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Abstract—We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs.

The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast

majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting

consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that

takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The

resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is

proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP

which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP,

which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for

download at http://www.cs.ucr.edu/~yonghui/mgmap.html.

Index Terms—Linear programming, constrained optimization, algorithms, biology and genetics.

Ç

1 INTRODUCTION

GENETIC linkage maps represent the relative positions of
genetic markers along a chromosome. The distance

between markers is associated with the frequency at which
two genetic loci become separated during chromosomal
recombination.

The problem of building genetic linkage maps from
genotyping data can be traced back to the beginning of the
last century when life scientists started to investigate the
recombinational nature and cellular behavior of chromo-
somes. In his pioneering work, Sturtevant studied in 1913
the first genetic linkage map of chromosome X of Drosophila
melanogaster [1]. Early genetic linkage maps had just a few
tens of phenotypic markers obtained one by one by
recording biochemical and morphological variations of the
organism under study, mainly following mutation. With the
introduction of DNA-based markers (i.e., RFLPs, RAPDs,
SSRs, and AFLPs), genetic maps have become much more
densely populated. The number of markers has increased
recently well above a thousand in a number of organisms
with the adoption of DArT, SFP, and especially SNP
markers, the latter providing avenues to hundred of
thousands to millions of markers per genome. High-density
genetic maps are the cornerstone of a variety of biological
studies including map-based cloning, association genetics,
and map-assisted breeding. Because they are relatively

inexpensive compared to whole genome sequencing, high-
density genetic linkage maps are currently of great interest,
in particular for organisms with large genomes.

Traditionally, scientists have focused on building genetic
map for a single mapping population, a task for which a
wide variety of software tools are available and have
satisfactory performance, e.g., JOINMAP [2], CARTHAGENE

[3], ANTMAP [4], RECORD [5], TMAP [6], and our own
MSTMAP [7], [8].

In recent years, the rapid adoption of high-throughput
genotyping technologies has been paralleled not only by an
increase in the map density but also by an expansion in the
variety of marker types. It is increasingly common to find
multiple genetic maps available for the same organism,
usually for different sets of genetic markers and genotyping
technologies. Notable examples are genetic linkage maps
based on microsatellites in human [9] and cattle [10], and
maps based on sequence length polymorphism in mouse
[11] and rat [12]. In the case of maize (Zea mays), seven
distinct mapping populations have been analyzed [13].

When multiple genetic maps are available, they typically
share a subset of common markers. In this case, it is often
desirable to construct a bigger map (hereafter called
consensus map) that includes and is consistent with all (or,
the vast majority of) the markers in the individual maps. A
consensus map is desirable because it provides a higher
density of markers, and therefore, a greater genome
coverage than the individual maps. However, building a
consensus map that is consistent with the individual maps
is not always possible because genotyping errors are likely
to introduce ordering conflicts between the individual
maps. Due to the way individual genetic maps are
assembled from genotyping data, two types of errors can
be observed, namely, local reshuffles and global displace-
ments. Local reshuffles refer to inaccuracies in the order of
nearby markers, whereas global displacements refer to the
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cases where a few markers are placed at positions far from
the correct ones. We are not the first ones to observe the
presence of global displacement errors in the individual
maps. Jackson et al. [14] observe that by removing
problematic markers (called outliers) from the individual
maps, the task of building a consensus map is greatly eased.
When addressing the conflicts in the consensus maps,
however, both types of errors need to be accounted for.

Several systematic approaches have been proposed to
construct consensus maps (see, e.g., [13], [14], [15], [16],
[17], [18]). The method adopted by Beavis and Grant [15]
for the integration of maize maps is to pool together the
genotyping data from the individual mapping populations,
and then, rely on traditional mapping algorithms to build
the consensus map. This pooling strategy is commonly
used, but it has several shortcomings. First, it cannot be
used in all circumstances. For example, when the data are
obtained from different populations (e.g., one data set
obtained from a double haploid population and another
from an F5 recombinant inbred lines population), then they
cannot be merged and treated uniformly downstream.
Second, the pooling method results in a large number of
missing observations, and the percentage of missing data
increases with the number of data sets to be combined. For
instance, combining two data sets with 80 percent shared
markers will result in 16.67 percent missing observations.
Combining three data sets with 80 percent shared markers
will increase the percentage of missing observations to
28.57 percent. A large amount of missing observations
combined with the limited tolerance to missing data by
existing mapping algorithms inevitably deteriorates the
quality of the consensus map.

An alternative approach, like the one used in JOINMAP

[16], is to first obtain the consensus estimates of pairwise
genetic distances by weighting for population structure and
size. Then, one searches for a map that minimizes an
objective function that measures the fit of the map to the
distance estimates and the overall quality of the map. The
drawbacks of this approach are twofold. First, distance
estimates are not very accurate when based on a small
sample of recombination events. Construction of genetic
maps based on these estimates will result in inaccuracies in
the ordering between nearby markers. Second, the computa-
tional problem of searching for an optimal map with respect
to the objective function being used is very time-consuming.
For instance, the most recent version of JOINMAP occupied a
single PC workstation for three months in order to construct a
consensus map from three individual maps of barley
containing about 1,800 markers (markers were divided into
seven linkage groups of roughly equal sizes). The same job
was carried out by our method in about 5 minutes. The
difficulties of constructing integrated maps by JOINMAP

have also been discussed at length by Wenzl et al. [19].
Despite these drawbacks, JOINMAP is still the most popular
software package available to build consensus maps.

There are other less known commercial tools like
MULTIPOINT (http://www.multiqtl.com/) or CARTE-

BLANCHE (http://www.keygene.com/). The approach of
MULTIPOINT to build consensus maps is to perform a
reprocessing of the initial genotyping data rather than
merging the individual maps [17]. The problem that
MULTIPOINT needs to solve is computationally very hard,
which drastically limits the number of markers in the maps

(see [7], [8] for a discussion on the computational
disadvantages of casting this problem as a version of the
Traveling Salesman Problem).

In general, the fact that most of the available tools to
build consensus maps (e.g., JOINMAP, MULTIPOINT, and
CARTEBLANCHE) are proprietary commercial software
tools hinders the ability of many academic labs to carry
out this task. At the same time, it limits the ability of
comparing competitive algorithmic approaches—as a con-
sequence, we decided to compare our method only with
JOINMAP and the pooling method [15]. We should note
here that the latest version of CARTHAGENE [3] also offers
some limited abilities of merging two genetic maps.

The most recent approach relies on graph theory and was
initially proposed by Yap et al. [18] and later extended by
Jackson et al. [13], [14]. Yap et al. [18] use directed acyclic
graphs (DAGs) to represent maps from individual popula-
tions. The set of DAGs is then merged into a consensus graph
on the basis of their shared vertices. A directed cycle in the
resulting graph indicates an inconsistency among the
individual maps with regard to the order of the markers
involved. In order to resolve the inconsistencies, Jackson et al.
[13], [14] proposed to break cycles by removing a minimum
weight set of feedback edges. This objective function is
reasonable when dealing with local reshuffles. However, in
the presence of global relocations, it is not appropriate
because too many edges need to be deleted in order for all the
cycles to be broken. An alternative approach is to remove a
minimum weight feedback vertex set from the graph. The
obvious drawback of this method is that markers corre-
sponding to those deleted vertices will be excluded from the
consensus map.

