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ABSTRACT

The problem of finding a specified pattern in a time se-
ries database (i.e. query by content) has received much
attention and is now a relatively mature field. In con-
trast, the important problem of enumerating all sur-
prising or interesting patterns has received far less at-
tention. This problem requires a meaningful definition
of “surprise”, and an efficient search technique. All pre-
vious attempts at finding surprising patterns in time
series use a very limited notion of surprise, and/or do
not scale to massive datasets. To overcome these lim-
itations we introduce a novel technique that defines a
pattern surprising if the frequency of its occurrence dif-
fers substantially from that expected by chance, given
some previously seen data. This notion has the advan-
tage of not requiring an explicit definition of surprise,
which may be impossible to elicit from a domain expert.
Instead the user simply gives the algorithm a collection
of previously observed normal data. Our algorithm uses
a suffix tree to efficiently encode the frequency of all ob-
served patterns and allows a Markov model to predict
the expected frequency of previously unobserved pat-
terns. Once the suffix tree has been constructed, a mea-
sure of surprise for all the patterns in a new database
can be determined in time and space linear in the size
of the database. We demonstrate the utility of our ap-
proach with an extensive experimental evaluation.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applica-
tions—Data Mining
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Time series, Suffix Tree, Novelty Detection, Anomaly
Detection, Markov Model, Feature Extraction.
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1. INTRODUCTION

The problem of finding a specified pattern in a time se-
ries database (i.e. query by content) has received much
attention and is now a relatively mature field [12, 22,
19, 21]. In contrast, the problem of enumerating all
surprising or interesting patterns has received far less
attention. The utility of such an algorithm is quite ob-
vious. It would potentially allow a user to find surpris-
ing patterns in a massive database without having to
specify in advance what a surprising pattern looks like.

Note that this problem should not be confused with the
relatively simple problem of outlier detection. Hawkins’
classic definition of an outlier is “... an observation that
deviates so much from other observations as to arouse
suspicion that it was generated from a different mech-
anism” [18]. However we are not interested in finding
individually surprising datapoints, we are interested in
finding surprising patterns, i.e., combinations of data-
points whose structure and frequency somehow defies
our expectations. The problem is referred to under var-
ious names in the literature, including novelty detection
[9, 5] and anomaly detection [37].

The problem requires a meaningful definition of “sur-
prise”. The literature contains several such definitions
for time series; however they are all too limited for a
useful data-mining tool. Consider for example the no-
tion introduced by Shahabi et al. [32]. They define sur-
prise in time series as “...sudden changes in the original
time series data, which are captured by local mazimums
of the absolute values of (wavelet detail coefficients)”.
However it is not difficult to think of very surprising
patterns that defy this rule. For example, consider Fig-
ure 1. Here the beginning of each normal heartbeat is
considered very surprising, but the temporary absence
of a heartbeat is considered to be the least surprising
subsection of the time series!

Several other definitions of surprise for time series exist,
but all suffer from similar weaknesses [7, 37, 38, 9]. To
overcome these limitations we introduce a novel defini-
tion that defines a pattern surprising if the frequency of
its occurrence differs substantially from that expected
by chance, given some previously seen data. This no-



Figure 1: The time series at the top is a normal
healthy human electrocardiogram with an arti-
ficial “flatline” added. The sequence at the bot-
tom indicates how surprising local subsections
of the time series are under the measure intro-
duced in Shahabi et al.. In this case the begin-
ning of each normal heartbeat is very surprising,
but the “flatline” is the least surprising part of
the time series, a very unintuitive result

tion has the advantage of not requiring an explicit defi-
nition of surprise, which may in any case be impossible
to elicit from a domain expert. Instead the user simply
gives the algorithm a collection of previously observed
data, which is considered normal. The measure of sur-
prise of a newly observed pattern is considered relative
to this data collection, and thus eliminates the need for
a specific model of normal behavior.

Note that unlike all previous attempts to solve this prob-
lem, the measure of surprise of a pattern is not tied
exclusively to its structure. Instead it depends on the
departure of the frequency of the pattern from its ex-
pected frequency. This is the crucial distinction of our
approach from all the others.

For example consider the “head and shoulders” pattern
shown in Figure 2. The existence of this pattern in
a stock market time series should not be considered
surprising since it is known to occur (even if only by
chance). However, if it occurred ten times this year, as
opposed to occurring an average of twice a year in pre-
vious years, our measure of surprise will flag the pattern
as being surprising. Intuitively, the pattern would also
be surprising if its frequency of occurrence is less than
expected. Once again our definition would flag such
patterns.

