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Monotony of Surprise and Large-Scale
Quest for Unusual Words
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ABSTRACT

The problem of characterizing and detecting recurrent sequence patterns such as substrings
or motifs and related associations or rules is variously pursued in order to compress data,
unveil structure, infer succinct descriptions, extract and classify features, etc. In molecu-
lar biology, exceptionally frequent or rare words in bio-sequences have been implicated in
various facets of biological function and structure. The discovery, particularly on a mas-
sive scale, of such patterns poses interesting methodological and algorithmic problems and
often exposes scenarios in which tables and synopses grow faster and bigger than the raw
sequences they are meant to encapsulate. In previous study, the ability to succinctly com-
pute, store, and display unusual substrings has been linked to a subtle interplay between
the combinatorics of the subword of a word and local monotonicities of some scores used to
measure the departure from expectation. In this paper, we carry out an extensive analysis of
such monotonicities for a broader variety of scores. This supports the construction of data
structures and algorithms capable of performing global detection of unusual substrings in
time and space linear in the subject sequences, under various probabilistic models.

Key words: design and analysis of algorithms, combinatoric on words, statistical analysis of
sequences, annotated suf� x trees, over- and under-represented words, pattern discovery.

1. INTRODUCTION AND SUMMARY

Words that occur unexpectedly often or rarely in genetic sequences have been variously linked
to biological meanings and functions. The underlying probabilistic and statistical models have been

studied extensively and led to the production of a rich mass of results (see, e.g., Reinert et al. [2000],
Waterman [1995]). With increasing availability of whole genomes, exhaustive statistical tables and global
detectors of unusual words on a scale of millions, even billions, of bases become conceivable. It is natural
to ask how large such tables may grow with increasing length of the input sequence, and how fast they can
be computed. These problems need to be regarded not only from the conventional perspective of asymptotic
space and time complexities, but also in terms of the volumes of data produced and, ultimately, of practical
accessibility and usefulness. Tables that are too large at the outset saturate the perceptual bandwidth of the
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user and might suggest approaches that sacri� ce some modeling accuracy in exchange for an increased
throughput. The focus of the present paper is thus on the combinatorial structure of such tables and on the
algorithmic aspects of their implementation. To make our point more clear, we discuss here the problem
of building exhaustive statistical tables for all subwords of very long sequences. But it should become
apparent that re� ections of our arguments are met just as well in most practical cases.

The number of distinct substrings in a string is at worst quadratic in the length of that string. Thus,
the statistical table of all words for a sequence of a modest 1,000 bases may reach in principle into the
hundreds of thousands of entries. Such a synopsis would be asymptotically bigger than the phenomenon it
tries to encapsulate or describe. This is even worse than what the (now extinct) cartographers did in the old
empire narrated by Borges’ � ctitious J.A. Suàrez Miranda (Apostolico, 2001; Borges, 1975): “Cartography
attained such perfection that : : : the College of Cartographers evolved a Map of the Empire that was of
the same scale as the Empire and that coincided with it point for point.”1

The situation does not improve if we restrict ourselves to computing and displaying the most unusual
words in a given sequence. This presupposes that we compare the frequency of occurrence of every word
in that sequence with its expectation: a word that departs from expectation beyond some preset threshold
will be labeled as unusual or surprising. Departure from expectation is assessed by a distance measure
often called a score function. The typical format for a z-score is that of a difference between observed
and expected counts, usually normalized to some suitable moment. For most a priori models of a source,
it is not dif� cult to come up with extremal examples of observed sequences in which the number of, say,
overrepresented substrings grows itself with the square of the sequence length: in such an empire, a map
pinpointing salient points of interest would be bigger than the empire itself. Extreme as these examples
might be, they do suggest that large statistical tables may not only be computationally imposing but also
impractical to visualize and use, thereby defying the very purpose of their construction.

In this paper, we study probabilistic models and scores for which the population of potentially unusual
words in a sequence can be described by tables of size at worst linear in the length of that sequence. This
not only leads to more palatable representations for those tables, but also supports (nontrivial) linear time
and space algorithms for their constructions. Note that these results do not mean that now the number of
unusual words must be linear in the input, but just that their representation and detection can be made
such. The ability to succinctly compute, store, and display our tables rests on a subtle interplay between
the combinatorics of the subwords of a sequence and the monotonicity of some popular scores within
small, easily describable classes of related words. Speci� cally, it is seen that it suf� ces to consider as
candidate surprising words only the members of an a priori well identi� ed set of “representative” words,
where the cardinality of that set is linear in the text length. By the representatives being identi� able a
priori we mean that they can be known before any score is computed. By neglecting the words other
than the representatives, we are not ruling out that those words might be surprising. Rather, we maintain
that any such word (i) is embedded in one of the representatives and (ii) does not have a bigger score
or degree of surprise than its representative (hence, it would add no information to compute and give its
score explicitly).