Our contribution. We follow the graph theoretical
paradigm outlined in [13], [14], [18] and represent indivi-
dual genetic maps as DAGs. Individual maps are combined
into a single directed graph according to their shared
vertices. Any ordering conflict among the individual maps
generates cycles in the combined graph. Here, we propose
to resolve the cycles by removing the smallest set of
(feedback) marker occurrences. We need to emphasize that
we are not deleting markers, but marker occurrences. While
a specific genetic marker may be shared by multiple
individual maps, a marker occurrence refers to the appear-
ance of a marker in a particular individual map. The
deletion of a marker occurrence will not affect the
occurrences of the same marker in other maps. Also, notice
the difference between our objective function and that of
[13], [14] which tries to delete a minimum number of
feedback arcs to resolve all conflicts. Overall, the strategy of
identifying and eliminating a small number of marker
occurrences has less destructive effects when dealing with
errors in the individual maps.

Our parsimonious strategy is first cast in a combinatorial
optimization framework via integer linear programming,
and then, a polynomial-time approximation algorithm is
proposed to solve it. When the size of the problem to be solved
is too large compared to the computing resources available, a
heuristic can be used to decompose the original problem into
smaller subproblems that can be solved independently.

Our own experience using the directed acyclic graph
approach to represent the consensus map has shown that
the resulting consensus DAGs are usually very complex
and convoluted (see Fig. 1a for an example). In order to
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allow geneticists to visualize and make use of the consensus
map, once all cycles in the consensus map are resolved, we
postprocess the resulting directed acyclic graph by remov-
ing redundant edges and merging nodes without reintro-
ducing conflicts (see Fig. 1b for the corresponding
simplified map). The resulting simplified consensus map
can be directly used by geneticists in downstream applica-
tions. If a linear ordering is needed, we employ another
novel algorithm that produces a linear order of the markers
which is consistent with the consensus graph.

The last two steps in our algorithmic pipeline, namely,
simplifying and linearizing the DAG, further distinguish

our approach from those in [13], [14], [18]. The final output
of our workflow is a linear order of sets of markers which is
a format geneticists are accustomed to. The output of the
methods by Yap et al. [18] and Jackson et al. [13], [14] is
instead a tangled DAG, which is often so complex and
convoluted that it may not be useful to geneticists.

In order to assess strengths and weaknesses of our
method, an extensive set of experiments both on synthetic
data and real barley genotyping data was carried out. The
evaluations were mainly concerned with comparing our
tool to JOINMAP [16] which is, to the best of our knowledge,
the most commonly used tool to build consensus maps. Our

WU ET AL.: ACCURATE CONSTRUCTION OF CONSENSUS GENETIC MAPS VIA INTEGER LINEAR PROGRAMMING 383

Fig. 1. A side by side comparison of (b) a simplified DAG and (a) an original DAG of barley chromosome 5H. In the simplified DAG, markers are
condensed into supermarkers. Each supernode is represented as a single ellipse in the figure.



approach produces consistently better results than JOIN-

MAP, both in terms of accuracy and running time. Our
method also outperforms the method of pooling together
genotyping data from individual maps.

2 METHODS

Our approach consists of four sequential steps. In the first
step, the individual maps are compared with each other to
determine a consistent orientation (details in Section 2.2). In
the second step, the maps are merged and the conflicts
among the individual maps are resolved by deleting a
minimum number of marker occurrences (see Section 2.3).
In the third step, the consensus DAG resulting from the
previous step is simplified. The details of this step are
presented in Section 2.4. In the fourth last step, the
simplified DAG is “linearized” to produce the consensus
map (see Section 2.5).

2.1 Preliminaries and Notations

A genetic linkage map represents the linear order and the
pairwise distance of markers on a chromosome (the latter
usually expressed in centimorgans, abbreviated as cM). A
set of markers for which no recombination is detected is
called a bin. Each pair of markers in the same bin have their
relative pairwise orders undetermined. In the rest of the
paper, we will assume that a genetic map is composed of a
sequence of bins (of markers) and the distances between
them. We also assume that the genetic distance when
expressed in cMs is additive, i.e., the distance between bin
A and bin C is the sum of the distance between bin A and
bin B and the distance between bin B and bin C if the bins
are ordered as ½A B C�.

We use square brackets to delimit a genetic map, and we
will use round parentheses to enclose a bin. For example,
map � ¼ ½ðm1Þ 2 ðm2;m3Þ 2 ðm4Þ 1 ðm5;m6Þ� consists of
four bins, where the first and the third bin are both
singletons (i.e., contain only one marker). Marker m1

precedes both markers m2 and m3, which are followed by
marker m4. The relative order between m2 and m3 is
undetermined. The distance between the first bin and the
second bin is 2 cM. Sometimes, the distances can be omitted
if one is concerned only with the order of the markers, e.g.,
½ðm1Þ ðm2;m3Þ ðm4Þ ðm5;m6Þ�.

We reserve the symbol � to denote a genetic linkage map,
and M� to denote the set of markers included in �. Given a
set of maps � ¼ f�1;�2; . . . ;�Kg, we define M� to be the
universe of all the markers, i.e., M� ¼ [Ki¼1M�i

. Given a map
�, we define G� ¼ ðM�; E�Þ to be the directed weighted
graph induced by �, where the set of edges E� is defined as
E� ¼ fðmi;mjÞj mi is in the bin immediately preceding the
bin containing mjg and the weight of an edge ðmi;mjÞ is set
to the genetic distance between the corresponding bins. The
notion of induced graph can easily be extended to a set of
maps. We setG� ¼ ðM�; E�Þ as the directed weighted graph
induced by �, where E� ¼ [Ki¼1E�i

. The weight of an edge
in G� is set to be the average of the weights of the
corresponding edges in the original maps.

We use mi to refer to a generic marker, and mj
i to refer to

the occurrence of marker mi in map �j. We further define
N� to be the set containing all the marker occurrences. If we
select a set R � N�, a submap �ðRÞ of � with respect to R is

obtained by deleting the occurrences of all markers not in R
from map �. The set of submaps �ðRÞ for the original set of
maps � restricted to R is defined as �ðRÞ ¼ f�iðRÞj�i 2 �g.

Fig. 2 illustrates the notations �, �, G�, G�, M�, N�,
�ðRÞ, and �R for a small example.

2.2 Determining the Orientation of Individual Maps

When a map for a specific linkage group (i.e., a chromosome)
is constructed from genotyping data, its canonical orienta-
tion (i.e., long arm of the chromosome on top) is usually
unknown. The purpose of this step is to reverse the
orientations of a subset of the input maps in � so that
overall the resulting maps will be in a consistent orientation.