Our definition of surprise would be of little utility to the
data mining community without a technique that al-
lowed efficient determination of the expected frequency
of a pattern. We demonstrate how a suffix tree can be
used to efficiently encode the frequency of all observed
patterns. Since it is possible that a pattern observed in
the new data was not observed in the training data, we
demonstrate a technique based Markov models to cal-
culate the expected frequency of previously unobserved
patterns. Once the suffix tree has been constructed,
the measure of surprise for all the patterns in a new
database can be determined in time linear in the size of

Figure 2: An example of the classic “head and
shoulders” pattern

the database.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss feature extraction techniques to dis-
cretize time series, a necessary preprocessing step for
our approach. In Section 3 we introduce some back-
ground material on string processing, including suffix
trees and Markov models. In Section 4 we show how
to efficiently compute any pattern’s expected frequency
by using suffix trees. Having reviewed the materials
discussed in previous sections, we finally introduce our
algorithm in Section 5. In Section 6 we demonstrate
the utility of our approach with a detailed empirical
evaluation. We wait until Section 7, when the reader’s
intuitions about the problem are more fully developed
to discuss related work. Finally in Section 8 we offer
conclusions and directions for future research.

2. DISCRETIZING TIME SERIES

For concreteness we more formally define our intuition
of surprise as follows.

DEFINITION 2.1. A time series pattern P, extracted
from database X is surprising relative to a database R,
if the frequency of its occurrence is greatly different to
that expected by chance, assuming that R and X are
created by the same underlying process.

In order to compute this measure, we must calculate
the probability of occurrence for the pattern of interest.
Here we encounter the familiar paradox that the prob-
ability of a particular real number being chosen from
any distribution is zero [15]. Since a time series is an
ordered list of real numbers the paradox clearly applies.
The obvious solution to this problem is to discretize the
time series into some finite alphabet . Using a finite al-
phabet allows us to avail of Markov models to estimate
the expected probability of occurrence of a previously
unseen pattern.

The problem of discretizing time series into a finite al-
phabet has received much attention in diverse fields,
including astronomy, medicine, chemistry, etc. (See [10]
for an exhaustive overview). The representation has
also captured the attention of the data mining commu-
nity who use discretized time series to support similarity



Symbol

R the reference time series database
(consisting of real numbers)

X the time series database (to be mined
for surprising patterns)

T the discrete version of R

x the discrete version of X

I the feature window length

lo sliding window length

a the alphabet size

Table 1: A summary of the major notation use
in the work. More complete definitions are given
in the relevant sections

search [19] and to enable change point detection [16].

Below we give a generic algorithm to discretize a time
series dataset such that each symbol is equiprobable.
A table of notation used in this, and subsequent algo-
rithms is given in Table 1.

The inputs are a reference time series database R, the
feature window length and the size of the desired alpha-
bet. The feature window length is the length of a sliding
window that is moved across the time series. At each
time step, the portion of data falling within the win-
dow is examined, and a single real number, describing
some feature of the data is extracted. After the features
have been extracted, they are sorted so the boundaries
that contain an equal number of extracted features can
be determined. At this point the unsorted features are
scanned, each feature is tested to see which range it
maps to, and matching symbol is assigned. An outline
of the algorithm is shown in Table 2.

Note that the one element of the algorithm we did not
specify is the EXTRACT_FEATURE subroutine. Here we
have been deliberately vague. The best feature extrac-
tion technique may be domain dependent. Possible fea-
tures include the mean of the data [21], the slope of the
best-fitting line [16, 22], the second wavelet coefficient’
the second real Fourier coefficient [12], etc. For simplic-
ity we will consider only the slope of the best-fitting line
for the rest of this paper.

We also have not stated how the two parameters, the
feature window length and the size of the desired alpha-
bet, are chosen. As emphasized in [8] and elsewhere,
data mining is an iterative activity, and “discovery al-
gorithms should be run several times with different pa-
rameter settings”. Alternatively, techniques that use
maximum entropy based methods can be used to decide
reasonable parameters to discretize time series [28].