As mentioned, a crucial ingredient for our construction is that the score be monotonic in each class.
In this paper, we perform an extensive analysis of models and scores that ful� ll such a monotonicity
requirement and are thus susceptible to this treatment. The main results come in the form of a series of
conditions and properties, which we describe here within a framework aimed at clarifying their signi� cance
and scope.

The paper is organized as follows. Section 2 describes some preliminary notation and properties. The
monotonicity results are presented in Section 3. Finally, we brie� y discuss the algorithmic implications
and constructs in Section 4. We also highlight future work, and extend succinct descriptors of the kind
considered here to more general models and areas outside of the monotonicity realm. These results are

1Attributed to “Viajes de Varones Prudentes (Libro Cuarto, Cap. XLV, Lerida, 1658),” the piece “On the Exactitude
of Science” was written in actuality by Jorge Luis Borges and Adolfo Bioy Casares. English translation quoted from
Borges (1975): “: : : succeeding generations came to judge a map of such magnitude cumbersome, and, not without
irreverence, they abandoned it to the rigours of Sun and Rain : : : in the whole Nation, no other relic is left of the
Discipline of Geography.”
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FIG. 1. Overrepresented words in a set of coregulated genes. A word’s increasing departure from its expected
frequency is rendered by proportionally increased font size. Superposition of the words circled by hand yields the
previously known motifs: TCACGTG and AAAACTGTGG in the MET family of 11 sequences, and TCCGCGGA in the
PDR family of 7.

being incorporated into an existing suite of programs (Lonardi, 2001; Apostolico and Lonardi, 2001). As
an example demonstration, Fig. 1 shows application of the tool to the identi� cation of the core modules
within the regulatory regions of the yeast. Finding such modules is the � rst step towards a full-� edged
promoter analytic system, which would help biologists to understand and investigate gene expression in
relation to development, tissue speci� city, and/or environment. Each one of the two families contains a
set of coregulated genes, that is, genes that have similar expression under the same external conditions.
The hypothesis is that in each family the upstream region will contain some common motifs, and also
that such signals might be overrepresented across the family. In this, like in countless other applications
of probabilistic and statistical sequence analysis, access to the widest repertoire of models and scores is
the crucial asset in the formulation, testing, and � ne tuning of hypotheses.

2. PRELIMINARIES

We use standard concepts and notation about strings, for which we refer to (Apostolico et al., 1998,
2000; Apostolico and Galil, 1997). For a substring y of a text x, we denote by f .y/ the number of
occurrences of y in x. We have f .y/ D jposx.y/j D jendposx.y/j, where posx.y/ is the start-set of
starting positions of y in x and endposx.y/ is the similarly de� ned end-set. Clearly, for any extension
uyv of y, f .uyv/ · f .y/. For a set of strings or multisequence fx.1/; x.2/; : : : x.k/g, the colors of y are
the members of the subset of the multisequence such that each contains at least one occurrence of y. The
number of colors of y is denoted by c.y/. We also have c.uyv/ · c.y/.

Suppose now that string x D x[1]x[2] : : : x[n] is a realization of a stationary ergodic random process
and y[1]y[2] : : : y[m] D y is an arbitrary but � xed pattern over 6 with m < n. We de� ne Zi , for all
i 2 [1 : : : n ¡ m C 1], to be 1 if y occurs in x starting at position i , 0 otherwise, so that

Zy D
n¡mC1X

iD1

Zi

is the random variable for f .y/.
Expressions for the expectation and variance for the number of occurrences in the Bernoulli model,2

have been given by several authors (see, e.g., Pevzner et al. [1989], Stückle et al. [1990], Kleffe and

2Although “multinomial” would be the appropriate term for larger than binary alphabets, we conform here to the
current usage and adopt the word “Bernoulli” throughout.
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Borodovsky [1992], Gentleman [1994], Régnier and Szpankowski [1998]). Here we adopt derivations in
Apostolico et al. (1998, 2000). With pa the probability of symbol a 2 6 and Op D