We employ Kendall’s � statistic to determine whether
two maps are in a consistent orientation or not. Given two
maps �i and �j, Kendall’s � statistic is defined as
�ð�i;�jÞ ¼ 2 # concordant marker pairs

total # of marker pairs � 1, where a marker pair
is said to be concordant if they are in the same order in both
maps. When computing �ð�i;�jÞ, we restrict our attention
to the common markers in M�i

\M�j
. If � > 0, then the two

maps are in a consistent orientation, � < 0 otherwise.
In order to determine the consistent orientation, we first

construct an undirected graph H ¼ ð�; EÞ as follows: Each
individual map in � is represented by a vertex in H. Two
vertices are connected by an edge if the corresponding
maps share at least t markers.1 An edge is colored red if �
for the corresponding pair is negative; otherwise, it is
colored black. Without loss of generality, we can assume
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Fig. 2. Two simple genetic linkage maps, along with the corresponding
notations used in this paper. Maps �1 and �2 both consist of four bins
(enclosed in parentheses). The numbers in between adjacent bins
indicate the distances between them. Maps �1 and �2 are not consistent
with each other because there is a cycle in G� between m4 and m5.
Removing m5 from �2 resolves the conflict.

1. The choice for t depends on the quality and the size of the maps.
According to our experiments, when the number of common markers
shared by two maps exceeds 10, the � statistic is very reliable.



that H is connected; otherwise, we can solve each
connected component of H. The problem of determining
the set of maps to be reversed is equivalent to the problem
of identifying a subset S of � that satisfies the following
two conditions: 1) for every red edge, exactly one of the end
vertices is in S and 2) for every black edge, either both of
the end vertices are in S or none of them is in S. This
problem can be solved with a relatively simple BFS-based
algorithm as shown in Algorithm 1 (Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB. 2010.35).

2.3 Resolving Ordering Conflicts

Let � ¼ f�1;�2; . . . ;�Kg be the set of input maps in a
consistent orientation. The problem of merging maps
�1;�2; . . . ;�K into a consensus DAG is straightforward
when there are no conflicts. If some of the markers in the
input maps have conflicting orders, then the induced graph
G� will not be acyclic. In order to resolve cycles, we propose
to delete the smallest set of marker occurrences that can
make G� acyclic.

In order to capture the confidence associated with
specific genotyping calls, we allow weight to be assigned
to each individual marker occurrences. In practice, we
assign weights to individual maps to represent their quality
(i.e., high weight is associated with high quality/con-
fidence). Once the weights are assigned, the computational
problem is to delete the minimum-weight set of marker
occurrences so that the resulting consensus map is acyclic.
Formally, the optimization problem that emerges from this
strategy is the following.

Minimum-weight feedback marker occurrence set
(MWFMOS).

. Input: � and w, where � is a set of individual maps
from which one would like to build a consensus
map, and w is the associated weight function on N�

where wðmj
iÞ is the weight of marker occurrence mj

i .
Without loss of generality, we assume that wðmj

iÞ > 1
for all mj

i 2 N�.
. Objective: Identify a set D of minimum total weight

so that the subproblem restricted to N� �D is
conflict-free (i.e., the graph induced by the subpro-
blem, G�ðN��DÞ, is acyclic).

It is relatively easy to prove that MWFMOS is NP-
complete when the number of maps is unbounded. The
proof is a simple reduction from the minimum feedback
edge set problem. We still do not know whether MWFMOS
is still NP-complete when the number of maps is bounded
by a constant, but we suspect it is.

The solution to the MWFMOS problem with input ð�; wÞ
can be obtained by solving MWFMOS for the nonoverlap-
ping subproblems corresponding to the strongly connected
components in G�. For example, if we have � ¼
f½ðm1Þ ðm2Þ ðm3Þ ðm4Þ�; ½ðm2Þ ðm1Þ ðm4Þ ðm3Þ�g, there are
two strongly connected components in G�. The correspond-
ing subproblems are �1 ¼ f½ðm1Þ ðm2Þ�; ½ðm2Þ ðm1Þ�g and
�2 ¼ f½ðm3Þ ðm4Þ�; ½ðm4Þ ðm3Þ�g. The optimal solution to the
original problem is simply the concatenation of the optimal
solutions to the subproblems. In the following, we will be

focusing on solving MWFMOS for one of the connected
components of G�.

The algorithm that we propose requires to 1) express the
problem as an Integer Linear Program (ILP), 2) relax the ILP
to a Linear Program (LP) and solve it, and 3) use
randomized rounding to convert the LP solutions to
integral solutions. In practice, it turns out that the linear
program contains too many variables (a high-order poly-
nomial in the size of the input) to be easily tractable, so we
propose to solve it with linear relaxation and rounding.

2.3.1 An LP-Based Algorithm

Let I ¼ fF1; F2; . . . ; FKg be a subproblem of � correspond-
ing to a strongly connected component in G�. A submap Fi
is hereafter called a fragment since it is a contiguous piece of
an individual map from �. Each fragment Fi has the same
format as �i. Throughout this paper, we use � to denote the
original problem, and I to denote a subproblem of �.

A conflict in I is characterized by a path mj1

i1
! mj1

i2
,

mj2
i2
! mj2

i3
; . . . ;mjn

ik
! mjn

i1
(not to confused with a path in

GI ), wherein mj1

i1
! mj1

i2
indicates that marker mi1 precedes

marker mi2 in fragment Fj1
(markers mi1 and mi2 do not

have to be in adjacent bins). Observe that the path starts and
ends with the same marker in two different fragments. Let
P be the set of all such paths.

Given an instance of P , we formulate MWFMOS as an
ILP as follows:

Min
X

xjiw
�
mj
i

�
S:T:

X
mj
i
2p

xji � 1 8p 2 P

xji 2 f0; 1g;

ð1Þ

where xji is the binary variable associated with the
marker occurrence mj

i which is set to 1 if mj
i needs to

be deleted, 0 otherwise. The LP relaxation of the above
ILP is straightforward.

The number of constraints of the LP relaxation of (1) is
jP j, which is at most OðK!jMI jKÞ, where K is the number of
fragments in I and jMI j is the total number of distinct
markers in I . The number of constraints is polynomial
when the size of the input K is constant. The dual for the LP
relaxation of (1) is the following program:

Max
X

yp

S:T:
X
p3mj

i

yp � w
�
mj
i

�
8mj

i 2 NI ;

yp � 0 8p 2 P;

ð2Þ

where yp is the associated variable with path p 2 P , and NI
is the set containing all the marker occurrences in I . The
following LP is equivalent to (2):

Min �
S:T:

X
p3mj

i

yp � �w
�
mj
i

�
8mj

i 2 NI ;
X
p2P

yp ¼ 1;

yp � 0 8p 2 P:

ð3Þ
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The optimal solution to (3) is the reciprocal of the
solution of (2). To simplify the notation, we can rewrite (3)
in the matrix representation:

Min �
S:T: A~y � �~w

~y ¼ 1 and ~y � 0:
ð4Þ

Each row of A corresponds to a marker occurrence in NI
and each column of A refers to a path in P . We have
A½r; c� ¼ 1 if and only if mj

i 2 NI corresponding to the rth
row of A is on the path corresponding to the cth column of
A. With ~y ¼ 1, we mean

P
p2P yp ¼ 1.

