfying

∑
g�0�2(g) < ∞) Hn/ ln n → 2/h1 a.s., whereh1 is Rényi’s entropy (cf.[28,

p. 157]). More precisely, the proof shows (for any�(g) → 0) that for any� > 0

P
(
Hn�

2

h1
(1+ �) log n

)
= 1−O(log n/n�). (1)

We claim that the main contribution toCn,k comes from strings that are in the non-compact
trie but not in the compact trie. In fact, theith suffix string hasn − i internal nodes of
which at leastn− i −Hn are not in the compact trie. These nodes all correspond to unique
substrings ofx, and thus

Cn,k�
n∑
i=1
(n− i −Hn) = 1

2n(n+ 1)− nHn.

By (1), for a suitable constantB and largen, P (Hn > B log n) < n−1 and thus

E
(1
2n(n+ 1)− Cn,k

)
� nEHn� n (B log n+ nP (Hn > B log n)) = O(n log n),

which completes the proof.�
However, from a theoretical point of view the most interesting case is when the string is

generated by an unbiased source (such a source should have the largest complexity). In this
case, we are able to characterize very precisely the average complexity.

Theorem 2. LetCn,k be the complexity index of a string generated by an unbiased memo-
ryless source. Then the average l-subword complexity is

E(Cln,k) = kl(1− e−nk−l
)+O(l)+O(nlk−l ). (2)

Furthermore, for large n the average complexity index becomes

E(Cn,k) =
(
n+ 1
2

)
− n logk n+

(
1

2
+ 1− �
ln k

+ �k(logk n)
)
n+O(√n log n)

where� ≈ 0.577 is Euler’s constant and

�k(x) = − 1

ln k

∑
j �=0

�
(

−1− 2�ij
ln k

)
e2�ijx

is a continuous functionwith period1. |�k(x)| is very small for small k: |�2(x)| < 2×10−7,
|�3(x)| < 5× 10−5, |�4(x)| < 3× 10−4.
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Interestingly enough, the termO(n) of the average complexity contains a fluctuating term
�k(x). (Note that�2(log2 n) equals−P0(n) in [28, p. 359].) The formula

|�(−1− iy)| = |�(−iy)/(−1− iy)| =
(
y(1+ y2) sinh(�y)/�

)−1/2
(3)

[28, p. 42]shows that the coefficients in�k are small and decrease geometrically. Numerical
evaluations give the bounds fork = 2,3,4 stated in the theorem and also, for example,
|�k(x)| < 0.01 for k�12 and|�k(x)| < 0.1 for k�200. Even for very largek, this
term is not very large; we have, still using (3) (we omit the details),|�k(x)| < 0.5 for
k�109, and|�k(x)| < ln ln(k)/� for all k. The fluctuating phenomenon is quite common in
asymptotics of discrete problems.

3. Proof of Theorem 2

In this section we prove Theorem2. In order to simplify the notation we restrict ourselves
to the binary casek = 2. Extension tok > 2 is straightforward.
Recall thatCln,2 is the number of distinct substrings of lengthl in our random binary

string of sizen, and let

Al = E(Cln,2).

ThusCn,2 = ∑n
l=1Cln,2 andE(Cn,2) = ∑n

l=1Al . Define

�l = Al + l − 1− 2l
(
1− e−n2−l

)
(4)

= Al − (n+ 1− l)+ 2l
(
e−n2−l − 1+ n2−l

)
. (5)

Then

E(Cn,2)=∑n
l=1Al = ∑n

l=1
(
(n+ 1− l)+ �l − 2l

(
e−n2−l − 1+ n2−l

))
=
(
n+ 1
2

)
−∑n

l=12l
(
e−n2−l − 1+ n2−l

)
+∑n

l=1�l . (6)

Belowwewill use theestimates0< 1−e−x < min(1, x)and0< e−x−1+x < min(x, x2)
(for x > 0) several times. In particular,

0< 2l
(
1− e−n2−l

)
< min(2l , n), (7)

0< 2l
(
e−n2−l − 1+ n2−l

)
< n22−l . (8)

We begin by estimating�l . First (for short strings, i.e., for smalll ), we use 1�Cln,2�2l ,
and thus 0�Al�2l and, using (4) and (7),

�l = O(2l ). (9)
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For long substrings, i.e., for largel’s, there is another simple estimate. Clearly,
0�Cln,2� n− l + 1. Observe that

E(n− l + 1− Cln,2) � E
(∣∣{(i, j) : i < j andx[i,i+l−1] = x[j,j+l−1]

}∣∣)
=
(
n− l + 1

2

)
2−l� n22−l

i.e.,

0� n− l + 1− Al� n22−l .