Qm
iD1 py[i] , we have

E.Zy/ D .n ¡ m C 1/ Op;

Var.Zy/ D
»

.1 ¡ Op/E.Zy/ ¡ Op2.2n ¡ 3m C 2/.m ¡ 1/ C 2 OpB.y/ if m · .n C 1/=2

.1 ¡ Op/E.Zy/ ¡ Op2.n ¡ m C 1/.n ¡ m/ C 2 OpB.y/ otherwise,

where

B.y/ D
X

d2P.y/

.n ¡ m C 1 ¡ d/

mY

jDm¡dC1

py[j ] (1)

is the auto-correlation factor of y that depends on the set P.y/ of the lengths of the periods3 of y. In
cases of practical interest, we expect m · .n C 1/=2, so that we make this assumption from now on.

In the case of Markov chains, it is more convenient to evaluate the estimator of the expectation instead
of the true expectation to avoid computing large transition matrices. In fact, we can estimate the expected
number of occurrences in the M-order Markov model with the following maximum likelihood estimator
(Reinert et al., 2000):

OE.Zy/ D

m¡MY

iD1

f .y[i;iCM]/

m¡MY

iD2

f .y[i;iCM¡1]/

D f .y[1;MC1]/

m¡MY

jD2

f .y[j;jCM]/

f .y[j;jCM¡1]/
: (2)

The expression for the variance Var.Zy/ for Markov chains is very involved. Complete derivations have
been given by Lundstrom (1990), Kleffe and Borodovsky (1992), and Régnier and Szpankowski (1998).
However, as soon as the true model is unknown and the transition probabilities have to be estimated from
the observed sequence x , the results for the exact distribution are no longer useful (see, e.g., Reinert et al.
[2000]). In fact, once we replace the expectation with an estimator of the expected count, the variance of
the difference between observed count and the estimator does not correspond anymore to the variance of
the random variable describing the count.

The asymptotic variance of E.Zy/ ¡ OE.Zy/ has been given � rst by Lundstrom (1990) and is clearly
different from the asymptotic variance of E.Zy/ (see Waterman [1995] for a detailed exposition). Easier
ways to compute the asymptotic variance were also found subsequently.

For a � nite family fx .1/; x.2/; : : : x.k/g of realizations of our process, and a pattern y , we analogously
de� ne Wj , for all j 2 [1 : : : k], to be 1 if y occurs at least once in x.j /, 0 otherwise. Let

Wy D
kX

jD1

Wj

so that Wy is a random variable for the total number c.y/ of sequences which contain at least one occurrence
of y .

In the case of a multisequence, we can assume in actuality either a single model for the entire family or
a distinct model for each sequence. In any case, the expectation of the random variable Wy for the number
of colors can be computed by

E.Wy/ D k ¡
kX

jD1

P[Zj
y D 0] (3)

because E.Wj / D P[Zj
y 6D 0].

3String z has a period w if z is a nonempty pre� x of wk for some integer k ¸ 1.
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Ideally, a score function should be independent of the structure and size of the word. That would allow
one to make meaningful comparisons among substrings of various compositions and lengths based on the
value of the score.

There is some general consensus that z-scores may be preferred over the others (Leung et al., 1996).
For any word w, a standardized frequency called the z-score, can be de� ned by

z.y/ D
f .y/ ¡ E.Zy/

p
Var.Zy/

:

If E.Zy/ and Var.Zy/ are known, then under rather general conditions, the statistics z.y/ is asymptotically
normally distributed with zero mean and unit variance as n tends to in� nity. In practice, E.Zy/ and Var.Zy/

are seldom known, but are estimated from the sequence under study.
For a given type of count and model, we consider now the problem of computing exhaustive tables

reporting scores for all substrings of a sequence, or perhaps at least for the most surprising among them.
The problem comes in different � avors based on the probabilistic model. However, a table for all words
of any size would require quadratic space in the size of the input, not to mention that such a table would
take at least quadratic time to be � lled.

As seen towards the end of the paper, such a limitation can be overcome by partitioning the set of all
words into equivalence classes with the property that it suf� ces to account for only one or two candidate
surprising words in each class, while the number of classes is linear in the textstring size. More formally,
given a score function z, a set of words C, and a real positive threshold T , we say that a word w 2 C

is T-overrepresented in C (resp., T-underrepresented) if z.w/ > T (resp., z.w/ < ¡T ) and for all words
y 2 C we have z.w/ ¸ z.y/ (resp., z.w/ · z.y/). We say that a word w is T-surprising if z.w/ > T or
z.w/ < ¡T . We also call max.C/ and min.C/, respectively, the longest and the shortest word in C, when
max.C/ and min.C/ are unique.