Due to the large number of variables, solving optimally (4)
can be very time-consuming. In the following, we show how
to achieve an ð1þ �Þ optimal (or simply � optimal) solution.2

To find such an approximate solution, we follow the method
proposed by Plotkin et al. [20]. Let ~z be the dual variables
associated with (4), and let us define Cð~zÞ ¼ min~yj~y¼1~z

tA~y.
Consider an error parameter 0 < � < 1=6, a feasible

primal solution ð~y; �Þ, and a feasible dual solution ~z. Then,
� is 6� optimal if the following two relaxed optimality
conditions are met:

ð1� �Þ�~zt~w �~ztA~y; ð5Þ
~ztA~y� Cð~zÞ � �ð~ztA~yþ �~zt~wÞ: ð6Þ

A sketch of the algorithm to find a 6� optimal solution is
presented as Algorithm APPROXSOLVE. Algorithm AP-

PROXSOLVE converges within Oð 1
�3�� logðjNI j��1ÞÞ iterations,

where �� is the optimal solution to (4). The performance
guarantee of our algorithm APPROXSOLVE is formally
presented as Theorem 1, and the time complexity analysis
is presented as Theorem 2.

Algorithm 1. APPROXSOLVE(~y0; �)

1: ~y ~y0; � maxr~ar
t~y=wr; � 4 lnð2jNI j��1Þ=ð��Þ;

� �=ð4�Þ;
{~ar is the transpose of the rth row vector of matrix A.
jNI j is the number of rows in A}

2: for r ¼ 1; . . . ; jNI j do

3: zr  e�~ar
t~y=wr=wr

4: while ð~y; �;~zÞ does not satisfy (6) do

5: ey argmin~yj~y¼1~z
tA~y

6: ~y ð1� �Þ~yþ �ey
7: if maxr~ar

t~y=wr � �=2 then

8: � maxr~ar
t~y=wr; � 4 lnð2jNI j��1Þ=ð��Þ;

� �=ð4�Þ;
9: for r ¼ 1; . . . ; jNI j do

10: zr  e�~ar
t~y=wr=wr

11: � maxr~ar
t~y=wr;

12: return ~y; �;~z

Lemma 1. Let ð~y; �Þ and ~z be feasible primal and dual solutions
that satisfy both condition (5) and (6). Then, ð~y; �Þ is a ð1þ
6�Þ optimal solution.

Proof. This lemma corresponds to [20, Lemma 2.1]. To be
self-contained, we present the proof here.

From (5) and (6), we haveCð~zÞ � ð1� �Þ~ztA~y� ��~zt~w �
ð1� �Þ2�~zt~w� ��~zt~w � ð1� 3�Þ�~zt~w. H e n c e , � � ð1 �
3�Þ�1Cð~zÞ=~zt~w � ð1� 3�Þ�1�� � ð1þ 6�Þ��. tu

Theorem 1. Algorithm APPROXSOLVE returns a ð1þ 6�Þ
optimal solution to (4).

Proof. The theorem follows from [20, Lemma 2.2]. To be

self-contained, we present the proof here.
According to Lemma 1, in order to prove Theorem 1,

we only have to show that condition (5) and (6) are both
satisfied when Algorithm APPROXSOLVE stops. Since
condition (6) is ensured by the while loop at line 4, we only
have to show that (5) is satisfied when the algorithm stops.

We first show that when � � �0 ¼ 2 lnð2jNI j��1Þ
�� , ~z as

assigned by the “for” loops at lines 3 and 12 in algorithm

APPROXSOLVE will satisfy condition (5).
Let I ¼ fi : ð1� �=2Þ�wi � ~ai

t~yg. Let j 2 I. We have

�zjwj ¼ �e�~aj
t~y=wj � �e�ð1��=2Þ� ¼ �e��e����=2

� �e��e�lnð2jNI j��1Þ � �

2jNI j
�e�� � �

2jNI j
½�~zt~w�:

Consequently,

�~zt~w ¼
X
i2I

�ziwi þ
X
i62I

�ziwi �
X
i2I

�ziwi þ
X
i62I

1

1� �=2
zi~ai

t~y

�
X
i2I

�ziwi þ
1

1� �=2~z
tA~y � �

2
�~zt~wþ 1

1� �=2
~ztA~y:

Therefore, we have ð1� �Þ�~zt~w �~ztA~y.
Note that � is initialized to be 2�0 and whenever

maxr~ar
t~y=wr � �=2, � gets recomputed. Therefore, con-

dition (5) is satisfied throughout the execution of
Algorithm APPROXSOLVE. tu

Lemma 2. Let ð~y1; �Þ and ~z1, where ~z1 ¼ f 1
wr
e�~ar

t ~y1=wrgjNI jr¼1 , be

primal and dual solutions that do not satisfy (6). Let ð~y2; �Þ and

~z2 be the solutions in the next iteration, i.e., ~y2 ¼ ð1� �Þ~y1 þ �ey,

and let �, �, and � be defined in Algorithm APPROXSOLVE. Let

�1 ¼ ~z1
t~w, �2 ¼ ~z2

t~w. Then, �1 � �2 > ��2�1=4.

Proof. We have

�2 ¼ ~z2
t~w ¼

X
i

e�~ai
t ~y2=wi ¼

X
i

e�~ai
tðð1��Þ~y1þ�eyÞ=wi

¼
X
i

e�~ai
t ~y1=wie��~ai

tðey�~y1Þ=wi :

Since wi > 1, ~y1 ¼ 1 and ey ¼ 1, it follows that j~aitðey �
~y1Þ=wij < 1. Since � ¼ �

4� , it follows that j��~aitðey� ~y1Þ=
wij < �=4 < 1=4. According to Taylor’s expansion, ex <

1þ xþ 2x2 for jxj < 1=4. By plugging in x ¼ ��~aitðey �
~y1Þ=wi, we get

e��~ai
tðey�~y1Þ=wi < 1þ ð��~aitðey� ~y1Þ=wiÞ þ 2ð��~aitðey� ~y1Þ=wiÞ2

< 1þ ð��~aitðey� ~y1Þ=wiÞ þ
�

2
ð��~aitðeyþ ~y1Þ=wiÞ:

Therefore, �2 ¼
P

i e
�~ai

t ~y1=wie��~ai
tðey�~y1Þ=wi <

P
i e

�~ai
t ~y1=wi þ

��ðCð~z1Þ � ~z1A~y1Þ þ �
2��ðCð~z1Þ þ ~z1A~y1Þ. Consequently,

�2 < �1 þ ��ðCð~z1Þ � ~z1A~y1Þ þ �
2��ðCð~z1Þ þ ~z1A~y1Þ. I t

follows that �1 � �2 > ��ð~z1A~y1 � Cð~z1ÞÞ � ���~z1A~y1.

