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ABSTRACT

The problem of characterizing and detecting recurrent se-
quence patterns such as substrings or motifs and related
associations or rules is variously pursued in order to com-
press data, unveil structure, infer succinct descriptions, ex-
tract and classify features, etc. In Molecular Biology, excep-
tionally frequent or rare words in bio-sequences have been
implicated in various facets of biological function and struc-
ture. The discovery, particularly on a massive scale, of such
patterns poses interesting methodological and algorithmic
problems, and often exposes scenarios in which tables and
synopses grow faster and bigger than the raw sequences they
are meant to encapsulate. In previous study, the ability to
succinctly compute, store, and display unusual substrings
has been linked to a subtle interplay between the combina-
torics of the subwords of a word and local monotonicities
of some scores used to measure the departure from expec-
tation. In this paper, we carry out an extensive analysis
of such monotonicities for a broader variety of scores. This
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supports the construction of data structures and algorithms
capable of performing global detection of unusual substrings
in time and space linear in the subject sequences, under var-
ious probabilistic models.

1. INTRODUCTION AND SUMMARY

Words that occur unexpectedly often or rarely in genetic
sequences have been variously linked to biological meanings
and functions. The underlying probabilistic and statistical
models have been studied extensively and led to the pro-
duction of a rich mass of results (see, e.g., [16, 18]). With
increasing availability of whole genomes, exhaustive statis-
tical tables and global detectors of unusual words on a scale
of millions, even billions of bases become conceivable. It is
natural to ask how large such tables may grow with increas-
ing length of the input sequence, and how fast they can be
computed. These problems need to be regarded not only
from the conventional perspective of asymptotic space and
time complexities, but also in terms of the volumes of data
produced and ultimately, of practical accessibility and use-
fulness. Tables that are too large at the outset saturate the
perceptual bandwidth of the user, and might suggest ap-
proaches that sacrifice some modeling accuracy in exchange
for an increased throughput. The focus of the present paper
is thus on the combinatorial structure of such tables and on
the algorithmic aspects of their implementation. To make
our point more clear, we discuss here the problem of build-
ing exhaustive statistical tables for all subwords of very long
sequences. But it should become apparent that reflections
of our arguments are met just as well in most practical cases.

The number of distinct substrings in a string is at worst
quadratic in the length of that string. Thus, the statistical
table of all words for a sequence of a modest 1,000 bases
may reach in principle into the hundreds of thousands of en-
tries. Such a synopsis would be asymptotically bigger than
the phenomenon it tries to encapsulate or describe. This is
even worse than what the (now extinct) cartographers did
in the old Empire narrated by Borges’ fictitious J. A. Sudrez
Miranda [7]: there, “Cartography attained such perfection
that ... the College of Cartographers evolved a Map of the
Empire that was of the same scale as the Empire and that

coincided with it point for point®”.

! Attributed to “Viajes de Varones Prudentes (Libro Cuarto,
Cap. XLV, Lerida, 1658)”, the piece “On the Exactitude of
Science” was written in actuality by Jorge Luis Borges and



The situation does not improve if we restrict ourselves to
computing and displaying the most unusual words in a given
sequence. This presupposes that we compare the frequency
of occurrence of every word in that sequence with its expec-
tation: a word that departs from expectation beyond some
preset threshold will be labeled as unusual or surprising. De-
parture from expectation is assessed by a distance measures
often called a score function. The typical format for a z-
score is that of a difference between observed and expected
counts, usually normalized to some suitable moment. For
most a priori models of a source, it is not difficult to come
up with extremal examples of observed sequences in which
the number of, say, over-represented substrings grows itself
with the square of the sequence length: in such an empire,
a map pinpointing salient points of interest would be bigger
than the empire itself. Extreme as these examples might be,
they do suggest that large statistical tables may not only be
computationally imposing but also impractical to visualize
and use, thereby defying the very purpose of their construc-
tion. In fact, similar risks are faced in the broad area of
pattern and association discovery [1].