The time complexity for the above algorithm is dom-
inated by the need to sort the features to allow de-
termination of the feature boundaries. However these

!The first wavelet coefficient, and the first real Fourier
coefficient, simply contain the mean of the signal.

string DISCRETIZE_TIME_SERIES (time_series X,
int /1, int a)
fori=1,|X|-l1i+1
let featuresj;) = EXTRACT_FEATURE(X[; ;1,])
let sorted features = sORT(features)
for j=1,a
let pointer = j |features|/a
let boundariesf;; = sorted_features[pointer]
for ¢ = 1, |features|
let xm =
MAP_REAL_TO_INT (boundaries, featuresy;;)
return r

Table 2: Outline of the algorithm for the dis-
cretization of the time series: ¢t is the time series
data, [; is the feature window length, g is the
alphabet size

feature boundaries are very stable, and can be reliably
estimated from a subsample of the data [8]. For large
databases we can determine the feature boundaries from
a subsample of size s = /|R| [8]. Since slog(s) < |R)|,
the feature extraction algorithm is O(|R]).

We have included this generic feature extraction for
completeness, however the rest of our work does not
require any particular feature extraction approach. A
multitude of alternative methods to discretize the time
series could be used; including vector quantization [23]
and clustering based techniques [8].

3. BACKGROUND ON STRING

PROCESSING

We use X to denote a nonempty alphabet of symbols. A
string over X is an ordered sequence of symbols from the
alphabet. Given a string z, the number of symbols in z
defines the length |z| of z. Henceforth, we assume |z| =
n. The empty string has length zero, and is denoted by
€.

Let us decompose a text x in uvw, i.e., £ = uvw where
u,v and w are strings over ¥. Strings u,v and w are
called substrings, or words, of x. Moreover, u is called
a prefiz of x, and w is called a suffiz of x.

We write zj;;, 1 < ¢ < |z| to indicate the i-th sym-
bol in x. We use z[; ;] as shorthand for the substring
T[] Ti41] - - - ;) where 1 < 4 < j < n, with the con-
vention that z[; ;) = x[;. Substrings in the form zy; ;
corresponds to the prefixes of =, and substrings in the
form zy; ») to the suffixes of .

We say that a string y has an occurrence at position 7 of
a text @ if Y1) = @), Y21 = Tpav1)y - Yim] = Tlitm—11
where m = |y|. For any substring y of z, we denote by
fz(y) the number of occurrences of y in x.

Throughout this document, variables y and w usually
indicate substrings of the text £. Unless otherwise spec-



ified, we assume the generic term m as the length of any
of these words.

3.1 Markov models

‘We consider a string generated by a stationary Markov
chain of order M > 1 on the finite alphabet X. Let z =
T[1])T[2] - - - T[n] De an observation of the random process
and ¥ = YY) - - - Yim] an arbitrary but fixed pattern
over ¥ with m < n.

The stationary Markov chain is completely determined
by its transition matrix II = (7(y1,m1, €))yp,ev(prp €S
where

T(yu,m)5€) = P(Xit1 = ¢| X m41,4 = Yp,an)

are called transition probabilities, with ypy,. .., ypm), ¢ €
Y and M < i < n—1. The vector of the stationary prob-
abilities p of a stationary Markov chain with transition
matrix IT is defined as the solution of u = plIl.

‘We now introduce the random variable which describes
the occurrences of the word y. We define Z;,1 < i <
n—m+1 to be 1 if y occurs in z starting at position ¢,
0 otherwise. We set

n—m-+1

Zy= Y Z,
i=1

so that Z, is the random variable for the total number
of occurrences fz(y).

In the stationary M-th order Markovian model the ex-
pectation of Z;, which represents the probability that y
occurs at a given position i, is given by

E(Zi) = P(Xjitm-11=Y)

= p(yp,m) T (Y, M Y +11) T (Y2, M41], Y[M+2])

o 7T(y[me,mfl]: y[m])
m—M
= w(ypan) [] *@isirar 13 Yt am)-

i=1

The expected count of the occurrences y under the Markov
model is therefore

E(Z,) = (n—m+1)E(Z;) (1)

(n—m+ 1)11(?1[1,1\/1]) H W(y[i,i+M—1]a y[i+M])

i=1

because the distribution of the Z;’s does not depend on
i.