Due to the fact that ð~y1; �Þ and ~z1 do not satisfy (6), we
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2. A solution � is said to be ð1þ �Þ optimal if � < ð1þ �Þ�opt, where �opt is
the optimal solution. A ð1þ �Þ optimal solution is sometimes simply called
an � optimal solution.



have �1 � �2 > ����~z1
t~w. According to the choice of �,

we have �1 � �2 > ��2�1=4. tu

Theorem 2. Algorithm APPROXSOLVE converges in
Oð 1

�3�� logðjNI j��1ÞÞ iterations, where �� is the optimal
solution to (4).

Proof. Note that during the execution of Algorithm
APPROXSOLVE, � is a monotonically decreasing se-
quence with �i > 2�iþ1. Let the sequence of � be
�0; �1; �2; . . . ; �n, where �n > �� is the final output. When
� ¼ �k, then e��k=2 � � � jNI je��k .

Due to Lemma 2, it takes at most Oð 1
�3�k

logðjNI j��1ÞÞ
iterations to cut � from �k to �kþ1. Since �i > 2�iþ1, the
overall time complexity is determined by the last step.
Hence, the overall running time is Oð 1

�3�� logðjNI j��1ÞÞ. tu

Step 5 in algorithm APPROXSOLVE can be solved by

running all-pairs shortest path algorithm, which takes time

OðjNI j3 log jNI jÞ. The vector ~y does not have to be stored in

memory explicitly since all we need is A~y which takes

space OðjNI jÞ. Combining the running time for each

iteration with the upper bound on the number of

iterations, the overall time complexity of APPROXSOLVE

is Oð 1
�3�� logðjNI j��1ÞjNI j3 log jNI jÞ. Note that the time

complexity does not depend on jP j.
Given the near-optimal solution ~z to the dual of (4), the

near-optimal solution to the LP relaxation of (1) is
~x ~z=Cð~zÞ. In our algorithm, we apply two types of
rounding to convert the fractional solution ~x to an integral
solution, and then, choose the best. The first method is
randomized. The randomized rounding algorithm progres-
sively deletes marker occurrences until all the conflicts are
resolved. In each step, the method samples a marker to be
deleted according to a probability distribution proportional
to ~x. The solution obtained is further reduced to a minimal
solution by removing redundant marker occurrences. The
second rounding method employs a greedy strategy. The
markers occurrences in NI are sorted into descending order
according to their associated probabilities, then we delete
just enough marker occurrences to resolve all the conflicts.
Again, the solution is further reduced to a minimal solution
by removing redundancies. The pseudocode for the round-
ing step is presented as Algorithm 2 (Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2010.35).

As suggested by one of the anonymous reviewers, it may
be possible to find an exact solution to the ILP (1) by
designing a combinatorial algorithm that solves the separa-
tion problem on the path inequalities. While we have not
explored this approach yet, it has the potential to lead to a
comparatively fast method that finds truly exact solutions.

2.3.2 A Speedup Heuristic

Our LP-based algorithm works well when either the size of
the subproblem is small (i.e., jNI j is small) or the number of
markers to be deleted is small (i.e., 1=� � is small), the latter
of which is usually the case in practice. However, if both
jNI j and 1=� � are large, the LP-based algorithm can be still

too slow. In this case, we advise to employ an heuristic
algorithm which breaks a large subproblem I into even
smaller sub-subproblems.

Our heuristic algorithm uses the notion of node
betweenness [21]. Recall that the betweenness centrality of a
node in a graph is equal to the number of shortest paths that
go through it. The intuition is that nodes with high
betweenness usually correspond to hubs, and their deletion
will likely break the graph into disconnected components.

Now, let mj1
i and mj2

i be a pair of occurrences of the same
marker in two individual maps. A path between mj1

i and
mj2
i is the shortest if it traverses the smallest number of

marker occurrences. Let Q be the set of all such pairwise
shortest paths. If there are multiple shortest paths between a
pair, we arbitrarily choose one to be included in Q. Observe
that Q is a subset of P in the ILP (1).

We define the weighted betweenness centrality of a marker
occurrence mj

i as the number of shortest paths in Q that go
through node mj

i divided by its weight wðmj
iÞ. The higher

the weighted betweenness centrality for a marker occur-
rence, the higher is the likelihood that marker occurrence
should be deleted. Our heuristic algorithm works by
computing the weighted betweenness centrality for every
marker occurrences, and then, iteratively deleting the ones
with the highest value. The step is repeated until the sizes of
the subproblems are all small enough to be handled by our
LP-based algorithm. The pseudocode of our heuristic
algorithm is presented as Algorithm 3 (Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2010.35).

2.4 Simplifying the Consensus Map

Having resolved the conflicts in �, the graph G� is now
acyclic. As it turns out, in practice, however, the graph G�

is overly complex to be useful for geneticists. In this
phase, we propose two effective simplification steps. The
first one addresses the problem of reducing the number of
nodes, whereas the second focuses on decreasing the
number of edges.

Recall that a bin represents a set of markers for which the
relative orders are undetermined. In this first step, we aim
to simplify G� by condensing markers into bins. In order to
differentiate the bins constructed in this step from the bins
in the original maps, we refer to the former ones as
supermarkers. The rationale for combining markers into
supermarkers is the following. If two markers always
appear paired in the same bin in the original individual
maps, then we cannot determine the relative order between
them and the two markers should be grouped as a single
supermarker. Based on this observation, we generalize the
notion of cosegregating markers as follows: Given a set of
maps � ¼ f�1;�2; . . . ;�Kg, two markers ðmi;mjÞ are said
to be cosegregating (denoted as mi � mj) if they satisfy the
following two conditions: 1) mi and mj belong to the same
bin in at least one of the maps in � and 2) there is no path
from mi to mj or from mj to mi in G�. The first condition is
intended to ensure that the markers to be condensed into a
supermarker are indeed close. The second condition makes
sure that the relative order between the markers to be
condensed into a supermarker is undetermined.
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The cosegregation relation is not an equivalent relation,
because it does not satisfy the transitivity property. Consider,
for example, � ¼ f½ðm1;m2;m3Þ�; ½ðm1Þ ðm4Þ�, ½ðm4Þ ðm3Þ�g,
thenm1 � m2 andm2 � m3, butm1 6� m3 since there is a path
from m1 to m3 in G�. When we group markers into
supermarkers, we must be careful not to introduce new
conflicts. For example, consider � ¼ f½ðm1;m2Þ�; ½ðm1Þ ðm3Þ�,
½ðm3;m4Þ�; ½ðm4Þ ðm2Þ�g, then ðm1;m2Þ and ðm3;m4Þ are both
cosegregating pairs. But if they are both condensed into
supermarkers, a new conflict will result.

In order to address these issues, we employ a greedy
iterative algorithm to carry out a maximal decomposition of
the markers into supermarkers. In each step, we condense
one pair of cosegregating markers into a supermarker. The
original problem � is transformed into a new problem �0,
which has one less marker than �. For example, if we have
� ¼ f½ðm1;m2;m3Þ�; ½ðm1Þ ðm3Þ�g, after condensing the cose-
gregating pair ðm1;m2Þ into supermarker ms, the original
problem becomes �0 ¼ f½ðms;m3Þ�; ½ðmsÞ ðm3Þ�g. We keep
repeating the iterative process until no cosegregating
markers can be found. The final set of maps at the end of
the process is denoted by �f (G�f is the corresponding
induced DAG).