Now let x be a textstring and fC1; C2; : : : ; Clg a partition of all its substrings, where max.Ci/ and
min.Ci/ are uniquely determined for all 1 · i · l. For a given score z and a real positive constant T , we
call O T

z the set of T -overrepresented words of Ci , 1 · i · l, with respect to that score function. Similarly,
we call U T

z the set of T -underrepresented words of Ci , and S T
z the set of all T -surprising words, 1 · i · l.

For two strings u and v D suz, a .u; v/-path is a sequence of words fw0 D u; w1; w2; : : : ; wj D vg,
l ¸ 0, such that wi is a unit-symbol extension of wi¡1 .1 · i · j /. In general, a .u; v/-path is not unique.
If all w 2 C belong to some .min.Ci/; max.Ci//-path, we say that class C is closed.

A score function z is .u; v/-increasing (resp., nondecreasing) if given any two words w1; w2 belonging
to a .u; v/-path, the condition jw1j < jw2j implies z.w1/ < z.w2/ (resp., z.w1/ · z.w2/). The de� nitions
of a .u; v/-decreasing and .u; v/-nonincreasing z-scores are symmetric. We also say that a score z is
.u; v/-monotonic when speci� cs are unneeded or understood. The following fact and its symmetric are
immediate.

Fact 2.1. If the z-score under the chosen model is .min.Ci/; max.Ci//-increasing, and Ci is closed,
1 · i · l, then

O T
z µ

l[

iD1

fmax.Ci/g and U T
z µ

l[

iD1

fmin.Ci/g:

Some scores are de� ned in terms of the absolute value (or any even power) of a function of expectation
and count. In those cases, we cannot distinguish anymore overrepresented from underrepresented words.
This restriction is compensated by the fact that we can now relax the property asked of the score function,
as will be explained next.

We recall that a real-valued function F is concave in a set S of real numbers if for all x1; x2 2 S and
all ¸ 2 .0; 1/ we have F ..1 ¡ ¸/x1 C ¸x2/ ¸ .1 ¡ ¸/F .x1/ C ¸F .x2/. If F is concave, then the set of
points below its graph is a convex set. Also, given two functions F and G such that F is concave and G

is concave and monotonically decreasing, we have that G.F .x// is concave.
Similarly, a function F is convex in a set S if for all x1; x2 2 S and all ¸ 2 .0; 1/ we have F ..1¡¸/x1 C

¸x2/ · .1 ¡ ¸/F .x1/ C ¸F .x2/. If F is convex, then the set of points above its graph is a concave set.
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Also, given two functions F and G such that F is convex and G is convex and monotonically increasing,
we have that G.F .x// is convex.

Fact 2.2. If the z-score under the chosen model is a convex function of a .min.Ci/; max.Ci//-
monotonic score z0, that is

z..1 ¡ ¸/z0.u/ C ¸z0.v// · .1 ¡ ¸/z.z0.u// C ¸z.z0.v//

for all u; v 2 Ci , and Ci is closed, 1 · i · l, then

S T
z µ

l[

iD1

fmax.Ci/ [ min.Ci/g:

This fact has two useful corollaries.

Corollary 2.1. If the z-score under the chosen model is the absolute value of a score z0 which is
.min.Ci/; max.Ci//-monotonic, and Ci is closed, 1 · i · l, then

S T
z µ

l[

iD1

fmax.Ci/ [ min.Ci/g:

Corollary 2.2. If the z-score under the chosen model is a convex and increasing function of a score
z0, which is in turn a convex function of a score z00 which is .min.Ci/; max.Ci//-monotonic, and Ci is
closed, 1 · i · l, then

S T
z µ

l[

iD1

fmax.Ci/ [ min.Ci/g:

An example to which the latter corollary could be applied is the choice z D .z0/2 and z0 D
­­z00­­.

Sometimes we are interested in � nding words which minimize the value of a positive score instead of
maximizing it. A fact symmetric to Fact 2.2 also holds.