When the true model is unknown, the transition and
stationary probabilities have to be estimated from the
observed sequence x. Let y be a substring of x, where
m = |y| > M + 2. The transition probability can be
estimated by the mazimum likelihood estimator [30]

#(yp,m,€) = % ®)

and the stationary probability by the maximum likeli-
hood estimator

fz(yr1,a17) 3)

A(yp,an) = n—M+1

Substituting in equation (1) for the estimators (2) and
(3) we obtain an estimator of the expected count of y

177" fo(ypi,iean)
H:,;;M fa (y[i,i+M— 1])

E(Zy) =

A precise relationship between the expectation of y and
the expectation of its prefix and suffix is established in
the following fact.

LEMMA 3.1. Lety be a substring of x and w1 = y[2,m],
W2 = Y[1,m-1]- Then

f(y[m—M,m])
f(y[m—M,m—l])

- Flyp m4y)

B(Z,) = F0 LN B(Z,) = B(Zu)

3.2 Suffix Trees

A naive and simple method to count the number of oc-
currences of each substring in a sequence is to create a
look-up table. The table has an entry for each word.
Given a word w, a one-to-one hash function returns the
index in the table, as follows

h(y) = h(wp) + h(we) S| + -+ - + *(wpm) D™

where h is a one-to-one map from symbols in ¥ to the
range [0,...,|X| — 1]. Filling in the entries of the table
takes O(nm), where m is the length of the substring we
want to consider. However, the space needed is O(|X|™)
and it requires at least O(|X|™) to be initialized. Note
that |X|™ can be much larger than nm. Indeed, when
m > logs n the large majority of the strings in ¥™ do
not appear at all in . A query in the table takes only
constant time.

The hash table is a convenient data structure as long as
m is bounded by a relatively small constant. If we allow
m to grow as a function of n, for example m  log(n),
then the time and space required to build the hash table
would be ezponential in the size of the input.

A more space-efficient data structure to organize a dic-
tionary of words is to use a suffiz tree (see, e.g., [17]
and references therein). The suffix tree is a type of dig-
ital search tree that represents a set of strings over a
finite alphabet 3. It has n leaves, numbered 1 to n.
Each internal node, other than the root, has at least
two children and each edge is labeled with a nonempty
substring of . No two edges outgoing from a node can
have labels beginning with the same character. The tree
has the property that for any leaf 7, the concatenation
of the labels on the path from the root the the leaf 4
spells out exactly the suffix of z that starts at position



a ba aba ba aba aba..$

aba ba aba aba..$
2 3 > e
8]
ba aba ba aba aba..s$

1234 5 67 1
abaababaabaababaababas$

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 3: The suffix tree T, for the string
r = abaababaabaababaababa$, with internal nodes
storing the number of occurrences

i, that is x[; ). The substrings of x can be obtained
by spelling out the words from the root to any internal
node of the tree or to any position in the middle of an
edge.

In order to achieve overall linear-space allocation, the
labels on the edges are described implicitly: for each
word, it suffices to save an ordered pair of integers in-
dexing one of the occurrences of the label in the text.
Each edge label requires thus constant space, which, in
conjunction with the fact that total number of nodes
and edges is bounded by O(n), results in the overall
linear space for the tree.

Several clever O(nlog|X|) constructions are available
(see, e.g., [27, 36]). More recent linear-time algorithms
are by Ukkonen [34] which is on-line, and by Farach [13]
which is optimal for large alphabets. The large majority
of these constructions exploit the presence of suffiz links
in the tree. The existence of suffix links is based on the
following fundamental fact.

LEMMA 3.2. If w = ay,a € ¥ has a proper locus in
Ty, then so does y.

Accordingly, suffix links are maintained in the tree from
the locus of each string ay to the locus of its suffix y,
for all @ € X.

Having built the tree, some additional processing make
it possible to count and locate all the distinct instances
of any pattern in O(m) time, where m is the length of
the pattern. In fact, the computation of the statistics of
all substrings of a string is a direct application of suffix
trees. We first need some definitions. We define the

leaf-list LL(u) of a node u as the ordered set of indices
stored in the leaves of the subtree rooted at u. We refer
to the unique string on the path from the root to a
node u of the tree as the path-label L(u) of u. Vertex u
is also called the proper locus of L(u). Some strings do
not have a proper locus because their paths end in the
middle of an arc.

Given a word w, we denote by <w> its proper locus, if
it exists. If instead w ends in the middle of an arc then
<w> denotes the node corresponding to the shortest
extension of w that has a proper locus. Clearly, L(<w>
) =w.