In this paper, we study probabilistic models and scores for
which the population of potentially unusual words in a se-
quence can be described by tables of size at worst linear in
the length of that sequence. This not only leads to more
palatable representations for those tables, but also supports
(non-trivial) linear time and space algorithms for their con-
structions. Note that these results do not mean that now
the number of unusual words must be linear in the input,
but just that their representation and detection can be made
such. The ability to succinctly compute, store, and display
our tables rests on a subtle interplay between the combina-
torics of the subwords of a sequence and the monotonicity of
some popular scores within small, easily describable classes
of related words. Specifically, it is seen that it suffices to
consider as candidate surprising words only the members
of an a priori well identified set of “representative” words,
where the cardinality of that set is linear in the text length.
By the representatives being identifiable a priori we mean
that they can be known before any score is computed. By
neglecting the words other than the representatives we are
not ruling out that those words might be surprising. Rather,
we maintain that any such word: (i) is embedded in one of
the representatives, and (ii) does not have a bigger score
or degree of surprise than its representative (hence, it would
add no information to compute and give its score explicitly).

As mentioned, a crucial ingredient for our construction is
that the score be monotonic in each class. In this paper,
we perform an extensive analysis of models and scores that
fulfill such a monotonicity and are thus susceptible to this
treatment. The main results comes in form of a series of
conditions and properties, which we describe here without
proofs within a framework primarily aimed at clarifying their
significance and scope.

The paper is organized as follows. Section 2 describes some

Adolfo Bioy Casares. English translation quoted from [7]:
“ .. succeeding generations came to judge a map of such
magnitude cumbersome, and, not without irreverence, they
abandoned it to the rigours of Sun and Rain . .. in the whole
Nation, no other relic is left of the Discipline of Geography.”

preliminary notation and properties. The monotonicity re-
sults are presented in tabular form in Section 3. Because the
collection of proofs and supporting combinatorial lemmas
are rather lengthy and technically involved, they could only
be included in the full version of the paper. However, they
shall be made available upon request. Finally, we briefly
discuss the algorithmic implications and constructs in Sec-
tion 4. We also highlight future work, and the extension of
succinct descriptors of the kind considered here to more gen-
eral models and outside of the monotonicity realm. These
results are being incorporated into an existing suite of pro-
grams [12, 5]. As an example demonstration, Figure 1 shows
application of the tool to the identification of the core mod-
ules within the regulatory regions of the yeast. Finding such
modules is the first step towards a full-fledged promoter ana-
lytic system, which would help biologists to understand and
investigate the gene expression in relation to development,
tissue specificity and/or environment. Each one of the two
families contains a set of co-regulated genes, that is, genes
that have similar expression under the same external condi-
tions. The hypothesis is that in each family the upstream
region will contain some common motifs, and also that such
signals might be over-represented across the family. In this,
like in the countless other applications of probabilistic and
statistical sequence analysis, access to the widest repertoire
of models and scores is the crucial asset in the formulation,
test and fine tuning of hypotheses.

2. PRELIMINARIES

We use standard concepts and notation about strings, for
which we refer to [2, 3, 4]. For a substring y of a text z, we
denote by f(y) the number of occurrences of y in x. Clearly,
for any ezxtension uyv of y, f(uyv) < f(y). For a set of
strings or multisequence {m(l), A x(k)}, the colors of y
are the members of the subset of the multisequence such
that each contains at least one occurrence of y. The number
of colors of y is denoted by c(y). We also have c(uyv) < c(y).

Suppose now that string & = z[;)T[) - - . T[] is a realization
of a stationary random process and y1jyp2] - - - Y[m] = ¥ is an
arbitrary but fixed pattern over ¥ with m < n. We define
Z;, foralli € [1...n—m+1], to be 1if y occurs in z starting
at position ¢, 0 otherwise, so that

n—m-+1

Zy= Y Z
i=1

is the random variable for f(y).

Expressions for the expectation and variance for the number
of occurrences in the Bernoulli model, have been given by
several authors (see, e.g., [9, 10, 14, 15, 17, 10, 9, 15]). Here
we adopt derivations in [2, 3]. With p, the probability of
symbol a € ¥ and p = [[}Z, py,), We have

E(Zy) = (n—-m+1)p

(1 -p)E(Z,) —p*>(2n —3m +2)(m — 1)
+2pB(y) ifm< (n+1)/2

Var(Zy)
(1 -PE(Zy) - p*(n—m+1)(n —m)
+2pB(y) otherwise
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Figure 1: Over-represented words in a set of co-regulated genes. A word’s increasing departure from its

expected frequency is rendered by proportionally increased font size. Superposition of the words circled by
hand yields the previously known motifs: TCACGTG and AAAACTGTGG in the MET family of 11 sequences, and

TCCGCGGA in the PDR family of 7.

where

Biy)= > (n—-m+1-d)[] py

deP(y) j=m—d+1

is the auto-correlation factor of y, that depends on the set
P(y) of the lengths of the periods® of 3. In cases of practical
interest we expect m < (n + 1)/2, so that we make this
assumption from now on.

