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Abstract. Cancer is a complex disease associated with abnormal DNA
mutations. Not all tumors are cancerous and not all cancers are the same.
Correct cancer type diagnosis can indicate the most effective drug ther-
apy and increase survival rate. At the molecular level, it has been shown
that cancer type classification can be carried out from the analysis of
somatic point mutation. However, the high dimensionality and sparsity of
genomic mutation data, coupled with its small sample size has been a hin-
drance in accurate classification of cancer. We address these problems by
introducing a novel classification method called mClass that accounts for
the sparsity of the data. mClass is a feature selection method that ranks
genes based on their similarity across samples and employs their normal-
ized mutual information to determine the set of genes that provide opti-
mal classification accuracy. Experimental results on TCGA datasets show
that mClass significantly improves testing accuracy compared to Deep-
Gene, which is the state-of-the-art in cancer-type classification based on
somatic mutation data. In addition, when compared with other cancer
gene prediction tools, the set of genes selected by mClass contains the
highest number of genes in top 100 genes listed in the Cancer Gene
Census. mClass is available at https://github.com/mdahasan/mClass.
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1 Introduction

Cancer is a complex disease that results from an accumulation of DNA mutations
and epigenetic modifications in somatic cells. Remarkable scientific progress has
shed light on almost every biological aspect of this disease. Despite this progress,
cancer is still one of the most challenging disease of our time with an increasing
numbers of new cases and resulting in 14.6% of all human death each year [1].
Not all tumors are cancerous and not all cancers are the same. There is no single
test that can diagnose cancer type with perfect accuracy. The diagnosis process
requires careful examination and extensive testing to determine whether a person
has cancer and which type. Traditional cancer diagnosis method involves lab
tests, genetic tests, tumor biopsies, etc. The effective differentiation of cancers
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with similar histopathological appearance can indicate the most effective drug
treatment and increase survival rates (see, e.g., [2,6,8,9]).

Technological advancements in sequencing technologies has resulted in a dra-
matic increase in the quantity and quality of sequencing data related to cancer,
now available in databases such as The Cancer Genome Atlas [4] and the Interna-
tional Cancer Genome Consortium [3]. These vast repositories provide genomic
data from thousands of patients across different cancer subtypes [5]. The abun-
dance of this data has enabled researchers to devise new statistical approaches
for the accurate identification of cancer types and subtypes. Cancer classifica-
tion methods use gene expression data and/or somatic point mutation such as
copy number variation, translocations and small insertions and deletions. Several
methods have been proposed to accurately predict cancer types and subtypes
(see, e.g., [2,11–13]). The classification of cancer based on the somatic point
mutation data can be challenging because of the high dimensionality and spar-
sity of the data. In cancer patients only a few genes are mutated with high
frequency, while most of the genes have a low rate of mutation [10].

The literature on cancer classification methods is extensive. For instance,
in [7] the authors proposed a pan-cancer classification method based on gene
expression data. They used over nine thousand samples for 31 cancer types to
train a method in which a genetic algorithm carries out the gene selection and
a nearest neighbor method is used as a classifier.

The authors of [23] proposed to find discriminatory gene sets by measuring
the relevance of individual genes using mean and standard deviation of each
sample to the class centroid. In [24] the authors introduced new scoring functions
to design a stable gene selection method. Their method scores genes based on the
assumption that discriminatory genes have different mean values across different
classes, small intra-class variation and relatively large inter-class variation.

The authors of [14] combined the clustering gene selection with statistical
tests such as T-test and F-test and the gene selection method proposed in [23]
to deal the high dimensionality in gene expression data. Genes are assigned to
clusters if they are close to the centroids after applying k-means clustering.

In [2], the authors proposed a deep neural network for the classification of
multiple cancer types from somatic point mutation data, called DeepGene. To
the best of our knowledge, DeepGene is the state-of-the-art for multiple can-
cer classifications using somatic point mutation data. DeepGene clusters genes
based on mutation occurrence and uses a sparse representation to index non-zero
elements. The data is then fed into a fully connected deep neural network that
learns specific cancer types.