By the structure of a suffix tree, the number of oc-
currences fy(w) of any string w is given by the num-
ber of leaves in the subtree rooted at <w >, that is,
f(w) = |LL(<w>)|. In Figure 3, the number of occur-
rences is stored in the internal nodes. The algorithm
that annotates the tree with the value f(w) takes linear
time and space in the size of x.

4. COMPUTING SCORES BY
COMPARING TREES

Let r be the reference sequence, and z the sequence
under analysis. A preprocessing phase takes care of an-
notating the suffix tree T, with the scores of each sub-
string of z. Although the algorithm does not require to
bound the size of the substrings, it is reasonable to as-
sume that we will never consider substrings longer that
logs;) n symbols. It is well known that words longer
than log|y n symbols have an expected count which
tend to a constant instead of growing to infinity when
n goes to infinity. They are therefore of little interest
to us.

In the first step of the preprocessing phase we build the
trees T, and T, and we annotate the internal nodes of
both trees with the number of occurrences. This step
requires linear time and space.

In the second step of preprocessing, we visit in a breadth-
first order each node u of T,. For each string w = L(u)
we search for the node <w> in T, if it exists. In the
case it exists, we compute directly the score, assum-
ing af,(w) to be the expected number of occurrences

of w in the reference string, where a = 1“:;:7:211 The
scale factor « takes care of of adjusting the occurrences
based on the length of  and r. For example, if r is two
times longer than x we scale the number of occurrence

observed in r by roughly 1/2.

If otherwise the substring w does not occur in 7, then

we look for the largest ! in the interval [1,...,|w| — 1]
such that all the strings wy; ;4 occur in T, for j =
1,...,|lw| — . In other words, we look for the longest

set of strings from 7, that cover w as it is done for
the estimator of the expectation for Markov chains (see
Section 3.1). This strategy corresponds to the idea of
trying first the higher Markov orders, and falling back to



suffix_tree PREPROCESS (string r, string x)
let T, = SUFFIX_TREE(T)
let T, = SUFFIX_TREE(x)
let o = [Hl=m+1
[r|—m+1
ANNOTATE_f(w) (1)
ANNOTATE_f (w)(T%)

visit T, in breadth-first traversal, for each node v do

let w = L(u), m = |w|
if w occurs in T, then
let E(w) = af, (w)
else
find the largest 1 <! < m — 1 such that
175 fr(wpjpn) >0
using the suffix tree T
if such [ exists then

-1
IS fr(wig40)

let E(w) = —
II7% fr(wygi-1)

else
let E(w) = £|x| —m+ 1), Wy,
let z(w) = fo(w) — E(w)
store z(w) in the node u
return 7T,

Table 3: Outline of the preprocessing algorithm
for the computation of the scores obtained com-
paring the trees of a reference string r against
the string under analysis z

lower orders whenever the information to compute the
estimator of the expectation are insufficient. If every
possible choice does not meet the requirements, we use
the probability of the symbols from T, to compute the
estimate.

Finally, we set the surprise z(w) to be the difference
between the observed number of occurrences f,(w) and
E’(w) The preprocessing algorithm is sketched in Fig-
ure 3. The time complexity depends on the time taken
to compute F(w). If the algorithm would be imple-
mented as in Figure 3, the time complexity would be su-
perlinear. To compute efficiently E(w) we use Lemma 3.1
and the suffix links of Lemma 3.2. We defer the algorith-
mic and combinatorial analysis to the journal version of
this paper.

5. “TARZAN” ALGORITHM

Having reviewed extensive material on feature extrac-
tion, Markov models and suffix trees, we now give a
concise description of the proposed algorithm, which we
call TarzaN?. The basic algorithm is sketched in Ta-
ble 4.

2TARZAN is not an acronym. It is a pun on the fact
that the heart of the algorithm relies on comparing two
suffix trees, “tree to tree”. Tarzan (R) is a registered
tradermark owned by Edgar Rice Burroughs, Inc.

void TARZAN (time_series R, time_series X,
int /1, int a, int /5, real ¢)

let © = DISCRETIZE_TIME_SERIES (X, [1,a)
let » = DISCRETIZE_TIME_SERIES (R, !l1,a)
let T, = PREPROCESS (7, )
fori=1,|z| -l +1

let w = x[i,i+1271]

retrieve z(w) from 7T,

if |z(w)| > ¢ then print 4, z(w)

Table 4: Outline of the Tarzan algoritm: [; is
the feature window length, a is the alphabet size
for the discretization, /> is the scanning window
length and c is the threshold

The inputs are the reference database R, the database
to be examined X, and the three parameters which con-
trol the feature extraction and representation. The al-
gorithm begins by discretizing the data to the desired
granularity. The two resultant strings are passed to the
PREPROCESS algorithm which constructs the annotated
suffix tree T,. After this has been accomplished, the
surprise of each substring found in z can determined.
Those substrings which have surprising ratings exceed-
ing a certain user defined threshold (as defined by the
absolute value of z(w)) can be returned and examined
by the user.