In the second simplification step, we concentrate on
reducing the number of edges from G�f . We define a
directed edge ðmi;mjÞ to be redundant if there exists an
alternative (distinct) path from mi to mj in G�. The removal
of redundant edges is a transitive reduction [22], which is
commonly used to untangle a graph. We denote with DAG�

the final graph obtained by removing redundant edges.
Each vertex in DAG� represents a supermarker in �f ,

which, in turn, represents a set of markers from the original
problem �. In Theorem 3, we prove that the in-degree and
out-degree of the vertices in DAG� are at most K, where K
is the number of maps. The entire simplification process is
summarized in Algorithm 4 (Supplementary Material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2010.35).

Fig. 1 illustrates a side-by-side comparison between the
original DAG and the corresponding simplified DAG for
barley chromosome 5H. Observe that the original DAG is
much more complex and tangled than the simplified DAG.
The major benefit of this last step is that the simplified DAG
can be used directly by geneticists and represents a viable
alternative to the classical linear order representation for
genetic maps.

Theorem 3. The in-degree and out-degree of the vertices in
DAG� are at most K, where K is the number of maps.

Proof. Let �f 2 �f be one of the final individual maps. Let
M�f be the set of supermarkers contained in �f .
Consider any two supermarkers mi and mj from M�f .
If mi and mj belong to different bins in �f , then mi and
mj are ordered (meaning that either mi is before mj or
vice versa). On the other hand, if mi and mj belong to the
same bin, since mi and mj do not form a cosegregating
pair (due to the greediness of our algorithm), there must
be a path from either mi to mj or from mj to mi in DAG�.
Therefore, if we restrict our attention to a single map
�f 2 �f , DAG� defines a total order on the set of

supermarkers M�f . As a result, each supermarker can
have at most one immediate predecessor and one
immediate successor from one individual map. Since
each supermarker can appear in at most K maps, the
theorem follows. tu

2.5 Linearizing the Consensus Map

In the fourth and last step of the workflow, we process
DAG� to produce a linear order of the bins (supermarkers).
The objective is to compute the linear order that is
consistent with the partial order of the bins, i.e., if there is
a path from bin bi to bin bj in DAG�, then bi should precede
bj in the linear order. This problem is similar to topological
sorting [23], but the genetic distances need to be taken into
account as well. Also, when there is no path between a pair
of bins, we have to impute the order of the two bins as well
as the distance between them.

The main idea in our linearization procedure can be
explained on the examples in Fig. 3. First, consider case 1,
where there is no path between b2 and b3, but they share a
common ancestor. The distances from b2 and b3 to the
common ancestor are 1 and 2, respectively. In this case, it is
reasonable to infer that b3 follows b2 and the distance
between them is 1. For the same reason, in case 2, it is
reasonable to infer that the linear order is ½b3; b2; b4�. In
case 3, the situation is more complex. If we order b2 and b3

by only relying on their distances from b1, then b3 should be
after b2. However, if we order b2 and b3 based on their
distances to b4, then b3 should be ordered before b2. To
resolve this problem, we order b2 and b3 based on the
information from the pair b1 and b4. The average distance
from b1 and b4 over the two paths is 4. Bin b2 lies between b1

and b4 and is 1/3 away from b1. Similarly, b3 is 2/5 away
from b1. Based on that information, we order b3 after b2 and
set the distance from b3 to b2 to be ð2=5� 1=3Þ4 ¼ 4=15. In
case 4, the situation is even more complicated. When
estimating the order and distance between b2 and b3, we
need to aggregate the distance information from all
common ancestor and successor pairs.

This strategy can be formalized as follows: Let us define
D½bi; bj� to be the distance from bin bi to bin bj in DAG�. If
there is only one path from bi to bj, then D½bi; bj� is trivially
assigned the length of that path. If there are multiple paths
from bi to bj, we set D½bi; bj� to be the average length of all
paths from bi to bj, which can be efficiently computed by
dynamic programming as shown in Algorithm 5 (Supple-
mentary Material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersocie-
ty.org/10.1109/TCBB.2010.35). Now, let bi and bj be two
bins that are not ordered in DAG�. Our algorithm
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Fig. 3. A few cases to consider when estimating the distance between
b2 and b3.



determines the relative order between bi and bj as follows:

Consider these cases.

. Both bi and bj have common ancestors and common

successors. Let A be the set of common ancestors and

S be the set of common successors. Let p 2 A be one of

the ancestors and s 2 S be one of the successors. We

define the distance from bin bi to bin bj with respect to

the common ancestor and successor pair ðp; sÞ as

�ðp;sÞ½bi; bj� ¼ D½p; s�ð D½p;bj�
D½p;bj�þD½bj;s� �

D½p;bi�
D½p;bi�þD½bi;s�Þ. The fi-

nal distance �½bi; bj� is averaged over all ðp; sÞ pairs,

i . e . , �½bi; bj� ¼
P

p2A;s2S �ðp;sÞ½bi; bj�=ðjAj jSjÞ. I f

�½bi; bj� is positive, then we order bi before bj.

Otherwise, we order bj before bi.
. Both bi and bj have only common successors. Let S

be the set of successors and let s 2 S be one of the
successor. The distance from bin bi to bin bj with
respect to s is defined as �s½bi; bj� ¼ D½bi; s� �D½bj; s�.
The final distance �½bi; bj� is again averaged over all
successors, i.e.,

�½bi; bj� ¼
P

s2S �s½bi; bj�
jSj :

. Both bi and bj have only common ancestors. D½bi; bj�
is similarly computed as in the previous case.

Once the distances in D are computed, the algorithm that

linearizes DAG� is similar to topological sorting [23]. Let T

be the list of ordered bins (T ¼ ; initially). At each iteration,

our algorithm determines the next marker s to be ordered. If

s is uniquely determined under the partial order given by

DAG�, then we simply append s to the end of T . Otherwise,

if S is the set of multiple choices, s is chosen so thatP
t2S;t 6¼s �s;t is maximized. The details are presented in

Algorithm 6 (Supplementary Material, which can be found

on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2010.35).

3 RESULTS AND DISCUSSIONS

We implemented our algorithmic workflow in C++ and
carried out extensive evaluations on both real and synthetic
data sets. Our software tool, called MERGEMAP, is available
at http://www.cs.ucr.edu/~yonghui/mgmap.html.