Fact 2.3. If the z-score under the chosen model is a concave function of a .min.Ci/; max.Ci//-
monotonic score z0, that is

z..1 ¡ ¸/z0.u/ C ¸z0.v// ¸ .1 ¡ ¸/z.z0.u// C ¸z.z0.v//

for all u; v 2 Ci , and Ci is closed, 1 · i · l, then the set of words for which the z-score is minimized is
contained in

l[

iD1

fmax.Ci/ [ min.Ci/g:

In the next section, we present monotonicities established for a number of scores for words w and wv

that obey a condition of the form f .w/ D f .wv/, i.e., have the same set of occurrences. In Section 4,
we discuss in more detail some of the partitions induced by such a condition with a linear number of
equivalence classes.

3. MONOTONICITY RESULTS

This section displays a collection of monotonicity results established with regard to the models and
z-scores considered.
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Recall that we consider score functions of the form

z.w/ D
f .w/ ¡ E.w/

N.w/

where f .w/ > 0, E.w/ > 0, and N.w/ > 0 where N.w/ appears in the score as the expected value of
some function of w.

Throughout, we assume w and an extension wv of w to be nonempty substrings of a text x such that
f .w/ D f .wv/. For convenience of notation, we set ½.w/ ´ E.w/=N.w/. First, we state a simple fact
on the monotonicity of E.w/ given the monotonicity of ½.w/ and N.w/.

Fact 3.1. If ½.w/ ¸ ½.wv/, and if N.w/ > N.wv/, then E.w/ > E.wv/.

Proof. From ½.w/ ¸ ½.wv/, we get that E.w/=E.wv/ ¸ N.w/=N.wv/. By hypothesis, N.w/=

N.wv/ > 1, whence the claim.

Under some general conditions on N.w/ and ½.w/, we can prove the monotonicityof any score functions
of the form described above.

Theorem 3.1. If f .w/ D f .wv/, N.wv/ < N.w/, and ½.wv/ · ½.w/, then

f .wv/ ¡ E.wv/

N.wv/
>

f .w/ ¡ E.w/

N.w/
:

Proof. By construction of the equivalence classes, we have f .wv/ D f .w/ ¸ 0. We can rewrite the
inequality of the theorem as

f .w/

E.wv/

³
1 ¡

N.wv/

N.w/

´
> 1 ¡

½.w/

½.wv/
:

The left hand side is always positive because 0 < N.wv/=N.w/ < 1, and the right hand size is always
negative (or zero if ½.w/ D ½.wv/).

The statement of Theorem 3.1 also holds by exchanging the condition ½.wv/ · ½.w/ with f .w/ >

E.w/ > E.wv/. Let us now apply the theorem to some common choices for N.w/.

Fact 3.2. If f .w/ D f .wv/ and E.wv/ < E.w/, then

1. f .wv/ ¡ E.wv/ > f .w/ ¡ E.w/;

2.
f .wv/

E.wv/
>

f .w/

E.w/
;

3.
f .wv/ ¡ E.wv/

E.wv/
>

f .w/ ¡ E.w/

E.w/
;

4.
f .wv/ ¡ E.wv/

p
E.wv/

>
f .w/ ¡ E.w/

p
E.w/

:

Proof.

1. The choice N.w/ D 1, ½.w/ D E.w/ satis� es the conditions of Theorem 3.1 because E.wv/ < E.w/;
2. by hypothesis 0 < 1=E.w/ < 1=E.wv/, and we have that f .w/ D f .wv/;
3. the choice N.w/ D E.w/; ½.w/ D 1 satis� es the conditions of Theorem 3.1 because E.wv/ < E.w/;
4. the choice N.w/ D

p
E.w/; ½.w/ D

p
E.w/ satis� es the conditions of Theorem 3.1 because E.wv/ <

E.w/.
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Other types of scores use absolute values or powers of the difference f ¡ E.

Theorem 3.2. If f .w/ D f .wv/ ´ f , N.wv/ < N.w/, and ½.wv/ · ½.w/, then

­­­­
f .wv/ ¡ E.wv/

N.wv/

­­­­>

­­­­
f .w/ ¡ E.w/

N.w/

­­­­ iff f > E.w/
° N.w/ C N.wv/

N.w/ C N.wv/

where ° D E.wv/=E.w/.

Proof. Note � rst that 0 < ° < 1 by Fact 3.1 and that

E.wv/ D E.w/° < E.w/
° N.w/ C N.wv/

N.w/ C N.wv/
< E.w/:

We set, for convenience, E¤ D E.w/ ° N.w/CN.wv/
N.w/CN.wv/ .