In the case of Markov chains, it is more convenient to eval-
uate the estimator of the expectation instead of the true ex-
pectation to avoid computing large transition matrices. In
fact, we can estimate the expected number of occurrences
in the M-order Markov model with the following maximum
likelihood estimator [16]

2 12 Fyiienn)
E Z —
) 175 fFWpiienr—1)

_ W)
= flypw) [ 7 (1)
j=2

(Y j+m-11)

The expression for the variance Var(Z,) for Markov chains
is very involved. Complete derivations have been given by
Lundstrom [13], Kleffe and Borodovsky [10], and Regnier
and Szpankowski [15]. However, as soon as the true model
is unknown and the transition probabilities have to be es-
timated from the observed sequence z the results for the
exact distribution are no longer useful (see, e.g. [16]). In
fact, once we replace the expectation with an estimator of
the expected count, the variance of the difference between
observed count and the estimator does not correspond any-
more to the variance of the random variable describing the
count.

The asymptotic variance of E(Z,) — E(Z,) has been given
first by Lundstrom [13], and is clearly different from the
asymptotic variance of E(Z,) (see [18] for a detailed exposi-

2String # has a period w if z is a non-empty prefix of w* for
some integer k > 1.

tion). Easier ways to compute the asymptotic variance were
also found subsequently.

For a finite family {x(l),x@), e w(k)} of realizations of our
process, and a pattern y, we analogously define W, for all
j € [1...k], to be 1 if y occurs at least once in z\9), 0
otherwise. Let

k
Wy =3 W,
j=1

so that W, is a random variable for the total number c(y)
of sequences which contain at least one occurrence of y.

In the case of a multisequence we can assume in actuality
either a single model for the entire family or a distinct model
for each sequence. In any case, the expectation of the ran-
dom variable W for the number of colors can be computed
by assuming a Poisson distribution as follows

k .
EW,) =k-Y e "7 (2)
Jj=1

where E(Z}) is the expected number of occurrences of the
word y in the j-th sequence [17].

Ideally, a score function should be independent of the struc-
ture and size of the word. That would allow one to make
meaningful comparisons among substrings of various com-
positions and lengths based on the value of the score.

There is some general consensus that z-scores may be pre-
ferred over the others [11]. For any word w, a standardized
frequency called z-score, can be defined by

_ fly) — E(Zy)
) = Var(Zy)

If E(Zy) and Var(Z,) are known, then under rather general
conditions, the statistics z(y) is asymptotically normally dis-
tributed with zero mean and unit variance as n tends to
infinity. In practice E(Z,) and Var(Z,) are seldom known,
but are estimated from the sequence under study.



For a given type of count and model, we consider now the
problem of computing exhaustive tables reporting scores for
all substrings of a sequence, or perhaps at least for the most
surprising among them. The problem comes in different
flavors based on the probabilistic model. However, a table
for all words of any size would require quadratic space in the
size of the input, not to mention that such a table would take
at least quadratic time to be filled.

As seen towards the end of the paper such a limitation can be
achieved by partitioning the set of all words into equivalence
classes with the property, that it suffices to account for only
one or two candidate surprising words in each class, while
the number of classes is linear in the textstring size. More
formally, given a score function z, a set of words C, and a real
positive threshold T, we say that a word w € C is T-over-
represented in C (resp., T-under-represented) if z(w) > T
(resp., z(w) < —T') and for all words y € C' we have z(w) >
z(y) (resp., z(w) < z(y)). We say that a word w is T-
surprising if z(w) > T or z(w) < —T. We also call max(C)
and min(C) respectively the longest and the shortest word
in C, when max(C) and min(C) are unique.

Let now z be a textstring and {C1, Cs, ..., Ci} a partition of
all its substrings, where max(C;) and min(C;) are uniquely
determined for all 1 < ¢ < I. For a given score z and a real
positive constant 7', we call O the set of T-over-represented
words of C;, 1 < i <[, with respect to that score function.
Similarly, we call /{7 the set of T-under-represented words
of C;, and ST the set of all T-surprising words, 1 <4 < 1.