3.1 Evaluating the Conflict Resolution Algorithm

The purpose of this first set of experiments is to assess the
effectiveness and efficiency of our conflict resolution
algorithm. Each data set in this experiment consists of six
individual maps, all of which are noisy variants of one
single true map. The true map is just a permutation of
m markers, where the parameter m ranges from 100 to 500
(representing a spectrum of maps from medium size to
large size). The distances between adjacent markers are
fixed to be 1 cM. To generate an individual map from the
true map, we first swap � randomly chosen adjacent pairs,
and then, relocate 	 randomly chosen markers to a random
position. The � swaps model local reshuffles, while the
	 relocations model global displacements. As said before,
swaps and relocations are the two types of errors that may
be present in a genetic map. In our experiments, � ranges
from 10 to 30 and 	 ranges from 2 to 6.

For each data set, a consensus map was constructed by
MERGEMAP by running the conflict resolution module,
followed by the simplification and the final linearization.
The consensus map was compared with the true map and
the number of erroneous marker pairs were counted. We
called a pair of markers erroneous when their order in
consensus map differs from the order in the true map.
When the consensus map is identical to the true map, the
number of erroneous marker pairs is zero. On the other
hand, when the consensus map is the reverse of the true
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Fig. 4. (a) The number of erroneous marker pairs obtained with MERGEMAP and (b) the average running time for various choices of m, �, and 	. The
parameter m is the number of markers in each individual map. The � swaps model local reshuffles, while the 	 relocations model global
displacements. Each point in the figure is an average of the results obtained from 10 independent data sets. Standard deviation for the
corresponding statistic is represented as the error bars.



map, the number of erroneous markers is equal to
mðm� 1Þ=2. For each choice of m, �, and 	, 10 independent
random data sets were generated. For each data set, the
number of erroneous marker pairs and the running time
were collected. The mean and standard deviation for both
performance measures were computed, and are summar-
ized in Fig. 4.

As Fig. 4 illustrates, MERGEMAP is very accurate in
detecting the problematic markers and removing them before
merging the individual maps. In most cases, the number of
erroneous marker pairs in the final map is less than 10, and in
a few cases, the number of erroneous pairs is equal to zero. As
� and 	 increase, the problem becomes harder and the quality
of the consensus map deteriorates. Vice versa, asm increases
the number of erroneous pairs decreases.3

The running time of MERGEMAP increases as m or � or
	 increases, but in most practical instances, it remains
within reasonable bounds. For the largest data set with
m ¼ 500 markers, � ¼ 30, and 	 ¼ 6, MERGEMAP finishes
within 2-3 hours. In comparison, JOINMAP takes several
weeks to assemble maps with about 300 markers.

3.2 Comparing with JOINMAP on Synthetic
Genotyping Data

The objective of the second set of experiments is to evaluate
the entire process of building consensus maps from
“scratch” (i.e., starting from synthetic genotyping data).
The synthetic genotyping data sets were generated accord-
ing to a procedure which is controlled by six parameters.
We attempted to model the genotyping process to be as
realistic as possible. The parameters are the number K of
mapping populations, the number m of markers, the
number R of “bad markers” on each mapping populations,
the genotyping error rate �, and the missing rate 	. The
sixth parameter x controls the percentage of the markers
shared by two individual maps. The latter is used to model
the fact that the data for individual maps only represent a
subset of the universe of genetic markers.

The entire procedure to generate a synthetic genotyping
data set can be divided into four steps. In the first step, a
“skeleton” map is produced with m markers. The markers
on the skeleton map are spaced at a distance of 0.5 cM plus a
random distance according to a Poisson process with a mean
of 2 cM. The “skeleton” map serves the role of the true map.

Following the generation of the skeleton map, in the
second step, the raw genotyping data for the K mapping
populations are then generated sequentially. Here, we
assume that the mapping populations are all of the double
haploid (DH) type, and that each population consists of
100 individuals. The genotypes for the individuals are
generated as follows: The genotype at the first marker is
generated at random with probability 0.5 of being A and
probability 0.5 of being B. The genotype at the next marker
depends upon the genotype at the previous marker and the
distance between them on the skeleton map. If the distance
between the current marker and the previous marker is d

cM, then with probability d=100, the genotype at the current
locus will be the opposite of the one at the previous locus,
and with probability 1� ðd=100Þ, the two genotypes will be
the same. Finally, according to the specified error rate and
missing rate, the genotype state is flipped to model the
introduction of a genotyping error or is simply deleted to
model a missing observation.

In the third step, “bad markers” are added to each
mapping population. To do so, R markers are first selected
at random from each population. The genotypes for those
chosen markers across all the 100 individuals are flipped
with probability 0.3. Due to the very high error rate
introduced for these markers, their positions in the
individual genetic maps will be unpredictable. We note
that R is small relative to m, and therefore, the probability
that two individual populations share a common bad
marker is very small. When they do, we discard the entire
data set and generate a new one.

The fourth step of generation procedure involves
removing a fraction of markers from each individual map.
A random subset of ð1� xÞm markers is deleted from each
mapping population, where x varies from 0.35 to 0.7 in our
experiments. As a result, two mapping populations share
x2m markers on average.

For each data set, individual genetic maps were
assembled by our tool MSTMAP [7], [8] with error
correction disabled. The individual maps were then fed
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3. The only outlier in Fig. 4 is the case m ¼ 300, � ¼ 20, and 	 ¼ 6. We
examined the raw data and found that the high mean and standard
deviation are due to one single data set, for which our algorithm failed to
place one single marker in the right place. This single bad marker
contributed 172 erroneous marker pairs in total. When averaged over the
10 runs, the single bad marker contributed 17 to the average number of
erroneous pairs.

Fig. 5. Comparison between MSTMAP+MERGEMAP, JOINMAP, and
MSTMAP-C in terms of (a) the number of erroneous marker pairs and
(b) running time for R ¼ 0 and R ¼ 2, respectively. The rest of the
parameters are as shown in the title of the figures. The parameter 	 is
the missing observation rate, � is the genotyping error rate, R is the
number of “bad” markers, and m is the number of markers in each
individual map. In these experiments, we have K ¼ 6 mapping
populations obtained by removing a fraction x ¼ 0:7 of markers from
each individual map. Each bar represents an average of 10 runs and
the error bar indicates the standard deviation.



into MERGEMAP to build the consensus map. We denote
this approach of building the consensus maps as
MSTMAP+MERGEMAP.

Here, we compare the performance of MSTMAP+MER-

GEMAP against JOINMAP. To the best of our knowledge,
JOINMAP is the most popular tool for building consensus
map among geneticists. However, due to the fact that
JOINMAP is GUI-based (nonscriptable) and becomes
extremely slow when the number of markers exceeds
150, we collected results for only a few relatively small
data sets. As mentioned in Section 1, an alternative
approach to the problem of constructing consensus maps
is to pool the genotype data for all the individual
populations, and then, apply any existing genetic mapping

algorithms by treating the pooled data set as a single
population. When pooling individual data sets, a large
number of missing observations have to be introduced.
According to this strategy, we constructed a consensus
map with MSTMAP by first combining the raw mapping
data from multiple populations into a pooled data set. We
call this latter approach MSTMAP-C.