The length I> of the sliding window is connected with
the feature window length /; and the alphabet size a
(which have been discussed in Section 2). We sug-
gest choosing l» < logy, |z| because words longer than
log|z |z| have extremely small expectations and belong
to a different probabilistic regime. In fact, scores z(w)
are asymptotically Gaussian distributed when |w| <
log|5| |z| and Poisson distributed for longer words [30].
The threshold ¢ can be identified by gathering statistics
about the distribution of the scores and/or assuming
the distribution of the scores to be normal.

6. EXPERIMENTAL EVALUATION

Empirically we would like to demonstrate two features
of our proposed approach.

e Sensitivity (High True Positive Rate): the
algorithm can find truly surprising patterns in a
time series.

e Selectivity (Low False Positive Rate): the
algorithm does not find spurious “surprising” pat-
terns in a time series.

We compare our approach with the TSA-tree Wavelet
based approach of Shahabi et al. [32] and to the Im-
munology (IMM) inspired work of Dasgupta and Forrest
[9], which are the only obvious candidates for compari-
son. More details about these approaches are contained
in Section 7. We do not compare the CPU times for each
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Figure 4: A comparison of three anomaly de-
tection algorithms on the same task. A) The
training data, a slightly noisy sine wave. B) A
time series containing a synthetic “anomaly”,
it is a noisy sine wave that was created with
the same parameters as the training sequence.
Then the period of the sine wave between the
400" and 432" points (denoted by the gray bar)
was halved. C) The IMM anomaly detection al-
gorithm failed to find the anomaly, and intro-
duced some false alarms. D) The TSA-Tree ap-
proach is also unable to detect the anomaly. E)
Tarzan shows a strong peak for the duration of
the anomaly

algorithm, since we cannot guarantee that our reimple-
mentation of the rival methods is efficient. However we
have already noted that the time complexity of TARZAN
is linear in the size of  + 7.

We begin with a very simple experiment as a reality
check. We constructed a reference dataset by creating a
sine wave with 800 datapoints and adding some Gaus-
sian noise (each complete sine wave is 32 datapoints
long). We then built a test dataset using the same pa-
rameters as the reference set, however we also inserted
an artificial anomaly by halving the period of the time
series in the region between the 400*" and 432" dat-
apoints. In other words, that small subsection of the
test time series has two short sine waves instead of one.
‘We compared all three approaches under consideration.
The results are shown in Figure 4. We used a feature
window of length /; = 12 for TARZAN and IMM, and an
alphabet of size a = 4 for TARZAN.

The IMM approach was unable to find the anomaly,
and it introduced some false alarms. Unlike the two
other approaches, this method has a stochastic compo-
nent. On some runs it did detect the anomaly, but it
always produce several false alarms of equal magnitude.
The TSA approach also failed to find the anomaly®. As

3The authors define surprise as an absolute value, but
visualize the level of surprise in their paper without tak-

AN AL ..

Figure 5: The first three weeks of the power de-
mand dataset. Note the repeating pattern of a
strong peak for each of the five weekdays, fol-
lowed by relatively quite weekends

noted by the authors, surprising patterns might exist
at different scales, the graphic above shows the results
at “level 4” (see original paper for details [32]), however
similar results are seen at other levels. In contrast to the
other techniques TARZAN shows a strong peak for the
duration of the anomaly. Note that for consistency with
the other techniques we flipped the results for TARZAN
upside down, so the low expectation for the anomaly
shows as a peak.

Testing the ability of the algorithms to find surprising
patterns on real data is a greater challenge, since the
results may be subjective. To address this problem we
consider a dataset that contains the power demand for
a Dutch research facility for the entire year of 1997 [35].
The data is sampled over 15 minute averages, and thus
contains 35,040 points. The nice feature of this dataset
is that although it contains great regularity, as shown in
Figure 5, it also contains regions that could objectively
be said to be surprising or anomalous. In particular,
there are several weeks on which one or more days were
national holidays, and thus the normal pattern of five
weekday peaks, followed by a relatively flat weekend, is
disturbed.