For two strings v and u = svz, a (u,v)-path is a sequence
of words {wo = u, w1, ws,...,w; = v}, I > 0, such that w;
is a unit-symbol extension of w;—;1 (1 < i < 7). In general
a (u,v)-path is not unique. If all w € C belong to some
(min(C;), maz(C;))-path, we say that class C is closed.

A score function z is (u, v)-increasing (resp., non-decreasing)
if given any two words w1, w2 belonging to a (u,v)-path,
the condition |w;| < |wsz| implies z(wi) < z(w2) (resp.,
z(w1) < z(w2)). The definitions of a (u,v)-decreasing and
(u, v)-non-increasing z-scores are symmetric. We also say
that a score z is (u,v)-monotonic when specifics are un-
needed or understood. The following fact and its symmetric
are immediate.

FacT 2.1. Ifthe z-score under the chosen model is (min(C;),

max(C;))-increasing, and C; is closed, 1 <1 <1, then

l 1
of c | max(C:) and U C|J min(Ci)
i=1

i=1

Some scores are defined in terms of the absolute value (or
any even power) of a function of expectation and count. In
those cases, we cannot distinguish anymore over-represented
from under-represented words. This restriction is compen-
sated by the fact that we can now relax the property asked
of the score function, as explained next.

We recall that a real-valued function F' is concave in a set
S of real numbers if for all z1,z2 € S and all X € (0,1)

we have F((1 — AN)z1 + Az2) > (1 — N)F(z1) + AF(z2). If
F' is concave, then the set of points below its graph is a
concave set. Also, given two functions F' and G such that F'
is concave and G is concave and monotonically decreasing,
we have that G(F'(x)) is concave.

Similarly, a function F'is conver in a set S if for all z1,z2 €
S and all A € (0,1) we have F((1 — AN)x1 + Az2) < (1 —
A)F(z1) + AF(z2). If F is convex, then the set of points
above its graph is a convex set. Also, given two functions F'
and G such that F' is convex and G is convex and monoton-
ically increasing, we have that G(F(z)) is convex.

FacT 2.2. If the z-score under the chosen model is a con-
vezr function of a (min(C;), maz(C;))-monotonic score ',
that is

2((1 =Nz (w) + A2'(v)) < (1= Nz(2'(w) + Az(2' (v))
for all u,v € C;, and C; is closed, 1 < i <, then

1
S € | {max(Ci) Umin(C:)}

i=1

This fact has two useful corollaries.

COROLLARY 2.1. If the z-score under the chosen model is
the absolute value of a score 2" which is (min(C;), maz(C;))-
monotonic, and C; is closed, 1 < i <1, then

1
8. € | {max(Ci) Umin(Ci)}

i=1

COROLLARY 2.2. If the z-score under the chosen model
is a convexr and increasing function of a score z', which is
in turn a convex function of a score 2 which is (min(C;),
max(C;))-monotonic, and C; is closed, 1 <1 <1, then

!
sTc U {max(C;) Umin(C;)}

An example to which the latter corollary could be applied
is the choice z = (2’)? and 2’ = |2”|.

Sometimes we are interested in finding words which mini-
mize the value of a positive score instead of maximizing it.
A fact symmetric to Fact 2.2 also holds.

Fact 2.3. If the z-score under the chosen model is a con-
cave function of a (min(C;), max(C;))-monotonic score 2,
that is

2((1 = N2 () + A2/ (v) 2 (1 = X)z(2'(w)) + Az(2' (v))
for all u,v € C;, and C; 1is closed, 1 < ¢ <1, then the set of
words for which the z-score is minimized is contained in

1

U {max(C;) U min(C;)}

i=1



In the next section we present monotonicities established
for a number of scores for words w and wv that obey a
condition of the form f(w) = f(wv), i.e., have the same set
of occurrences. In Section 4 we discuss in more detail some
of the partitions induced by such a condition with a linear
number of equivalence classes.

3. MONOTONICITY RESULTS

The tables of this section display a collection of monotonic-
ity results established about the models and z-scores consid-
ered. The corresponding proofs are quite lengthy, some in-
volve several auxiliary lemmas on the combinatorics of sub-
words. Thus they are deferred to the full paper. Here we
limit ourselves to very few comments aimed at illustrating
the properties.

