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Abstract

In this paper we study the average behavior of the number of distinct substrings in a text of size
n over an alphabet of cardinalit¢ This quantity is called theomplexity indexand it captures the
“richness of the language” used in a sequence. For example, sequences with low complexity index
contain a large number of repeated substrings and they eventually become periodic (e.g., tandem
repeats in a DNA sequence). In order to identify unusually low- or high-complexity strings one needs
to determine how far are the complexities of the strings under study from the average or maximum
string complexity. While the maximum string complexity was studied quite extensively in the past, to
the best of our knowledge there are no results concerning the average complexity. We first prove that for
a sequence generated by a mixing model (which includes Markov sources) the average complexity
is asymptotically equal t@/2 which coincides with the maximum string complexity. However,
for a memoryless source we establish a more precise result, namely the average string complexity is
n2/2—n logy n+(1+ (1 —7)/In k + ¢y (logy n) + o(1)) n wherey ~ 0.577 andp, (x) is a periodic
function with a small amplitude for small alphabet size.
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1. Introduction

Inthe last decades, several attempts have been made to capture mathematically the concept
of “complexity” of a sequence. The notion is related to quite deep mathematical properties,
including the rather elusive concept of randomness of a string (se€14.4.9,22).

In this paper, we are interested in studying a measure of complexity of a sequence called
thecomplexity indexThe complexity index captures the “richness of the language” usedin a
sequence. Formally, tlemplexity index (x) of a stringxis equal to the number of distinct
substrings irx (see e.g[20]). The measure is simple but quite intuitive. Sequences with low
complexity index contain a large number of repeated substrings and they eventually become
periodic. However, in order to classify low complexity sequences one needs to determine
average and maximum string complexity. In this paper we concentrate on the average string
complexity.

We assume that sequences are generated by some probabilistic source (e.g., Bernoulli,
Markov, etc.). As a consequence, the numitge) of distinct substrings can be modeled by
a random variable over a discrete domain. Given a source emitting strings of ez
an alphabet of cardinality, we call this random variabl€, ;. The main objective of this
study is to give a detailed characterization of the expectation of the random vatjghple

A related notion is that of thesubword complexitpr I-spectrumc! (x) of a stringx,
which is the number of distinct substrings of length x, for 1< 1< |x|. We defineCfl’k to
be the random variable associated with the number of distinct words dfisizerandom
string of sizen over an alphabet of cardinality Clearly,C, x = >/_; Cfl’k.

The idea of using the complexity index or thepectrum to characterize sequence sta-
tistically has a long history of applications in several fields, such as data compression,
computational biology, data mining, computational linguistics, among others.

In dictionary-based data compression, the average length of the pointer is connected with
the expected size of the dictionary which in turns depends on the number of distinct subwords
(see, e.gl6]). Low-complexity strings contain more repeated substrings and therefore one
can expect them to be more compressible than strings with high complexity index. For
example, in[14] bounds between subword complexity and Lempel-Ziv complexity are
established.

In the analysis of biosequences, the problem of characterizing the “linguistic complexity”
of DNA or proteins is quite old. In the early days of computational biology, it was almost
routine to compute the number and/or the frequency of occurrences of substrings and draw
conclusions about the string under study based on those counfg,(&é5,16,23]just to
mention a few).

In these and several other application domains, the typical problem associated with the
complexity index is to determine whether a particular sequerttas astatistically sig-
nificantcomplexity index. An example of a significance score proposed in a recent paper
by Troyanskaya et a[31] in the context of the analysis of prokaryotic genomes, is the
following:

min(k’, n — i + 1).
1

s(x) = c(x) =max{Cp i} = c(x) — |

n
1=
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Here, the authors compare the observed complexity with the maximum possible com-
plexity for a string of sizen over an alphabet of cardinality Note however, that the score
disregards both the distribution 6, ;, and the probabilistic characteristics of the source.

A more statistically sound approach would entail the following steps. First, select an
appropriate model for the source that emitie@Bernoulli, Markov, etc.). Then, measure
the statistical significance as a function of the discrepancy between the observed complexity
¢(x) and the model-based expectation.

This approach of standardizing the value of an observation with respect to the expecta-
tion and the standard deviation of the associated random variable is common practice in
statistics. The underlying assumption is that the random variable is normally distributed.
The standardized-score for the complexity index would be

c(x) — E(Cni)
vVvar(Cy r)

for a given stringk. Although we do not know under which conditio@ig x is distributed
normally, such a score is nonetheless more sound that athieocscores.