We � rst prove that if f > E¤ then jz.wv/j > jz.w/j. We consider two cases, one of which is trivial.
When f > E.w/, then both f .wv/¡ E.wv/ and f .w/ ¡ E.w/ are positive and the claim follows directly
from Fact 3.2. If instead E¤ < f < E.w/, we evaluate the difference of the scores

N.wv/N.w/ .jz.wv/j ¡ jz.w/j/ D N.wv/N.w/

³
f ¡ ° E.w/

N.wv/
C

f ¡ E.w/

N.w/

´

D .f ¡ ° E.w//N.w/ C .f ¡ E.w//N.wv/

D f .N.w/ C N.wv// ¡ E.w/.° N.w/ C N.wv//

D .N.w/ C N.wv//.f ¡ E¤/

which is positive by hypothesis.
The converse can be proved by showing that if f · E¤ we have jz.wv/j · jz.w/j. Again, there are two

cases, one of which is trivial. When 0 < f .w/ < E.wv/, both f .wv/ ¡ E.wv/ and f .w/ ¡ E.w/ are
negative and the claim follows directly from Fact 3.2. If instead E.wv/ < f · E¤, we use the relation
obtained above, i.e.,

jz.wv/j ¡ jz.w/j D
N.w/ C N.wv/

N.wv/N.w/
.f ¡ E¤/;

to get the claim.

Theorem 3.2 say that these scores are monotonically decreasing when f < E¤ and monotonically
increasing when f > E¤. We can picture the dynamics of the score as follows. Initially, we can assume
E¤ > f , in which case the score is decreasing. As we extend the word, keeping the count f constant, E¤

decreases (recall that E¤ is always in the interval [E.wv/; E.w/]). At some point, E¤ D f , in which case
the score stays constant. By extending the word even more, E¤ becomes smaller than f , and the score
begins to grow.

Fact 3.3. If f .w/ D f .wv/ and if E.w/ > E.wv/ ´ ° E.w/, then

1.

­­­­
f .wv/ ¡ E.wv/

p
E.wv/

­­­­>

­­­­
f .w/ ¡ E.w/

p
E.w/

­­­­ iff f .wv/ > E.w/
p

° ;

2.
.f .wv/ ¡ E.wv//2

E.wv/
>

.f .w/ ¡ E.w//2

E.w/
iff f .wv/ > E.w/

p
° :

Proof. Relation (1) follows directly from Theorem 3.2 by setting N.w/ D
p

E.w/. Relation (2) follows
from relation (1) by squaring both sides.
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Certain types of scores require to be minimized rather than maximized. For example, the scores based on
the probability that P.f .w/ · T / or P.f .w/ ¸ T / for a given threshold T on the number of occurrences.

Fact 3.4. Given a threshold T > 0 on the number of occurrences, then

P.f .w/ · T / · P.f .wv/ · T /

Proof. From f .uwv/ · f .w/ we know that if f .w/ · T then also f .wv/ · T . Therefore P.f .w/ ·
T / · P.f .wv/ · T /.

Let us consider the score

zP .w; T / D minfP.f .w/ · T /; P.f .w/ > T /g

D minfP.f .w/ · T /; 1 ¡ P.f .w/ · T /g

evaluated on the strings in a class C . By Fact 3.4, one can compute the score only for the shortest and the
longest strings in C , as follows:

minfP.f .min.C// · T /; P.f .max.C// > T /g:

Also, note that score zP .w; T / satis� es the conditions of Fact 2.3. In fact, z0 D P.f .w/ · T / is
.min.C/; max.C//-monotonic by Fact 3.4, and the transformation z D minfz0; 1¡z0g is a concave function
in z0.

Table 1 summarizes the collection of these properties.

Table 1. General Monotonicities for Scores Associated with the Counts f , under
the Hypothesis f .w/ D f .wv/; We Have Set ½.w/ ´ E.w/=N.w/ and ° ´ E.wv/=E.w/

Property Conditions

(1.1)
f .wv/ ¡ E.wv/

N.wv/
>

f .w/ ¡ E.w/

N.w/
N.wv/ < N.w/; ½.wv/ · ½.w/

(1.2)