We used from Monday January 6* to Sunday March
23"? as reference data. This time period is devoid of
national holidays. We processed the remainder of the
year with TARZAN, with a window size equivalent to
4 hours (I; = 16 datapoints), and an alphabet of size
a = 4. Because of the size of the dataset we will just
show the three most surprising sequences found by each
algorithm. For each of the three approaches we show
the entire week (beginning Monday) in which the three
largest values of surprise fell. The results are shown in
Figure 6.

Both TSA-tree and IMM returned sequences that ap-
pear to be normal workweeks, however TARZAN returned
three sequences that correspond to the weeks that con-
tain national holidays in the Netherlands. In particular,
from top to bottom, the week spanning both Decem-
ber 25'" and 26" and the weeks containing Wednesday
April 30" (Koninginnedag, “Queen’s Day”) and May
19" (Whit Monday) respectively. These results present
strong visual evidence that TARZAN is able to find sur-
prising patterns in time series.

ing the absolute value. For clarity and consistency we
have graphed absolute values.
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Figure 6: The three most surprising weeks in
the power demand dataset, as determined by
Tarzan, TSA-Tree and IMM

The previous experiments demonstrate the ability of
TARZAN to find surprising patterns, however we also
need to consider TARZAN’s selectivity. If even a small
fraction of patterns flagged by our approach are false
alarms, then, as we attempt to scale to massive datasets,
we can expect to be overwhelmed by innumerable spu-
rious “surprising” patterns.

In designing an experiment to show selectivity we are
faced with the problem of finding a database guaranteed
to be free of surprising patterns. Because using a real
data set for this task would always be open to subjective
post-hoc explanations of results, we will conduct the
experiment on random walk data [12, 21].

By definition, random walk data can contain any possi-
ble pattern. In fact, as the size of a random walk dataset
goes to infinity, we should expect to see every pattern
repeated an infinite number of times [15]. We can ex-
ploit this property to test our algorithm. Suppose we
fix a test dataset Xgrw to be a random walk dataset of
length 128. If we train TARZAN on another short ran-
dom walk dataset, we should expect that the test data
would be found surprising, since the chance that simi-
lar patterns exist in the short training database are very
small. However as we increase the size of the training
data, the overall measure of surprise of the test data
should decrease, since it is more likely that similar data
was encountered. To restate, the intuition is this, the
more experience our algorithm has seeing random walk
data, the less surprising our particular section of ran-
dom walk Xgrw should appear.

We will not consider IMM and TSA-tree in this exper-
iment. IMM is not defined for arbitrary large random
walk datasets (see Section 7), and TSA-tree does not
learn from experience, and thus will have a constant
level of surprise. We tested TARZAN with increasing

Figure 7: The average of |z(w)| of all patterns w
found by Tarzan in a small fixed random walk
database Xrw when trained on increasing large
random walk datasets. With more experience,
Tarzan finds the patterns less surprising

large reference datasets length 128 to 65,536. We used
a feature window length [, = 12 and an alphabet size
a=4.

The results are shown in Figure 7. Note that with little
training data, the average values of |z(w)| is quite high.
In other words the patterns in Xzrw appear surprisingly
rare simply because TARZAN has not seen enough train-
ing data to build a general enough model of what to
expect when confronted with more random walk data.
However, with more experience, TARZAN finds the pat-
terns in Xgrw to be less and less surprising. These re-
sults strongly suggest that TARZAN is able improve its
selectivity as it sees more data.

7. RELATED WORK

The task of finding surprising patterns in data has been
an area of active research, which has long attracted the
attention of researchers in biology, physics, astronomy
and statistics, in addition to the more recent work by
the data mining community. The problem, and closely
related tasks are variously referred to as the detection of
“Aberrant Behavior” [6, 24], “Novelties” [9, 5], “Anoma-
lies” [37, 11], “Faults” [38], “Surprises” [32, 7], “De-
viants” [20], “Temporal Change” [4, 14], and “Outliers”
[18].

The problem of detecting surprising patterns in discrete
domains has received the most attention, especially in
the context of network intrusion [39]. However this
problem differs from the task discussed in this paper in
that the data is already discrete, it arrives at arbitrary
intervals, and typically scalability to large datasets is
not an important issue. In addition, while the data may
be correlated, they are atomic units (for example, Unix
commands, or ATM transactions), whereas time series
data are intrinsically continuous. Various approaches
to this problem have been suggested; many of them re-
duce to the idea that surprising patterns should be less
compressible than unsurprising ones [7].