A similar situation takes place when describing the significance of other events in texts,
like the number of occurrences, periodicities, etc. Although the normality of the corre-
sponding random variables can be proved under specific conditions, there is a consensus
that standardizedscores should be always preferred over simpler scores (sed28]g.,
and references therein).

Given an observatiow of the source, we would like to compute the statistical signifi-
cancez(x) of its complexity index. As far as we know, however, the mom&(ts, ;) and
Var (C, ) have never been characterized before. The goal of this paper is toEStGgy).

The asymptotic analysis of the variance remains an open problem.

In order to proceed, we need to introduce some standard concepts and notation about
strings. The seX denotes a nonempatphabetof symbolsand astringover is an ordered
sequence of symbols from the alphabet. In the rest of the paper, we assunig that.

Given a stringx, the number of symbols ir defines thdength |x| of x. Henceforth, we
assumex| = n.

Theconcatenatiorfor produc) of two stringsx andy is denoted by y, and corresponds
to the operation of appendingo the last symbol ok. Let us decompose a texin uvw,
i.e.,x = uvw whereu, v andw are strings ovek. Stringsu, v andw are calledsubstrings
or words of x.

We write x;), 1<i< |x]| to indicate theith symbol inx. We usexj; ;) shorthand for
the substringejxgi+q) - . . x;7 where i< j< |x|, with the convention thaty; ;; = xp;.
Substrings in the formyq ;; corresponds to thprefixesof x, and substrings in the form
x[i.n) to thesuffixesof x.

Finally, we recall that theubword complexitfunctionc! (x) of a stringx is defined as
the number of distinct substrings »fof lengthl. The quantityc(x) = Y )., c(x) is the
complexity indexf x. Observe first that! (x) is upper bounded by mik!, n — [ + 1) since
there are precisely— [ + 1 words of length, of which at mosk’ can be distinct. Therefore

Z(x) =

n
c)< Y mink!, n — 1+ 1).
=1
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Fig. 1. The non-compact suffix tri&, for x =abaababa . There are 24 internal non-root nodes, therefore
c(x) = 24.

Note that if we choose< k, then mirtk!, n — 1 + 1) = n — [ + 1 for all 1< /< n. Therefore
whenn< k, the bound simplifies to(x)<n(n + 1)/2.

The valuer(x) is strongly connected with the structure of then-compact suffix triéor
X. A non-compact suffix trie of a stringis a digital search tree built from all the suffixes
of x. The trie for a string of siza hasn + 1 leaves, numbered 1 to+ 1, where leaf: + 1
correspond to an extra unique symbo#$ X, and each edge is labeled with a symbatin
No two edges outgoing from a node can have the same label. The trie has the property that
for any leafi, the concatenation of the labels on the path from the root the fgalls out
exactly the suffix ok that starts at positionthat isxj; ,,. The substrings ofcan be obtained
by spelling out the words from the root to any internal node of the tree. In other words, each
internal node (except the root) is in one-to-one correspondence with each distinct substring
of x. As a consequencthe complexity index(x) can be obtained by counting the non-root
internal nodes in the non-compact suffix trie fofThis would take, however, @2) time
and space. The non-compact suffix trie &raababa is illustrated in Fig1.

A faster solution to compute(x) involves the use of theuffix treeT, of x. The suffix
tree can obtained by “path-compression” of the non-compact suffix trie, that is, by deleting
internal nodes with only one child and coalescing consecutive edges in a single edge labeled
by the concatenation of the symbols. If one deletes unary nodes only abtioenof the
non-compact suffix tries, the resulting tree is cabedhpact suffix trieThe compact suffix
trie and the suffix tree foabaababa are shown in Fig2.

In practice, suffix trees can be built without the need of building the suffix trie first.
In fact, several @: log|X|) constructions are available. The algorithm by McCre{ghf
and the one by Chen and Seifef@§ are variations of the Weiner’s algorithf84]. Note
that these algorithms take only linear time for finite alphabets. All these constructions are
off-line because they process the text right to left. An on-line algorithm by Ukk@@&n
achieves also linear time. Recently, Farfch] proposed an optimal construction for large
alphabets.

The unary nodes that have been removed in the compaction process arencplieit
nodesAn edge labeled by a string of length+ 1 hasmimplicit nodes. The complexity
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Fig. 2. The compact suffix trie (LEFT) and the suffix tree (RIGHT).foe abaababa .

indexc(x) of a text-stringx can be computed on the suffix tree by counting the number of
implicit and explicit (non-root) nodes in the tree. As a consequeati(eg,can be computed
in O(n) time and space. The relation between non-compact suffix tries and suffix trees
will be used later in the paper to obtain the leading term of the complexity for a general
probabilistic model.