Hence, using (5) and (8),

�l = O(n22−l ). (10)

Note that (9) and (10) easily yield
∑n

l=1 �l = O(n), which by (6) yieldsE(Cn,2)
up to O(n). In order to obtain our more precise result, we need a better estimate of
�l when 2l ≈ n.
Let x be a sequence generated by an i.i.d. source (i.e.,p(0) = p(1) = 1/2) and let us

define

P(n, l)=P(x[1,l] �= x[j,j+l−1] for j = 2, . . . , n− l + 1).
By counting each repeated substring inx only the last time it occurs, it is easily seen (by
shift invariance) that

Al =
n∑
m=l

P(m, l). (11)

Now fix l andm, and let us defineIj = 1[x[1,l] = x[j,j+l−1]] for j = 2, . . . , m − l + 1.
Then

E(Ij ) = P(Ij = 1) = P[x[1,l] = x[j,j+l−1]] = 2−l for every j�2.

In the next lemma, we establish thatIi andIj are uncorrelated wheni, j > l.

Lemma 1. If i, j� l + 1 and i �= j then E(IiIj ) = P(x[1,l] = x[i,i+l−1] =
x[j,j+l−1]) = 2−2l .

Proof. Assumei < j . Scan the three substrings left to right. Each bit inx[i,i+l−1] is either
a fresh random bit or coincides with an earlier bit inx[j,j+l−1]. In any case, it fixes one new
bit each inx[1,l] andx[j,j+l−1], so the probability of success in this step is 2−2. �
Observe that, ifj� l+1, to condition onIj is the same as to change every bit inx[j,j+l−1]

to the corresponding bit inx[1,l], leaving all other bits untouched. Letx(j) be the resulting
string, and letJij = 1[x(j)[1,l] = x

(j)
[i,i+l−1]]. Clearly,Jij = Ii if |i − j |� l. Note also that

Lemma1 yields, wheni �= j andi, j > l,

E(Jij ) = E(Ii | Ij = 1) = E(IiIj )
E(Ij )

= 2−l .
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Let us now set, for fixed integersl andm�2l,

W =
m−l+1∑
j=l+1

Ij .

LetdT V (X, Y ) be the total variation distance between random variablesXandY. Then, with
Po(	) being the Poisson distribution with mean	, by the Stein–Chenmethod (cf.[5, p. 24])
we find, with	 = EW = (m− 2l + 1)2−l ,

dT V

(
W,Po((m− 2l + 1)2−l )

)

� min(1, 	)
	

∑
j

E(Ij )E

∣∣∣∣∣Ij + ∑
i �=j
(Ii − Jij )

∣∣∣∣∣
� 1

	

∑
j

E(Ij )

(
E(Ij )+ ∑

0<|i−j |<l
(
E(Ii)+ E(Jij )

))

� 1

	

m−l−1∑
j=l+1

2l · 2 · 2−2l

= 4l2−l .

In particular,∣∣∣P(W = 0)− e−(m−2l+1)2−l
∣∣∣� dT V

(
W,Po((m− 2l + 1)2−l )

)
= O(l2−l ). (12)

Moreover, by the first moment method

P
(∑l

j=2Ij �= 0
)

� (l − 1)E(Ij ) = (l − 1)2−l . (13)

Observe that

P(m, l) = P

(
l∑

j=2
Ij +W = 0

)
.