­­­­
f .wv/ ¡ E.wv/

N.wv/

­­­­>

­­­­
f .w/ ¡ E.w/

N.w/

­­­­ N.wv/ < N.w/; ½.wv/ · ½.w/

and f .w/ > E.w/
° N.w/ C N.wv/

N.w/ C N.wv/

(1.3) f .wv/ ¡ E.wv/ > f .w/ ¡ E.w/ E.wv/ < E.w/

(1.4)
f .wv/

E.wv/
>

f .w/

E.w/
E.wv/ < E.w/

(1.5)
f .wv/ ¡ E.wv/

E.wv/
>

f .w/ ¡ E.w/

E.w/
E.wv/ < E.w/

(1.6)
f .wv/ ¡ E.wv/p

E.wv/
>

f .w/ ¡ E.w/p
E.w/

E.wv/ < E.w/

(1.7)

­­­­
f .wv/ ¡ E.wv/

p
E.wv/

­­­­>

­­­­
f .w/ ¡ E.w/

p
E.w/

­­­­ E.w/ > E.wv/; f .w/ > E.w/
p

°

(1.8)
.f .wv/ ¡ E.wv//2

E.wv/
>

.f .w/ ¡ E.w//2

E.w/
E.w/ > E.wv/; f .w/ > E.w/

p
°
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3.1. The expected number of occurrences under Bernoulli

Let pa be the probability of the symbol a 2 6 in the Bernoulli model. We de� ne Op D
Qjwj

iD1 pw[i] and

Oq D
Qjvj

iD1 pv[i] . Note that 0 < p
jwj
min · Op · p

jwj
max < 1, where pmin D mina26 pa and pmax D maxa26 pa .

We also observe that pmax ¸ 1= j6j, and therefore upper bounds on pmax could turn out to be unsatis� able
for small alphabets.

Fact 3.5. Let x be a text generated by a Bernoulli process. Then E.Zwv/ < E.Zw/.

Proof. We have

E.Zwv/

E.Zw/
D

.n ¡ jwj ¡ jvj C 1/ Op Oq
.n ¡ jwj C 1/ Op

D
³

1 ¡
jvj

n ¡ jwj C 1

´
Oq < Oq < 1

because jvj
n¡jwjC1 > 0.

Fact 3.6. Let x be a text generated by a Bernoulli process. If f .w/ D f .wv/, then

1. f .wv/ ¡ E.Zwv/ > f .w/ ¡ E.Zw/;

2.
f .wv/

E.Zwv/
>

f .w/

E.Zw/
;

3.
f .wv/ ¡ E.Zwv/

E.Zwv/
>

f .w/ ¡ E.Zw/

E.Zw/
;

4.
f .wv/ ¡ E.Zwv/

p
E.Zwv/

>
f .w/ ¡ E.Zw/

p
E.Zw/

:

Proof. Directly from Theorem 3.1 and Fact 3.5.

Fact 3.7. Let x be a text generated by a Bernoulli process. If f .w/ D f .wv/ ´ f , then

1.

­­­­
f .wv/ ¡ E.Zwv/

p
E.Zwv/

­­­­>

­­­­
f .w/ ¡ E.Zw/

p
E.Zw/

­­­­ iff f > E.Zw/
p

° ;

2.
.f .wv/ ¡ E.Zwv//2

E.Zwv/
>

.f .w/ ¡ E.Zw//2

E.Zw/
iff f > E.Zw/

p
°

where ° D E.Zwv/=E.Zw/.

Proof. Directly from Fact 3.3 and Fact 3.5.

A score that is not captured in Fact 3.2 uses the square root of the � rst order approximation of the
variance as the normalizing factor.

Fact 3.8. Let x be a text generated by a Bernoulli process. If f .w/ D f .wv/ and Op < 1=2; then

f .wv/ ¡ E.Zwv/p
E.Zwv/.1 ¡ Op Oq/

>
f .w/ ¡ E.Zw/p

E.Zw/.1 ¡ Op/
:

Proof. To have monotonicity, the functions N.w/ D
p

E.Zw/.1 ¡ Op/ and ½.w/ D E.Zw/=N.w/

should satisfy the conditions of Theorem 3.1. First we study the ratio

³
N.wv/

N.w/

´2

D
³

1 ¡
jvj

n ¡ jwj C 1

´
Op Oq.1 ¡ Op Oq/

Op.1 ¡ Op/
<

Op Oq.1 ¡ Op Oq/

Op.1 ¡ Op/
:
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The concave product Op.1¡ Op/ reaches its maximum for Op D 1=2. Since we assume Op < 1=2, the rightmost
term is smaller than one. The monotonicity of N.w/ is satis� ed.