Finally, we briefly describe some recent results regarding the maximuf(of It is

known thatc! (x) is also strongly connected with the structure of the suffix Trede Luca
[10] proved that

maxc' (x) : 1<I<n} =n—max{R, K} +1=n—maxL, H} + 1,

whereK is the length of the shortest suffix wthat occurs only once is the length of the
shortest prefix ok that occurs only once® — 1 is the height of the deepest branching node

in the suffix treel, andL — 1 is the height of the deepest branching node in the suffix tree
T.z. De Luca also gave a closed form fgx)

KYn—K+1) 2 R
s )("2 LR S SRR

j=2i=0

cx)y =1+

whereg(j, i) is the count of the words of lengttwhich are branching nodes of the suffix
tree with at leasg children[10].

Shallit[26] derived a simpler bound fat(x) for binary alphabetsk(= 2)

c(x)<

(n—d+21)(n—d) Lot g n_z’

whered is the unique integer such that 2 d — 1<n < 2?1 4+ 4. More importantly, he
proved that the upper bound is attained fomnddly using a property of theée Bruijngraphs.
An extension of this result to larger alphabets was recently descrilj&glin

Késa[17] studied the probability distribution of random variable associated with the
complexity index for the family of words of length equal to the size of the alphabet
(n = k). He proved several facts about the random varighlg, and he also conjectured
a property of the smallest value of the complexity after which all the frequencies are
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non-zero. The conjecture, proved later by Leve and Ségh8]dstates that if one chooses
k=1(0+1)/2+2+iwherel>2and 0<i<! then

1(%-1 k(k 41
P(Crx=1)>0 foralltsuchthat( )+3l+2+i(l-|-1)<t< (k+ ).

In this paper we mostly deal with average string complexity. First, for a general probabilistic
model (e.g., Markov source) we prove that the average complexity is asymptotically equal
to n2/2 which coincides with the maximum string complexity. We shall strengthen this
result for unbiased memoryless sources. In particular, we prove that

1 11—y
E(Cui) = <n ; 1) —n log, n+ (5 + Tk/ + ¢y (logg n)) n+ O(y/n log n),

wherey ~ 0.577 andp, (x) is a continuous function with period 1 and small amplitude for
small alphabet size (e.d¢,(x)| < 2 x 10~7). To prove this result we use the Stein—Chen
method together with the Mellin transform approach.

2. Main results

As awarm-up exercise, we studied the closed form&f@€, ) andVar (C,«) for short
strings (e.g.n< 5) for a symmetric memoryless source. Some facts aBo@} . = ¢) are
immediate. For example

( k<n) O,
(nk—n) kln

1
P <cn,k > ”(”—;) —0 whem<k,

P (cn’k > ST minkn—i+ 1)) —0 whem > k.
Following the lines by KasHL7], we were able to obtain closed form for the cases shown in

Tablel assuming a symmetric Bernoullimodel for the source. Given the discrete distribution
of C, x one can easily compute the expectation and the varian€g gf

Corollary 1. The expectation and the variance of the random variahlg for 2<n<5
over any alphabet of size Under a symmetric Bernoulli source is

E(C2x)=3— (1/k),
E(C3x) =6— (3/k),
E (Cax) =10— (6/k) + (1/k?) — (1/K3),
E (Csx) = 15— (10/k) + (4/k?) — (6/k) + (2/k%),
and
Var (Cax) = (k — 1)/ k2,
Var (Cax) =3(k — 1)/k?,
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Table 1

The probability distribution o, ; for 2< n< 5 over any alphabet of size under a symmetric Bernoulli source
n— 2 3 4 5

P(Cok=2) 1/k 0 0 0

P(Cok=3) 1-1/k 1/k? 0 0

P(Chk=4) O 0 1/k3 0

P(Chk =5 0 3k — 1)/ k2 0 1/k4

P(Chk=6) O k—D(k—-2)/k2 0 0

P(Cok=7) O 0 Ak — 1)/k3 0

P(Chk=8) O 0 Ak —1)/k3 0

P(Chk=9) O 0 6(k — 1) (k — 2)/k3 3k — 1)/k*

P(Cpr=10) O 0 (k—1Dk—2)(k—3)/k3 0

P(Chx=11) O 0 0 10k — 1)/ k4

P(Chk=12) O 0 0 Ak — 1)(3k — 5)/k*
P(Chk=13 O 0 0 19k — 1)k — 2)/k*
P(Chr=14) 0 0 0 10k — Dk — 2)(k — 3)/k*
P(Chr=15) 0 0 0 k= Dk —2)(k — 3)(k — 4/ k*
P(Chi=16) 0 0 0 0

Var (Ca) = (k — 1)(6k* — 5k3 + 122 — k + 1)/k°,
Var (Csx) = 2(k — 1)(5k® — 10k° + 33%* — 283 + 16k — 10k + 2)/k®.