Then by (13) and (12)

P(m, l)=P(W = 0)+O(l2−l ) = e−(m−2l+1)2−l +O(l2−l )
= e−(m−l)2−l +O(l2−l ). (14)

We have assumedm�2l. However, by the first moment method directly, the same estimate
holds forl�m < 2l too.
We thus have, by (11) and (14) and summing a geometric series,

Al =
n∑
m=l

P(m, l) = 1− e−(n+1−l)2−l
1− e−2−l +O(nl2−l ).
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Since

1− e−(n+1−l)2−l
1− e−2−l = 1− e−(n+1−l)2−l

2−l (1+O(2−l ))
= (2l +O(1))(1− e−(n+1−l)2−l )
= 2l (1− e−(n+1−l)2−l )+O(n2−l )
= 2l (1− e−n2−l )+O(l)+O(n2−l ),

we find

Al = 2l (1− e−n2−l )+O(l)+O(nl2−l )
which proves (2). Thus by (4)

�l = O(l)+O(nl2−l ). (15)

Using (9) for 1� l� log2
√
n ln n, (15) for log2

√
n ln n < l�2 log2 n, and (10) for

2 log2 n < l� n, we obtain

∑n
l=1�l = O(n logn)1/2. (16)

We turn to the first sum in (6). Let, forx > 0,

f (x) = e−x − 1+ x1[x < 1]
x

.

Then|f (x)| < x for 0< x < 1 and|f (x)| < 1/x for x�1. Hence,∑n
l=12l

(
e−n2−l − 1+ n2−l

)
= n

∑n
l=1

(
f (n2−l )+ 1[2l� n]

)
= n

∑n
l=1f (n2−l )+ n�log2 n�

= n
∞∑

l=−∞
f (n2−l )+O(1)+ n�log2 n�

= n�(n)+ n log2 n+O(1), (17)

where, with〈x〉 = x − �x�, the fractional part ofx,

�(x) =
∞∑

l=−∞
f (x2−l )− 〈log2 x〉, x > 0.

(The series converges by the estimates above.) It is easily verified that� is bounded, con-
tinuous (also at powers of 2), and periodic in log2 x, i.e.,�(2x) = �(x). Hence�(2y) has
period 1 and may be expanded in a Fourier series

�
(
2y
) =

∞∑

=−∞

c
e
2�i
y (18)
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where

c
 =
∫ 1

0
e−2�i
y�(2y)dy

=
∫ 1

0
e−2�i
y

( ∑∞
l=−∞f

(
2y−l

)
− y

)
dy

=
∞∑

l=−∞

∫ 1

0
e−2�i
yf

(
2y−l

)
dy −

∫ 1

0
e−2�i
yy dy

=
∫ ∞

−∞
e−2�i
yf

(
2y
)
dy −

∫ 1

0
e−2�i
yy dy. (19)

Further, changing variables back to(0,∞),∫ ∞

−∞
e−2�i
yf

(
2y
)
dy = 1

ln 2

∫ ∞

0
x−2�i
/ ln 2f (x)dx

x

= 1

ln 2
M[f (x); −2�i
/ ln 2], (20)

whereM[f (x); s] = ∫∞
0 xs−1f (x)dx is the Mellin transform off at the points (in

our cases = −2�i
/ ln 2. (See[28, Chapter 9]for definition and basic properties.)
Since |f (x)| < min(x, x−1), the Mellin transformM[f (x); z] is analytic in the strip
−1< �z < 1. In the smaller strip 0< �z < 1 we have, by[28, Table 9.1],

M[f (x); z] = M
(
e−x − 1
x

; z
)

+ M (1[x < 1]; z)
= M (

e−x − 1; z− 1)+ M (1[x < 1]; z)
= �(z− 1)+ 1

z
. (21)

By analyticity, this extends to the strip−1 < �z < 1. In particular, taking the limit as
z → 0,

M[f (x);0] = lim
z→0

(
�(1+ z)

z(z− 1) + 1

z

)
= lim

z→0

�(1+ z)− 1+ z

z(z− 1)
= − (�′(1)+ 1) = � − 1. (22)

Moreover, elementary integration yields∫ 1

0
e−2�i
yy dy =

{−1/2�i
, 
 �= 0,
1
2, 
 = 0.

(23)

By (19) – (23),

c
 = 1

ln 2
�
(

−1− 2�i

ln 2

)
, 
 �= 0,

c0 = � − 1
ln 2

− 1

2
.

The theorem now follows, with�(x) = −(�(2x)− c0), from (6), (16), (17) and (18).
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The numerical bounds fork�4 are obtained from (3); for smallk,∑∞
1 |c
| is dominated

by |c1| which is very small.
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