In this paper, we address the shortcomings of existing methods dealing with
the sparsity and high-dimensionality of somatic point mutation data by propos-
ing an efficient feature selection method based on information theory. A logistic
regression model demonstrates the effectiveness of our approach for cancer type
classification. Although in a medical setting the task of predicting cancer type
from somatic point mutation data might not be practical, here we investigate
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the fundamental question on whether somatic point mutation data has sufficient
discriminative power to allow for cancer type classification.

2 Methods

Given m individuals affected by cancer, the input to our feature selection method
is composed of the class labels, i.e., the cancer type for the m individuals, and
the mutation frequency of all genes for the m individuals. Selected features are
then fed into a classifier as described below.

Let n be the number of human genes for which somatic point mutation data
is available. Let C ∈ {1 . . . l}m be the vector containing the class labels where
l is the number of cancer types, and let G ∈ {0 . . . k}m×n, k ∈ N be the matrix
representing the number of mutations observed in each gene (i.e., G(i, j) = k if
gene i has k mutations in sample j).

The significance of a gene being involved in a particular type of cancer depend
on its mutation frequency. Genes with higher mutations are expected to be more
relevant for the causation of cancer [16]. In our method, we disregard genes that
contain less than t% mutations across all samples. This filtering step removes
non-significant genes from further consideration thus reduce the adverse impact
of the data sparsity. Our feature selection model has two steps. First, we cluster
genes based on their pairwise similarity. Then, we rank genes using a normalized
mutual information criterion [15].

2.1 Gene Clustering

Grouping similar genes into clusters allows our method to identify and eliminate
redundant genes within a cluster without compromising the efficiency of the fea-
ture selection. The reduction of data also reduces the complexity of downstream
steps. Since G is a sparse matrix, we use the cosine similarity because of its good
mathematical properties on sparse vectors. Given two n-dimensional vectors X
and Y the cosine similarity is defined as

s(X,Y ) =
∑n

i=1 XiYi
√∑n

i=1 X2
i

√∑n
i=1 Y 2

i

where Xi and Yi are the i-th components of vector X and Y . Gene p is assigned
to the cluster of gene q if the cosine similarity between row vectors G[:, p] and
G[:, q] is higher than a predefined threshold e. According to this procedure, it is
possible that the same gene could end up in multiple clusters. To select unique
genes out of these clusters, we rank the genes based on mutation count and
mutual information with the class label within the cluster as described next.

2.2 Normalized Mutual Information

Our gene selection method relies on an information theoretic measure that eval-
uates the predictive ability of each gene. Let X be a discrete random variable
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where each event x ∈ X occurs with probability p(x). The entropy H(X) of
variable X is the sum of the information content of each discrete event weighted
by the individual event probability, that is H(X) = −∑

x∈X p(x) log2 p(x).
Given two discrete random variables X and Y with joint prob-

ability p(x, y) and marginal probabilities p(x) and p(y), the condi-
tional entropy of variable Y conditioned on variable X is defined
as H(Y |X) =

∑
x∈X,y∈Y p(x, y) log2(p(x)/p(x, y)). Similarly, H(X|Y ) =∑

x∈X,y∈Y p(x, y) log2(p(y)/p(x, y)). We have that H(Y |X) = H(Y ) iff X and Y
are independent random variables. The mutual information I(X,Y ) is the gain
of information about random variable X due to additional information from
random variable Y , that is

I(X,Y ) = H(X) − H(X|Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)

Given a set F of features (the set of genes in G in this case) and class variables
C, the feature selection based on mutual information finds a subset S ⊂ F such
that the mutual information I(C,S) is maximized. In order to achieve that goal
we use the Normalized Mutual Information based Feature Selection (NMIFS)
technique. NMIFS is a heuristic algorithm that selects one feature at a time.
NMIFS differs from other mutual information based feature selection technique
such as MIFS [17], MIFS-U [18] and mRMR [19] in that it does not depend on
the parameter used to control the redundancy penalization. Also NMIFS does
not assume that the random variables have uniform probability distribution.

Given features fi ∈ F − S and fs ∈ S we express the mutual information as

I(fi, fs) = H(fi) − H(fi|fs) = H(fs) − H(fs|fi) (1)

where H(fi) and H(fs) are the entropies and H(fi|fs) and H(fs|fi) are condi-
tional entropies.