As it turns out, obtaining a closed form f&r(C,, x) andVar (C, ) for anyn, k is a very
challenging problem. In practical applications, moreover, having the closed form only for
small values oh would be of limited interest. It is certainly more valuable to study the
behavior of the moments @f, , asymptotically, that is, whenis very large.

The main result of our study is a characterizatiorE((fC,,,k) for largen. In our first
result we show that for quite general sources the average complexity asymptotically
coincides with the maximal string complexity. We consider mixing sources in which the
probability of two eventA and B defined on two substrings separateddogymbols is
bounded as followsl—/(g))P(A)P(B)< P(AB)< (1+/(g))P(A)P(B) where the mix-
ing coefficienty(g) — 0 asg — oo (cf. [28] for a detailed definition).

Theorem 1. LetC,  be the complexity index of a string of length n generated by a strongly
mixing stationary source. Thefor large n

E(Cuix) = (n _5 1) — O(n log n).

HenceC, x = n?/2+ Op(n log n), i.e.,(n?/2 — C, x)/nlogn is bounded in probability.

Proof. We start with a simple observation. For a given sequerafesizen, build a non-
compact suffix trie and a compact suffix trie. Recall that in a compact trie we collapse all
unary links at thévottomof the suffix trie. In other words, in a compact suffix trie a path from
the root to an external node (containing a suffix) is the minimal prefix of any two suffixes
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that distinguishes them. Also recall that the string complexityisthe number of non-root
internal nodes in the non-compact trie. We shall argue below that the most contribution to
the string complexity comes from the nodes that are in the non-compact trie but not in the
compact trie. The upper bound follows immediately from

Cn,kg n(n + 1)/2

To find a matching lower bound, we consider the compact and non-compact suffix tries. We
know that a typical depth and height in a compact suffix trie {lo@nr). More precisely

let H, be the height of a compact suffix tree. It was show{2in] that (at least fo/(g)
satisfyingY_, o ¥(g) < 00) H,/Inn — 2/hy a.s., wheré is Rényi's entropy (cf[28,

p. 157). More precisely, the proof shows (for arfy{g) — 0) that for anye > 0

P(Hn<h£(1+8) log n) = 1- O(log n/n?). 1)
1

We claim that the main contribution @, x comes from strings that are in the non-compact
trie but not in the compact trie. In fact, thth suffix string has: — i internal nodes of
which atleast — i — H,, are not in the compact trie. These nodes all correspond to unique
substrings ok, and thus

n
Cok> Y (n—i—Hy)=3n(n+1) —nH,.
i=1

By (1), for a suitable constafand largen, P (H,, > Blog n) < n—1 and thus
E (%n(n +1) — Cn,k) <nEH,<n(Blogn+nP(H, > Blog n)) = O(nlog n),

which completes the proof.[J

However, from a theoretical point of view the most interesting case is when the string is
generated by an unbiased source (such a source should have the largest complexity). In this
case, we are able to characterize very precisely the average complexity.

Theorem 2. LetC,, x be the complexity index of a string generated by an unbiased memo-
ryless source. Then the averagseubword complexity is

E(CL ) =k(L—e"™ ) +00) + Omik™). B
Furthermore for large n the average complexity index becomes

1_ L}
ntl = k/ + ¢, (log, n)) n + O(y/n log n)

1
E(Cn,k):< 5 )—n|0gkn+<§—|-

wherey ~ 0.577is Euler’s constant and

__ 1 1 2M omijx
i) = Inkjg,é:oF( ! Ink)ez

is a continuous function with peridd | ¢, (x)| is very small for smallK ¢, (x)| < 2x 1077,
lp3(x)] <5x 1072, |d,(x)| < 3 x 1074,
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Interestingly enough, the term(@) of the average complexity contains a fluctuating term
¢, (x). (Note thatp,(log, n) equals— Po(n) in [28, p. 359]) The formula