Throughout, we assume w and an extension wv of w to be
nonempty substrings of a text z such that f(w) = f(wv).
For convenience of notation, we set p(w) = E(w)/N(w),
where N(w) appears in the score as the expected value of
some function of w. The interpretation of the tables is
straightforward. For example, Property 1.1 states a simple
fact on the monotonicity of E(w) given the monotonicity of
p(w) and N(w). Under some general conditions on N(w)
and p(w) we can prove the monotonicity of any score func-
tions of the form described above.

Property 1.2 is not straightforward. It says that these scores
are monotonically decreasing when

YN (w) + N(wv)

P = PO ) 4 W)

and monotonically increasing when f > E*. We can picture
the dynamics of the score as follow. Initially, we can assume
E* > f, in which case the score is decreasing. As we extend
the word, keeping the count f constant, E* decreases (recall
that E” is always in the interval [E(wv), E(w)]). At some
point, E* = f, in which case the score stays constant. By
extending the word even more, E* becomes smaller than f,
and the score starts to grow. Some consequences of Property
1.2 are captured by Properties 1.7 and 1.8. Property 1.2
also holds by exchanging the condition p(wv) < p(w) with
f(w) > E(w) > E(wv).

As mentioned, certain types of scores require to be mini-
mized rather than maximized. For example, the scores based
on the probability that P(f(w) < T) or P(f(w) > T) for a
given threshold T on the number of occurrences. One can
prove then

Fact 3.1. Given a threshold T > 0 on the number of
occurrences, then

P(f(w) <T) < P(f(wv) <T)

Let us consider the score zp(w,T) = min{P(f(w) < T),
P(f(w) > T)} = min{P(f(w) < T), 1 - P(f(w) < T)} eval-
uated on the strings in a class C. By the above Fact one
can compute the score only for the shortest and the longest
string in C, as min{P(f(min(C)) < T),P(f(max(C)) >

T)}. The score zp(w,T) satisfies also the conditions of
Fact 2.3. In fact, 2’ = P(fz(w) < T) is (min(C), maz(C))-
monotonic by Fact 3.1 and the transformation z = min{z’, 1—
2'} is a concave function in 2’

Turning now to Table 2, we recall that p, is the probability
of the symbol a € ¥ in the Bernoulli model. We define p =
Hyjl Pup; and § = Hiﬂlpv[,-]- Note that 0 < p‘,:z‘n <p<

|w] 1. wh i d _
Pmaz < 1, Wwhere pmin = minges po and Pmazr = MaXecs Pa-

The lengthiest arguments here concern properties that in-
volve the complete variance, as they must be based in turn
on proofs of combinatorial properties of the autocorrela-
tion function B(w) introduced earlier. These monotonicities
are reported under 2.9-2.12. As an example of an interme-
diate result, it is proved that given a word of size m, if
Pmaz < 1/ ¥/4m, the variance is monotonically decreasing
for any choice of n and p,, where b is the symbol added to
the string. A slightly better bound on py,e» can be attained
numerically by considering that py < pmaa-

Table 3 reports monotonicities derived properties for a Mar-
kov process of order M > 0. Monotonicities based on color-
count under two models are similarly reported in Table 4.

4. COMPUTING EQUIVALENCE CLASSES
AND SCORES

We recall the properties of a partition {C1, Cs, ..., C} of the
substrings which would enable us to restrict the computation
of the scores to a constant number of candidates in each
class C;. Namely, we require, for all 1 < 7 < I, max(C;)
and min(C;) to be unique; C; to be closed, i.e., all w in C;
belong to some (min(C;), max(C;))-path; all w in C; have
the same count. Of course, the partition of all substrings of
x into singleton classes fulfills those properties. In practice,
we want [ to be as small as possible.

We say that two strings y and w are left-equivalent on z if the
set of starting positions of y in x matches the set of starting
positions of w in . We denote this equivalence relation by
=;. It follows from the definition that if y =; w, then either
y is a prefix of w, or vice versa. Therefore, each class has
unique shortest and longest member. Also by definition, if
y = w then f(y) = f(w) and c¢(y) = c(w). We similarly say
that y and w are right-equivalent on x if the set of ending
positions of y in x matches the set of ending positions of w
in . We denote this by =,.