The mutual information I(fi, fs) is non-negative, and attains its maximum at
min{H(fi),H(fs)}. We can define the normalized mutual information between
fi and fs as

normI(fi, fs) =
I(fi, fs)

min{H(fi),H(fs)} (2)

The average normalized mutual information is a measure of redundancy
between fi and fs ∈ S for s = 1, . . . , |S| and it defined as

1
|S|

∑

fs∈S

normI(fi, fs)

where |S| is the cardinality of subset S. Our gene selection criterion selects a
gene fi ∈ F − S that maximizes

J(C, fi) = I(C, fi) − 1
|S|

∑

fs∈S

normI(fi, fs) (3)

where I(C, fi) is the mutual information between feature fi and class
variable C.
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2.3 Feature Selection

A sketch of mClass’ algorithm is shown as Algorithm 1. The algorithm first
determines the number of mutations of each gene from the input matrix G.
Then it computes the cosine similarity between all pairs of genes that have a
mutation percentage across all sample of at least t%. Genes are assigned to the
same cluster when their similarity exceeds threshold e. The process assigns each
gene to one or more clusters. The top v genes from each clusters are selected
into a representative list R′.

Next, mClass collects the unique set of genes U from the representative set
R′. It then calculates the mutual information between all features/genes fi ∈ U
and the class variable C. To calculate Eqs. (2) and (3) mClass discretizes the gene
mutation values into d equal-width bins. The gene f̂i which has the maximum
mutual information with the class variable C is selected as the first feature in S
(S is the final set of ranked genes). That gene is then removed from U . For all
the other genes in U mClass first calculates the normalized mutual information
between all pair of genes in U and S using Eq. (2). A gene fi ∈ U is selected
when it maximizes Eq. (3). The gene is then added to S and removed from U .
This process is repeated until all genes are given a rank in the ordered set S.
Instead of deciding on a predefined number of features a priori to be used in
the classifier, we select a variable number of genes in S based on their ability to
classify the data.

2.4 Cancer Type Classifier

As said, we employ a logistic regression (LG) multi-class classifier for a given
number of genes in the ranked set S. The linear model describes the probabilities
describing the possible outcome of a single trial using logistic function. Here
we use a One-vs-Rest (OvR) for the multi-class classification implementation
with L2 regularization. For the binary case, the L2-regularized logistic regression
optimizes the following cost function

minimizew
∑

x,y

log(1 + exp(−wTx.y)) + λwTw) (4)

The objective is to find the feature weights (w) that minimizes the cost
function in Eq. (4). Here x is the feature vector (genes) and y is the class label.
The hyper-parameter λ used to control the strength of regularization was left as
the default value (as defined by scikit-learn). As said, the classifier is fed the
genes in S incrementally. To determine the final set of features we select genes
based on their ability to accurately classify the dataset. The model decomposes
the optimization problem in Eq. (4) in a OvR fashion so that the binary classifier
can be trained on all classes.

3 Experimental Results

In this section, we describe the experimental setup, i.e., datasets and the param-
eters used in the feature selection and classification, as well as other implemen-
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Data: Gene mutation data G ∈ {0, k}m×n, similarity measure threshold e,
mutation count threshold t, discretization value d, v, class variable C

Result: Ordered set of genes S
set R ← ∅;
for each gene fi ∈ G do

if number of mutation of fi > t then
R ← R ∪ {fi};

end

end
set CL ← ∅;
for each gene fi ∈ R do

create a new cluster in CL for fi;
for each gene fj ∈ R, j �= i do

if cosine similarity s(fi, fj) > e then
assign fi and fj to same cluster in CL

end

end

end
set R′ ← ∅;
for each cluster cl ∈ CL do

set R′ ← R′ ∪ {top v genes in cl}
end
collect unique genes U ← set(R′);
discretize gene mutation values in d equal-width bins;

select the first feature f̂i = argmaxfi∈U{I(C; fi)} ;

set U ← U − {f̂i};

set S ← {f̂i};
for each gene fi in U do

calculate I(fi; fs) for all pairs (fi, fs) with fi ∈ U and fs ∈ S;
select feature fi ∈ U that maximizes J in Equation (3);
set U ← U − {fi};
set S ← S ∪ {fi};

end
return ordered set S;

Algorithm 1. mClass feature selection algorithm

tation details. Data preprocessing, feature selection and classification evaluation
steps were implemented in Python. All tested classifiers are available from the
Python package scikit-learn.