. . . o . ~1/2
IF(=1=in)| = I(=in)/(~1 = iy)| = (y@+ y?) sinh(zy)/7) 3)

[28, p. 42]shows that the coefficients i), are small and decrease geometrically. Numerical
evaluations give the bounds fér= 2, 3, 4 stated in the theorem and also, for example,
| (x)| < 0.01 for k<12 and|¢,(x)| < 0.1 for k< 200. Even for very largé, this
term is not very large; we have, still using (3) (we omit the detajig)(x)| < 0.5 for

k< 10°, and|¢, (x)| < InIn(k) /= for all k. The fluctuating phenomenon is quite common in
asymptotics of discrete problems.

3. Proof of Theorem 2

In this section we prove Theorenln order to simplify the notation we restrict ourselves
to the binary casg = 2. Extension t& > 2 is straightforward.

Recall thathL2 is the number of distinct substrings of lendtin our random binary
string of sizen, and let

A =E(C] ).

ThusC, 2 =Y ]_; Cl , andE(C,2) = Y ]_; A;. Define

dy=A+1-1-2(1-e"2") (4)
A —(m+1-D+2 (e—"z" —1+n2—1). )
Then
E(Cr2) =Y A=Y, ((n +1-D 46 —2 (e*”z” 1+ n2*’))
_ (” er 1) yr 2 (e—"2’l 14 nz—l) + Y6 (6)

Below we will use the estimates® 1—e™* < min(1, x)and 0< e * —14x < min(x, x2)
(for x > 0) several times. In particular,

0<2 (1 - e—"z‘l) <min@, n), @)
0<?2 (e’”z_l —14 n2*’) <n227!, 8)

We begin by estimating;. First (for short strings, i.e., for smdll), we use X Cfl_zg 2,
and thus & A;< 2 and, using (4) and (7),

5 = 02). 9
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For long substrings, i.e., for largés, there is another simple estimate. Clearly,
0< Cl ,<n —1+ 1. Observe that

Em—-—1+4+1-— C;,Z) < E(|{(i, J) i< jandxy -1 =X[j,j+l_1]}|)

_ (” ‘é*l)zlgnzzl

0<n —1+1— A<n?27",
Hence, using (5) and (8),
8 = O(n?27h). (10)

Note that (9) and (10) easily yield"}_,0; = O(n), which by (6) yieldsE(Cj, 2)
up to Qn). In order to obtain our more precise result, we need a better estimate of
Sy when?2 ~ n.

Let x be a sequence generated by an i.i.d. source (@), = p(1) = 1/2) and let us
define

P, 1) =P # x(j, j+i-1) for j=2,...,n—1+1).

By counting each repeated substring<ionly the last time it occurs, it is easily seen (by
shift invariance) that

A= i P(m, ). (11)
m=lI

Now fix | andm, and let us definé; = 1[xj1;) = x{j j—ylforj =2,...,.m -1+ 1.
Then

E(Ij) = P(Ij =1) = P[)C[]_,l] = x[j,j—i—l—l]] = 271 for every j> 2.

In the next lemma, we establish thiatand; are uncorrelated whein j > /.

Lemmal. If i,j>] +1andi # j then E(;i1;)) = PGpn = xpiv-1 =
- — o2
X[j, j+1-11) .

Proof. Assumei < j. Scan the three substrings left to right. Each bit{in;—_1; is either

afresh random bit or coincides with an earlier bikjn ; 1, _1;. In any case, it fixes one new

bit each inx(y ;) andxg; j1,—1), SO the probability of success in this step ®2 O
Observe that, if > 141, to condition on; is the same as to change every bitjp; ;1

to the corresponding bit im(1 7, leaving all other bits untouched. Let be the resulting

string, and let/;; = 1[x[(i)l] = x[(i{3+1_1]]. Clearly, J;; = I; if |i — j| >1. Note also that

Lemmalyields, when # j andi, j > [,

E( 1))
E(l))

=271

E(Jij)) =E{U;|1I; =1) =
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Let us now set, for fixed integetandm > 2/,

m—I+1

W= Y I
j=l+1

Letdry (X, Y) be the total variation distance between random variabbsdY. Then, with

Po(4) being the Poisson distribution with mearby the Stein—Chen method (¢35, p. 24)
we find, withi = EW = (m — 2/ + 1)27/,

dry (W, Po((m — 21 + 1)2—1))

min(1, A
é% I+ > Ui — Jij)

> EU)E
J i#j

O<li—jl<l

1
<7 LEd) <E(1j)+ > (E(Ii)+E(Jif)))
L7

1m—=i-1
<> Y 2.2.272
2 j=l+1

= 427",

In particular,

’P(W —0)— e—<m—21+1>2"‘ <dry (W, PO((m — 21 + 1)2—1)) —ou27h. (12)
Moreover, by the first moment method

P (Zl,-:zl./ " o) < —DEU) =1 -2, (13)

Observe that

!