Finally, the equivalence relation =, is defined in terms of the
implication of a substring of x [6, 8]. Given a substring w
of z, the implication imp,(w) of w in z is the longest string
uwv such that every occurrence of w in x is preceded by u
and followed by v. We write y =, w iff impz(y) = impz(w).
It is not difficult to see that the equivalence relation =, is
the transitive closure of =; U =,. Well known results (see,
e.g., [6, 8]) show that the size ! of the partition is linear
in |z| = n for all three equivalence relations considered. In
particular, the smallest size is attained by =, for which the
number of equivalence classes is at most n + 1.

‘While the longest word in an =-class is unique, there may
be in general more than one shortest word. Consider for



Property Conditions
fww) = Blwy)  w) ~ Ew) N(wv) < Nw), p(wn) < p(w)

(1.1)

N(va)U NSw) 5
(z [fme S| | M Bw) N(wv) < Nw), p(wo) < p(w)
YN (w) + N(wv)
and f(w) > E(w)m
(1.3)  f(wv) — E(wv) > f(w) — E(w) E(wv) < E(w)
(1.4) 2((1:]:)})) > é,((z); E(wv) < E(w)
s L (w”;(;f(w” 5 (W) = B(w) E(wv) < E(w)
e I (w\”/);(_ui()w”) ! (“’);(i)(w) E(w) < E(w)
(1.7) ‘f (w”)E_( fv()‘””) NEC) _(i)(“’) E(w) > E(wy), f(w)> E(w)y7
_ 2 _ 2
s Y (w"g (w]j)(w”)) s (w)E f)(w)) E(w) > E(wv), f(w)> E(w)y7

Table 1: General monotonicities for scores associated with the counts f, under the hypothesis f(w) = f(wv).
We have set p(w) = E(w)/N(w) and v = E(wv)/E(w).

Property Conditions

8;3 }E((f;‘slééﬁ“il f(w) — E(Zw) I;(();E; = f(wo)

(2.3) Ef((ZL > J((Z) F(w) = f(wv)

NS e fw) = faw)

) f(wv)E—( f:jwv) § f(u:};(TSw) fw) = fow)

(2.6) ‘f (wa‘(ZLw(fwv) > |7 “’3%“’) H(w) = fwv), f(w) > BE(Zu)yF

(2.7) (f(wvézzii}zm”z > Yl = 2 =) Jw) = fwo), f(w) > B(Zu)y/7

(2.9)  Var(Zwy) < Var(Zy) Pmaz < 1/ ¥4m

(2:10) \/ffif(wz:) ﬁirzfz)w) Pmas < V2-1

i) L ‘%” ! (“’)Va‘fz‘f;“) Jw) = [(wv), pmas < min{1/ Vim, V3 - 1}
(2.12) ‘f(m‘)/a;éizv’;”) > ‘f(w)va_jz(f;”) fw) = f(wv), Pmaz < min{l/ V4m,v2 -1}

YV Var(Zy) + /Var(Zwy)

and f(w) > E(Zy) VVar(Zy) + /Var(Zuy)

Table 2: Monotonicities for scores associated with the number of occurrences f under the Bernoulli model
for the random variable Z. We set v = E(Zyv)/E(Zy).



Property Conditions
(3.1) E(Zwv) < E(Zw) none

(3:2)  fwo) = B(Zuy) > f(w) - B(Zw) faw) = f(wv)
faw) " f(w)

89 Jo = o A F(w) = f(wv)

o) - B(Zun) - [(w) — B(Zw) _
- A E;(Z%?)z )Z A )E(Zﬁgz ) o
(3.5) LW Tlwy) 5 AW Z v f(w) = f(wv)

\ E(Zyo) \E(Zy)

Fwv) = B(Zuww)| | Fw) — B(Z)

(3.6) i > 1) - F(w) = f(wo), fw) > B(Zu)y7
E(Zyy) \/ E(Zy)

oy U0 = BZw)? | (1) = BZ)
E(Zywv) E(Zy)

fw) = f(wv), f(w)> E(Zw)yY

Table 3: Monotonicities for scores associated with the number of occurrences f under Markov model for the
random variable Z. We set 7 = E(Zyy)/E(Zy).