3.1 Datasets

We used two cancer datasets to test mClass. The first dataset is a twelve-type
cancer dataset from The Cancer Genome Atlas (TCGA) [4]. The dataset was
assembled by selecting the genes across all samples for all cancer types that con-
tain mutations. Table 1 shows the basic statistics of each cancer type. Observe
that the number of samples and the number of mutations varies significantly
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Table 1. Sample and mutation statistics for the twelve-type cancer dataset

Cancer type Number of samples Number of mutations

ACC 90 18,272

BLCA 130 37,948

BRCA 982 83,360

CESC 194 45,293

HNSC 279 49,264

KIRP 161 13,640

LGG 286 9,228

LUAD 230 68,270

PAAD 150 30,123

PRAD 332 11,802

STAD 289 130,050

UCS 57 10,129

Total 3,180 507,379

across cancer types. After removing samples that have less than five mutations
across all genes, the dataset contained 3,151 samples and 23,236 genes. The sec-
ond dataset from TCGA contains four cancer types, namely COAD, SKCM,
LAML and KIRC. It contains 1,043 samples with a total of 363,285 mutations
across 25,286 genes. Details about this dataset and the corresponding experi-
mental results are discussed in Sect. 3.5.

3.2 Parameters

mClass’ feature selection uses four parameters: the similarity measure threshold
e for the clustering step, the minimum mutation count threshold t to eliminate
non-informative genes, the number v of top genes selected from each cluster and
the number of bins d used for discretizing gene mutation values (see Algorithm 1).

In our experiments, parameter t was set to 1 which has the effect of disregard-
ing genes with less that 1% mutation across the samples. As said, the pairwise
gene similarity is calculated using the cosine similarity measure and genes are
assigned into same cluster if the similarity between them is greater than the
similarity threshold e. The algorithm then selects the top v% genes from each
cluster for gene ranking step. The values for e, t, v and d were selected experi-
mentally based on ability of the method to accurately classify the datasets using
the selected number of features. For instance, Table 2 shows the classification
accuracy of mClass+LG (mClass’s feature selection followed by logistic regres-
sion) on the twelve-type cancer dataset, for various choices of e. Based on this
analysis, we selected e = 0.55. Similarly, we tested the values of v in the range
5%–25%, and we obtained the highest classification accuracy with v = 10%.
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Table 2. Classification accuracy of mClass+LG as a function of similarity threshold e
on the twelve-type cancer dataset

Similarity threshold (e) Classification Accuracy

0.50 0.708

0.55 0.718

0.60 0.715

0.65 0.715

0.70 0.715

0.75 0.715

Table 3. Ten-fold cross validation accuracy for mClass+LG and DeepGene (three
configurations) on the twelve-type cancer dataset

Method Cross-validation Accuracy

DeepGene (CGF + ISR) 0.655

DeepGene (CGF) 0.638

DeepGene (ISR) 0.649

mClass+LG 0.675

A similar experimental analysis (not shown) indicated that d = 5 was the opti-
mal choice for these datasets. Incidentally, the same value of d was used in [22].

3.3 Evaluation Metrics and Comparison with DeepGene

We have used the evaluation metrics introduced in [2] to compare the results. All
evaluation experiments were performed by randomly selecting 90% of the input
data as training data and 10% of the input as testing data. We compared the ten-
fold cross validation accuracy of mClass+LG (mClass’s feature selection followed
by logistic regression) and testing accuracy against state-of-the-art DeepGene [2].

As said, mClass selects the optimal number of features in a forward selection
fashion. We compared mClass’ cross-validation results with DeepGene, which
employs a convolutional neural network (CNN) as the classifier. The performance
of DeepGene was calculated in three different configuration: clustered gene filter
and indexed sparsity reduction, only cluster gene filter and only indexed sparsity
reduction.