In the context of the analysis of biosequences, the search



for unexpectedly frequent or infrequent substrings is
only one component of the broader quest for interesting
patterns of more general kinds. Along these lines, pat-
terns and families thereof have been variously charac-
terized, and criteria, algorithms and software developed
in correspondence. Without pretending to be exhaus-
tive, we mention TEIRESIAS [31], GIBBS SAMPLER [25],
WINNOWER, MEME [3], WINNOWER [29], PROJECTION
[33], VERBUMCULUS [2, 1, 26], among others.

Detecting surprising patterns in time series has received
much less attention. There has been some work on nov-
elty detection in time series using neural networks [5,
37], however we do not consider this approach in detail
since scalability is clearly an issue.

A simple approach to monitoring time series is to place
a restriction on the maximum and minimum tolerable
values, and to sound an alarm it the signal ever moves
out of this envelope of acceptable behavior. This prac-
tice is referred to limit-checking. While trivial to im-
plement, the method is known to have poor sensitiv-
ity. A more sophisticated approach involves discrep-
ancy-checking. The idea here is to use the data observed
thus far to predict future values. Any discrepancy be-
tween the two that exceeds a certain tolerance can be
denoted as surprising [6]. Of course, this technique is
only as good as the prediction algorithm, and time series
prediction is a notoriously difficult problem. Thus, this
method tends to have poor selectivity, producing many
false alarms. In interesting work by Decoste [11], the
author integrated both limit-checking and discrepancy-
checking in a single framework, however scalability to
massive datasets remains an issue, and the measure of
surprise of an alarm can only be judged relative to the
prediction model, which must be correctly specified by
a domain expert.

Jagadish et al. [20] introduced a technique for min-
ing deviants in time series, however deviants are simply
“ ..points with values that differ greatly from that of
surrounding points”, and thus this work may be consid-
ered more of a generalization of classic outlier detection
[18].

In [32] and several follow up papers, Shahabi et al. sug-
gest a method to find both trends and “surprises” in
large time series datasets. The authors achieve this us-
ing a wavelet-based tree structure (TSA-Tree) that can
represent the data at different scales, e.g., the weather
trend in last month vs. last decade. However the defini-
tion of surprise used seems limited to dramatic shifts in
the signal. In particular, this approach is not suitable
for detecting unusual data patterns that hide inside the
normal signal range. For example, the system would not
be able to detect if we give it an EEG time series that we
had flipped upside down, since the wavelet-based “sur-
prise” features are invariant to this transformation of
the data.

The immunological based approach of Dasgupta and

Forrest [9], is inspired by the negative selection mech-
anism of the immune system, which discriminates be-
tween self and non-self. In this case self is the model
of the time series learned from the reference dataset, and
non-self are any observed patterns in the new dataset
that do not conform to the model within some toler-
ance. A major limitation of the approach is that it is
only defined when the space of self is not exhaustive.
However, if you examine enough random walk data (or
financial data, which is closely modeled by random walk
[12]), self rapidly becomes saturated with every possible
pattern, and thus non-self is the null set, and nothing
encountered thereafter is considered surprising.

8. CONCLUSIONS AND
FUTURE WORK

In this paper we introduced TARZAN, an algorithm that
detects surprising patterns in a time series database in
linear space and time. Owur definition of surprising is
general and domain independent, describing a pattern
as surprising if the frequency with which we encounter
it differs greatly from that expected given previous ex-
perience. We compared it to two other algorithms on
both real and synthetic data, and found it to have much
higher sensitivity and selectivity.

Although we see TARZAN's ability to find surprising pat-
terns without user intervention as a great advantage,
we intend to investigate the possibility of incorporating
user feedback and domain based constraints.

For simplicity this work only considered one feature
extraction technique, based on local slopes. However,
it would be interesting to investigate other techniques
such as wavelets and Fourier descriptors, and attempt
to characterize which technique works best on which
dataset.

Finally, because of space limitations we have concen-
trated solely on the intricacies of finding the surprising
patterns, without addressing the many meta-questions
that arise. For example, the possible asymmetric costs
of false alarms and false dismissals, and the actionabil-
ity of discovered knowledge [14]. We intend to address
these issues in future work.
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