Property Conditions

(A1) EWay) < E(Wa) nons

(4.2)  c(wv) - E(Wuwy) > c(w) — B(Ww) e(w) = elwe)

(43) E((vqtufz)) E(vti efw) = )

(4.4) C(U}U;‘(—V[f;(:;[/wv) c(w) zvf:;/[/w) c('u}) = C(’w’U)

(45) c(wv)E—( v]i(w)wv) c(w) ;(fV(V:w) e(w) = c(wv)

(5) c(wv)};( Vi(w)w) c(w) ];(I;JV(V‘)’w) c(w) = c(wv), c(w) > E(Wy)y7

- N 2
(4.7) (C(w’U)E(Vqur[)/wv))z (C(w)E(VL;iV)Vw)) c('u}) = c(wv), C(’(U) > E(Ww)ﬁ

Table 4: Monotonicities of the scores associated with the number of colors ¢ under Bernoulli or Markov

model for the random variable W. We set v = E(Wy.)/E(Wy).
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Figure 2: A representation of the seven =,-
equivalent classes for z =ataatataataatataatatag.
The words in each class can be organized in a lattice.
Numbers refer to the number of occurrences

example the text © =a*g®, with ¥ > 0. Choosing k = 2
yields a class which has three words of length two as minimal
elements, namely, aa, gg, and ag. (In fact, imp,(aa) =
impe(gg) = imp,(ag) = aagg.) Taking instead k = 1, all
three substrings of = ag coalesce into a single class which
has two shortest words.

Each one of the equivalence classes discussed can be mapped
to the nodes of a corresponding automaton or word graph,
which becomes thereby the natural support for our statis-
tical tables. The table takes linear space, since the num-
ber of classes is linear in |z|. The automata themselves are
built by classical algorithms or easy adaptations thereof, to
be described in more detail in the final version of this ex-
tended abstract. The graph for =, for instance, is built us-
ing the fact that an =;-class can be expressed as the union of
some left-equivalent classes or, alternatively, as the union of
some right-equivalent classes. As the example above shows,
however, there are cases in which we cannot merge left- or
right-equivalent classes without loosing the uniqueness of
the shortest word. A consequence of this is that we can
use the graph for =;-classes when we are interested in de-
tecting only over-represented words. If under-represented
words are also wanted, then we must represent a same =,-
class once for each distinct shortest word in it. This results
in a substring partition slightly coarser than =, which will
be denoted by =,.

We omit many details and concentrate now on computa-
tional results. In [2, 3], linear-time algorithms are given
to compute and store expected value E(Z) and variance

Var(Z) for the number of occurrences under Bernoulli model
of all prefixes of a given string. Combining this with the
structure of our supporting graph we prove:

THEOREM 4.1. Under the Bernoulli model, the sets OF
and UL for Scores

Z2.2(w) = f(w) - E(Zw)
ra(w) = f(w)
) E(Z.)
_ fw) - E(Zuw)
;)
wrs(w) = LB g )
Var(Z.y)
_ f(w)— E(Zy) . 1 _
22_11(’11)) = Var(Zw) (pmaz < mln{ —W, \/_ 1})

22_6(11)) =

zo7(w) =

(f(w) — E(Zw))?
E(Zy,)

fw) = B(Z) NS
ez | e < minlg V2= 1)

can be computed in linear time and space.

B
N

z2.12(w) =

The computation of E(Z) in Markov models is more diffi-
cult than with Bernoulli. Recall the maximum likelihood
estimator for the expectation in Equation 1. If we compute
the (Markov) prefix product pp(¢) as follows

1
pp(i) = { i _fgien)
J=1 f(@(j j4m—11)

ifi=0
if1<i<n

then E(Z,) is rewrittten as

‘. pple — M)
E(Zy) = flyp,m _
( ?!) ( [1 +1]) pp(b)
where (b, €) are the beginning and the ending position of any
of the occurrences of y in z. Hence, if f(y;1,a+1]) and the
vector pp(i) are available, we can compute £ (Zy) in constant
time.

It is not difficult to compute the products pp(7) of interest in
overall linear time. When working with multisequences, we
have to build a vector of prefix products for each sequence
using the global statistics of occurrences of each word of size
M and M + 1. We also build the Bernoulli prefix products
to compute E(Z) for words smaller than M + 2, because
the estimator of E(Z) cannot be used for these words. The
resulting algorithm is linear in the total size of the multise-
quence.

The following theorem summarizes the results obtained.



THEOREM 4.2. Under Markov models, the sets O and
UL for Scores

Zs.z(w) = f(w) - E(Zw)

zz3(w) = E’((;}))

z3.a(w) = f(wg?ZEgzw)

sas(w) = fw) — E(Zy)
E(Zy)

and the set ST for Scores

z36(w) = M
VB ()
za(w) = (f(w) — E(Z,))?

can be computed in linear time and space.