We considered two parameter sets, which we believed to
be realistic. In the first, the parameters are m ¼ 100, K ¼ 6,
x ¼ 0:7, � ¼ 0:001, 	 ¼ 0:001 , and R ¼ 0. In the second, we
set R ¼ 2 and left the rest of the parameters untouched. For
each choice of the parameters, 10 random data sets were
generated, and the number of erroneous marker pairs and
the running time was recorded. The results for the two
parameters set are presented in Fig. 5.

Fig. 5b shows that MSTMAP+MERGEMAP is orders of
magnitude faster than JOINMAP (the y-axis is in log-scale).
The difference in running time becomes more apparent when
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TABLE 1
Comparison between MSTMAP+MERGEMAP and MSTMAP-C

for K ¼ 6; x ¼ 0:7

Each number in the table is the average of number of erroneous pairs
obtained from ten independent runs. The parameter 	 is the missing
observation rate, � is the genotyping error rate, R is the number of “bad”
markers, and m is the number of markers in each individual map. In
these experiments we have K ¼ 6 mapping populations obtained by
removing a fraction x ¼ 0:7 of markers from each individual map.

TABLE 2
Comparison between MSTMAP+MERGEMAP and MSTMAP-C

for K ¼ 8; x ¼ 0:5

Please refer to the caption of Table 1 for explanations of the notations
used in the table.

TABLE 3
Comparison between MSTMAP+MERGEMAP and MSTMAP-C

for K ¼ 10; x ¼ 0:4

Please refer to the caption of Table 1 for explanations of the notations
used in the table.

TABLE 4
Comparison between MSTMAP+MERGEMAP and MSTMAP-C

for K ¼ 12; x ¼ 0:35

Please refer to the caption of Table 1 for explanations of the notations
used in the table.



m is large. Also, observe that MSTMAP-C can be faster than
MSTMAP+MERGEMAP. Fig. 5a shows that: 1) the consensus
maps obtained by MSTMAP+MERGEMAP are significantly
more accurate than the ones produced by JOINMAP or
MSTMAP-C and 2) MSTMAP-C have comparable accuracy to
JOINMAP. We believe that the same conclusions can be
derived for larger data sets.

In order to investigate the extent of the advantages
brought upon by MERGEMAP, we performed an extensive
comparison between MSTMAP-C and MSTMAP+MERGE-

MAP for a variety of parameter settings. For example, Table 1
summarizes the results for K ¼ 6; x ¼ 0:7. For this choice of
parameters, it is clear that MSTMAP+MERGEMAP outper-
forms MSTMAP-C for each choice of the parameters. The
running time for MSTMAP+MERGEMAP is comparable with
those presented in Fig. 4, whereas the running time for
MSTMAP-C is always very short, within a few minutes
regardless of the size of the input. Similar results were
obtained for the cases whereK ¼ 8,K ¼ 10, andK ¼ 12 (see
Tables 2, 3, and 4).

3.3 Comparing with Join Map on Real Genotyping
Data

The real genotyping data were obtained in the context of an
ongoing mapping project for the genome of Hordeum vulgare
(barley). In total, we had three mapping populations under
study, all of which are DH populations. The first mapping

population (called OWB hereafter) is the result of crossing
Oregon Wolfe Barley Dominant with Oregon Wolfe Barley
Recessive (see http://barleyworld.org/oregonwolfe.php).
The OWB data set consists of 1,020 markers genotyped on
93 individuals. The second mapping population (called SM
hereafter) is the result of a cross of Steptoe with Morex (see
http://wheat.pw.usda.gov/ggpages/SxM/), which con-
sists of 800 markers genotyped on 149 individuals. The
third mapping population (called MB hereafter) is the result
of a cross of Morex with Barke.4 The MB mapping
population contains 1,068 markers on 93 individuals. The
three data sets as a whole provide a coverage of 1,853 mar-
kers in total. The genotyping data were collected using the
Illumina GoldenGate Assay platform.

The individual genetic maps for the three mapping
populations of barley were assembled with MSTMAP [7],
[8]. Each individual genetic map contains seven linkage
groups corresponding to the seven chromosomes of barley,
which are conventionally named 1H-7H. A consensus map
was built with MERGEMAP from the OWB, SM, and MB
maps of each of the seven chromosomes. We observed no
conflicts among the three input maps for chromosomes 2H,
3H, 4H, 6H, and 7H. However, the consensus maps for
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4. This latter cross was recently developed by Stein and colleagues at the
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK).

Fig. 6. A portion of the graph produced by MERGEMAP highlighting the conflicts among the OWB, SM, and MB map that emerged while building the
consensus map for chromosome 1H of barley. Each individual map is framed in a shaded block, nodes correspond to marker, and the numbers on
the edges indicate genetic distances. Markers at the same horizontal level belong to the same bin. The numbers enclosed in the parentheses inside
the nodes are the probabilities of deletion computed by our algorithm. Each node is filled with a color whose saturation is proportional to the
associated probability, which allows the user to quickly spot the problematic markers. The integral solution obtained by the rounding step would
delete the marker occurrence enclosed in diamonds.



chromosome 1H and 5H generated conflicts involving a
large number of markers.

MERGEMAP is able to produce a graphical view of the
conflicts among the individual maps. By solving the LP
relaxation of the linear integer program (1), MERGEMAP

associates a probability with every marker occurrence. The
higher the probability, the more likely that the marker
occurrence is responsible for the conflicts. By inspecting the
graph produced for 1H (the portion of the graph that
highlights the conflicts is shown in Fig. 6), it was clear to us
that marker 2_1068 was the one causing the conflict. It turned
out that marker 2_1068 was placed at the telomere in the MB
map, while in the SM map, it was placed somewhere in the
middle of the chromosome. Observe that removing marker
2_1068 from either the MB map or the SM map would have
resolved all the conflicts; therefore, both marker occurrences
are correctly associated with a probability of 0.5 for deletion.
Following this analysis, we revisited the raw genotype data
for marker 2_1068, and noticed that the quality of the
genotype call in the MB population was quite low. We
deleted marker 2_1068 in the MB map and rebuilt the
consensus map for chromosome 1H, this time observing no
conflicts among the individual maps.

Similarly, in chromosome 5H, the algorithm identified
marker 2_0029 as problematic by assigning it a high
probability for deletion. When we revisited the Illumina
GoldenGate Assay workspace, we confirmed that marker
2_0029 was a low-quality call in the MB map. After deleting
marker 2_0029 from the MB map, the consensus map for
chromosome 5H was conflict-free.

While we were implementing our algorithms and devel-
oping our map integration software, we were also processing
the same barley data set with JOINMAP on a 3.3 GHz
Pentium processor workstation with 2 GB memory. JOIN-

MAP finished merging the seven linkage groups after about
three months of uninterrupted execution. The same job was
carried out in less than 5 minutes by MERGEMAP. When we
compared the consensus map generated by JOINMAP to the
original individual maps, in 174 places, the consensus maps
were not consistent with the marker order in the individual
maps. In contrast, after the removal of the two problematic
markers, the consensus maps by MSTMAP+MERGEMAP

were 100 percent consistent with the individual maps.
According to this observation, we can conclude that the
consensus maps generated by MERGEMAP are significantly
more reliable than the one generated by JOINMAP.
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