The ten-fold cross-validation results between mClass and three configuration
of DeepGene on the twelve-type cancer dataset is shown in Table 3. Observe
that the classification accuracy of mClass outperformed all three configurations
of DeepGene proposed in [2]. The classification accuracy of mClass is more than
3% higher than the best configuration of DeepGene.

We also compared the testing accuracy of mClass with (i) the best configu-
ration of DeepGene and (ii) LG on the full dataset (i.e., no feature selection).
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Fig. 1. Classification accuracies as a function of the number of feature (genes) selected

Table 4. Testing accuracies of mClass+LG, DeepGene and LG on full dataset (twelve-
type cancer dataset)

Method Classification accuracy

Full dataset (no feature selection) 0.677

DeepGene (CGF+ISR) 0.655

mClass+LG 0.718

The logistic regression classifier in mClass uses balanced weights to counter the
imbalance in the number of samples in the dataset. Using the forward feature
selection technique described in Algorithm 1, the testing accuracy of the clas-
sifier was measured by adding ranked gene one at a time. Figure 1 shows the
progression of forward feature selection. mClass obtains the best testing accu-
racy (TP + TN)/(TP + TN + FP + FN) of 0.718 using a collection of top
3,676 genes which is 9.6% higher than the accuracy obtained by the best con-
figuration of DeepGene with an average precision TP/(TP +FP ) of 0.74, recall
TP+(TP+FN) of 0.718 and F-Score (2×precision×recall)/(precision+recall)
of 0.711 as shown in Table 5. Figure 2 illustrates the confusion matrix for the
twelve-type cancer dataset. Observe that with mClass + LG, false positives rate
is highest for BRCA while BLCA has the highest rate of false negatives. Table 4
summarizes the testing accuracy of these three methods.

3.4 Testing Other Classifiers

As said, mClass+LG uses a logistic regression as the classifier for the cancer
classification datasets. We have tested the classification accuracies of other clas-
sifiers following mClass’ feature selection. We employed Support Vector Machine
(SVM) both with the linear and RBF kernel, k-nearest neighbor (KNN), Naive
Bayes and Random Forest. All the classifiers were available from the Python
package scikit-learn.
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Fig. 2. Normalized confusion matrix for the twelve-type cancer dataset

Table 5. Classification results on twelve-type cancer dataset

Cancer type Precision Recall F-Score Support

ACC 1.00 0.83 0.91 12

CESC 0.88 0.47 0.61 15

UCS 0.33 0.50 0.40 2

PAAD 0.80 0.92 0.86 13

KIRP 0.89 0.64 0.74 25

STAD 0.70 0.50 0.58 32

LGG 0.95 0.91 0.93 23

BLCA 0.67 0.38 0.48 16

HNSC 0.81 0.46 0.59 28

PRAD 0.68 0.78 0.73 50

LUAD 0.90 0.75 0.82 12

BRCA 0.62 0.88 0.71 88

Average/Total 0.74 0.72 0.71 316

To classify the data using SVM with the RBF kernel, we optimized the
parameter C and γ using 10-fold cross validation (keeping other parameters to
default). The highest accuracy was obtained with C = 2e2 and γ = 2e−5. We
have used the same parameter C for the linear kernel version of the SVM. The
classification with KNN employed Euclidean distance and Pearson correlation
coefficient. The 10-fold cross validation showed an optimal accuracy of 0.316
for Euclidean distance using a threshold of 3 and an accuracy of 0.436 with
the Pearson correlation coefficient using a neighborhood size of 4. The ensemble
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Random Forest classifier’s employed a maximum of 1,000 trees in the forest. We
set the minimum number of samples required to split an internal node to 9. All
other parameters were set to default.

The performance of the various classifier is shown in Fig. 3. The experimental
results show a significant advantage of LG over all other classifiers. mClass+LG
achieves (i) a 9.6% testing classification improvement over the best configuration
of DeepGene (ii) a 24.6% improvement over the linear kernel SVM, (iii) a 29.6%
improvement over the RBF kernel SVM, (iv) a 106.9% improvement over KNN
with Euclidean distance, (v) a 64.6% improvement over the KNN with Pearson
correlation coefficient, (vi) a 83.6% improvement over Naive Bayes and (vii) a
30.3% improvement over Random Forest.