We now turn to color counts in multisequences. The com-
putation of E(W) and Var(W) can be accomplished once
array {E(Z]) : j € [L...k]}, that is, the expected number
of occurrences of y in each sequence is available. E(Z}) has
to be evaluated on the local model estimated only from the
j-th sequence. Once that all E(Z}) are available we can use
Equation 2 to compute E(W,) and Var(W,).

Having k different sets of parameters to handle makes the
usage of the prefix products slightly more involved. For
any word y, we have to estimate its expected number of
occurrences in each sequence, even in sequences in which y
does not appear at all. Therefore, we cannot compute only
one prefix product for each sequence. We need to compute
k vectors of prefix products for each sequence at an over-
all O(kn) time- and space complexity for the preprocessing

phase, where we assume n = Ele |x(") ‘ We need an ad-
ditional vector in which we record the starting position of
any of the occurrences of y in each sequence. The resulting

algorithm has overall time complexity O(kn).

The following theorem summarizes this discussion.

THEOREM 4.3. Under Bernoulli or Markov models, the

sets OF and UL of a multisequence {x™, 2@, ... z*)}
for Scores

za2(w) = c(w) - E(Wy)

za3(w) = %

) = A0

as(w) = c(w) — E(Ww)

E(Wy)

and the set ST for Scores

2 (’U)) _ c(w) — E(Ww)
R E(W.)
za7(w) = (c(w) (_V[Z()WW))z

can be computed in O(k Zle ‘x(i) ) time and space.

5. CONCLUSIONS

‘We have shown that under several scores and models, we can
bound the number of candidate over- and under-represented
words in a sequence and carry out the related computations
in correspondingly efficient time and space. Our results re-
quire that the scores under consideration grow monotoni-
cally for words in each class of a partition of which the index
or number of classes is linear in the textstring. As seen in
this paper, such a condition is met by many scores. The
corresponding statistical tables take up the form of some
variant of a trie structure of which the branching nodes,
in a number linear in the textstring length, are all and only
the sites where a score needs be computed and displayed. In
practice, additional space savings could achieved by group-
ing in a same equivalence class consecutive branching nodes
in a chain of nodes in which the scores are non-decreasing.
For instance, this could be based on the condition that the
difference of observed and expected frequency is larger for
the longer word and the normalization term is decreasing
for the longer word. (The case of fixed frequency for both
words is just a special case of this.) Note that in such a
variant of the trie the words in an equivalence class are no
longer characterized by having essentially the same list of
occurrences. Another way of giving the condition is to say
that the ratio of the frequency of the longer word to that of
the shorter word should be larger than the ratio of their cor-
responding expectations. In this case, the longer word has
the bigger score. Still, an important question regards more
the generation of tables for general scores, particularly for
those that do not necessarily meet those monotonicity con-
ditions. There are two qualifications to the problem, respec-
tively regarding space and construction time. As far as space
is concerned, we have seen that the crucial handle towards
linear space is represented by equivalence class partitions
{C1,Cs,...,Ci} that satisfy properties such as at the be-
ginning of Section 4. Clearly, the equivalence relations =,
=, and =; all meet these conditions. We note that a class C;
in any of the corresponding partitions represents a maximal
set of strings that occur precisely at the same positions in z,
possibly up to some small uniform offset. For our purposes,
any such class may be fully represented by the quadruplet
{max(C;), min(C;), (41,11, Zmaz), (42, l2, Zmin)} where (i1,l1,
Zmaz) and (2,12, 2min) give the positions, lengths and scores
of the substrings of max(C;) achieving the largest and small-
est score values, respectively. The monotonicity conditions
studied in this paper automatically assign zmq. to max(C;)
and zpin to min(C;), thereby rendering redundant the posi-
tion information in a quadruplet. In addition, when dealing
with =; (respectively, =,), we also know that min(C;) is
a prefix (resp., suffix) of max(C;), which brings even more
savings. In the general case, a linear number of quadru-
plets such as above fully characterizes the set of unusual
words. This is true, in particular, for the partition associ-



ated with the equivalence relation =,, which achieves the
smallest number of classes under the constrains of Section
4. The corresponding graph may thus serve as the natural
support of exhaustive statistical tables for the most general
models. The computational costs involved in producing such
tables might pose further interesting problems of algorithm
design.
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