P(’“J)=P(Z Ij-i-W:O).

j=2
Then by (13) and2)

P(m, 1) = P(W = 0) + O(127") = e~m=2+12" | o)
—e m=D27 4 o2, (14)

We have assumed> 2. However, by the first moment method directly, the same estimate
holds fori<m < 2l too.
We thus have, by (11) and (14) and summing a geometric series,

n 1 _ g (+1-D2"!
Ap= Y Pm,l) = + Oni27").

m=l

1-—e 2!
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Since
1_ e @+l-D27"  q _ o=n+1-D2"!
1-e2!  27(1+0@27)
=2 +0(1)(1— e—(n+1—l)2—’)
_ 21(1 _ e—(n+1—1)2-1) + O(nz_l)
=2(1-e"?")y+00) +0m27),
we find

Ar=21—e"2"y 4 o) + Omi2™)
which proves 2). Thus by (4)
0, = O(l) +Oni2™. (15)

Using (9) for I<I/< logy, +/n In n, (15) for log,v/n Inn < I<2log, n, and (10) for
2log, n < I< n, we obtain

S48 = O(nlogn)/2. (16)
We turn to the first sum in (6). Let, for > 0,

e —1+x1x <1]

fx) =
Then| f(x)| < x for0 < x < 1and|f(x)] < 1/x for x> 1. Hence,
Y2 (67 — 1 n2 ) =nyiy (F027) + U2<n)
=nY 1 f(n27") 4+ n|log, n]
—n Y f(27)+O) +nllogy n
[=—00
=ny(n) +nlogy,n + O(1), a7
where, with(x) = x — |x], the fractional part of,
vx)= > fx27h — (logy x), x> 0.

[=—00

(The series converges by the estimates above.) It is easily verified ieddounded, con-
tinuous (also at powers of 2), and periodic injog i.e.,y(2x) = (x). Hencey/(2”) has
period 1 and may be expanded in a Fourier series

o0

Y@= S o™ (18)

V=—00
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where

1 B
¢ = f &2 (2%) dy
0

= fol CRi (Zi’i_oof <2y_’) - y) dy

00 1 ) 1 )
— Z 5 e—ZmVyf (2)7—1) dy _/0 e—ZmVyy dy

[=—00

o0 1
:/ e 2mivy f (27) dy —/0 e 2"y dy. (19)
—00

Further, changing variables back@ oo),

00 . 1 oo oy dx
/ e 2 £ (20) dy=m/0 x Zm/lnzf(x)7

—00

1
= —MJ[f(x); —2riv/In 2], (20)
In 2
where M[ f(x);s] = f(;’o x*~Lf(x)dx is the Mellin transform off at the points (in
our cases = —2miv/In 2. (See[28, Chapter 9lfor definition and basic properties.)

Since | f(x)| < min(x, x~1), the Mellin transformM[ f (x); z] is analytic in the strip
—1 < Nz < 1. In the smaller strip G Rz < 1 we have, by28, Table 9.1]

M[fx);zl=M (e ;Z) + M@Ax < 1]; 2)
=M(e"‘ —1;z—l)+./\/l(1[x <1];2)

=I'z-1)+ % (21)

By analyticity, this extends to the stripl < 9z < 1. In particular, taking the limit as
z— 0,

MLf (x); 0] = lim (Hlﬂ) + 3) - umom

o\z(z—=1) =z 2(z—=1)
=—(I'H+1)=y-1 (22)
Moreover, elementary integration yields
1 ‘ _ .
/ e—2mvyy dy = { 1 1/2niv, v f 8, (23)
0 2 v==>

By (19) - (23),

1 2niv
w= —rI(-1- 0
“ T2 ( In2>’ v#0.

y—1 1
co=-—%—12

n2 2
The theorem now follows, witkh(x) = —((2*) — cg), from (6), (16), (17) and (8).
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The numerical bounds fdr< 4 are obtained from3); for smallk, >"7° |¢,| is dominated
by |c1| which is very small.
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