Fig. 3. Classification accuracy of mClass+LG, DeepGene and other classifiers applied
to the features selected by mClass

3.5 Experimental Results on the Four-Type Dataset

As mentioned above, we used a second dataset consisting four type of cancers,
namely COAD, SKCM, LAML and KIRC. After removing genes with less than
1% mutations across all samples, the dimension of the dataset was reduced to
1043 × 25286. The dataset contains 154 samples for COAD, 345 samples for
SKCM, 158 samples for LAML and 386 samples for KIRC. Total number of
mutations in this dataset is 363,285. We used the same parameter values for e,
t, v and d as in the previous experiment. The 10-fold cross-validation peaked
with an accuracy score of 89.5% with 1,132 genes. For testing accuracy, the
dataset was divided into training and testing dataset of size 698 (67%) and 345
(33%), respectively. Using 1,132 features, mClass+LG achieves an accuracy of
87.5% on this dataset. Table 6 shows the average precision and f1-score for each
class in this dataset. Figure 4 shows the normalized confusion matrix for our
classifier. We could not compare the performance of mClass with DeepGene on
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Table 6. Testing accuracies on the four-type cancer dataset using mClass

Cancer Type Precision Recall F-score Support

COAD 0.93 0.75 0.83 51

SKCM 0.97 0.88 0.92 101

LAML 0.65 0.98 0.79 56

KIRC 0.94 0.88 0.91 137

Avg/Total 0.90 0.87 0.88 345

Fig. 4. Normalized confusion matrix for the four-type cancer dataset

this second dataset because, according to the authors, the data pre-processing
code necessary to feed the training model for DNN is not available anymore.

3.6 Comparisons of Predicted Genes

We compared the genes selected by mClass+LG using the 12-types dataset
with genes from Cancer Gene Census (CGC). At the time of writing the CGC
database contains 719 genes. About 90% of these genes contain somatic muta-
tions, 20% contain germline mutation and 10% contain both types of mutations.
We compared mClass’ selected genes against the selection carried out by Mut-
sig 2.0, Mutsig CV [20], MutationAccessor [21] and Muffin [16]. These latter
methods predicts cancer genes by analyzing cancer somatic mutation data from
18 types of cancer. We examined the top 100, 500 and 1000 genes produced by
these methods, and counted how many of these genes were annotated in the
CGC database.

Figure 5 shows these counts for mClass, Mutsig 2.0, Mutsig CV, MutationAc-
cessor and Muffin. Observe that for the top 100 genes, mClass identifies about
50% more CGC genes than MutSig 2.0, MutSig CV and MutationAccessor.
mClass identifies more CGC genes than Mutsig 2.0, Mutsig CV and MutationAc-
cessor for the 500 and 1000 case. However, mClass falls short by 18% and 14%
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than Muffin in identifying CGC genes in top 500 and top 1000 genes. Although
the purpose of mClass was not identifying driver genes, it is remarkable that the
top ranked genes selected by mClass contains a large proportion of cancer driver
genes.

Fig. 5. Number of CGC genes produced by mClass, Mutsig 2.0, Mutsig CV, Muta-
tionAccessor and Muffin in their top 100, 500 and 1000 selection

4 Conclusions

In this paper we proposed a gene selection method based on clustering and nor-
malized mutual information to rank genes for multiple cancer classification using
somatic point mutation data. A logistic regression classifier in an one-vs-rest con-
figuration is applied for multiple cancer classification using the selected genes.
Experimental results on two TCGA datasets shows significant improvements in
classification accuracy. We also showed that our feature selection method ranked
genes that match CGC-annotated genes. Moreover, the model can be extended
by including other genomic data that could further improve the overall classifi-
cation performance. For instance, one could use mutation signature associated
with specific cancer types to improve the overall accuracy.

Funding. This work was supported in part by the US National Science Foundation
[IOS-1543963, IIS-1526742].
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