Then, we need to prove that ½.w/ also is monotonic, i.e., ½.wv/ · ½.w/, which is equivalent to

E.Zwv/

E.Zw/

1 ¡ Op
1 ¡ Op Oq

· 1

but E.Zwv/=E.Zw/ < 1 by hypothesis and .1 ¡ Op/=.1 ¡ Op Oq/ < 1 for any choice of Op; Oq 2 [0; 1].

To study the monotonicity of the score with the complete variance, we � rst must prove some facts about
the auto-correlation function

B.w/ D
X

d2P.w/

.n ¡ jwj C 1 ¡ d/

jwjY

jDjwj¡dC1

pw[j ]

where P.w/ is the set of the period lengths of w. Throughout this section, unless otherwise noted, a is
any of the symbols in 6 such that pa D pmax .

Fact 3.9. Let n be the size of a text generated by a Bernoulli process and 2 · m · .n C 1/=2. If
pa < .

p
5 ¡ 1/=2, then pm

a B.am/ is monotonically decreasing with m.

Proof. Words am have period set f1; 2; : : : ; m ¡ 1g and, therefore,

B.am/ D
m¡1X

lD1

.n ¡ m C 1 ¡ l/pl
a D

m¡2X

kD0

.n ¡ m ¡ k/pkC1
a

D .n ¡ m/pa

m¡2X

kD0

pk
a ¡ pa

m¡2X

kD0

kpk
a

D pa

³
.n ¡ m/

1 ¡ pm¡1
a

1 ¡ pa
¡

.m ¡ 2/pm
a ¡ .m ¡ 1/pm¡1

a C pa

.1 ¡ pa/2

´

D
pa

.1 ¡ pa/2

±
.n ¡ m/.1 ¡ pa/.1 ¡ pm¡1

a / ¡ .m ¡ 2/pm
a C .m ¡ 1/pm¡1

a ¡ pa

²

D
pa

.1 ¡ pa/2

±
.n ¡ m/.1 ¡ pa ¡ pm¡1

a C pm
a / ¡ .m ¡ 2/pm

a C .m ¡ 1/pm¡1
a ¡ pa

²

D
pa

.1 ¡ pa/2

±
n ¡ m ¡ .n ¡ m C 1/pa ¡ .n ¡ 2m C 1/pm¡1

a C .n ¡ 2m C 2/pm
a

²
:

We now consider the function b.m/ D pm
a B.am/ in the interval n > 0; m 2 [2; .n C 1/=2]; pa 2 .0; 1/.

Since function b.m/ is de� ned for integer values of m, we study the differences between consecutive values
of m. We de� ne the function

1.m/ ´
b.m ¡ 1/ ¡ b.m/

pm
a

;

and after some algebraic manipulations we get

1.m/ D
B.®m¡1/

pa
¡ B.am/ D ¡pm

a .n ¡ 2m/ ¡ pm¡1
a .n ¡ 2m C 1/ C .n ¡ m/:
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We � rst aim our efforts towards small values of m. Speci� cally, we look for values of pa and n such
that b.2/ ¡ b.3/ > 0. We have

1.2/ D
b.2/ ¡ b.3/

p3
a

D ¡p2
a.n ¡ 4/ ¡ pa.n ¡ 3/ C .n ¡ 2/:

The solution of the inequality b.2/ ¡ b.3/ > 0 is 0 < pa < .3 ¡ n C
p

5n2 ¡ 30n C 41/=.2n ¡ 8/. This
interval shrinks as n grows. Taking the limit n ! 1, we get 0 < pa < .

p
5 ¡ 1/=2 ¼ 0:618.

Repeating the analysis on b.3/ ¡ b.4/, we get

1.3/ D
b.3/ ¡ b.4/

p4
a

D ¡p3
a.n ¡ 6/ ¡ p2

a.n ¡ 5/ C .n ¡ 3/;

which has two imaginary roots and one positive real root. The function is positive in the interval .0; .C2 ¡
2C C 4/=.6C// where C D 100C 12

p
69. The upper extreme of the interval is about 0:7548784213, which

is bigger than .
p

5 ¡ 1/=2.
As we increase m, the difference b.m/¡b.mC1/ remains positive for larger and larger intervals. Finally,

when m D .n ¡ 1/=2, we get

1

³
n ¡ 1

2

´
D

b..n ¡ 1/=2/ ¡ b..n C 1/=2/

p
.nC1/=2
a

D
n C 1

2
¡ p

.n¡3/=2
a .2 C pa/:

The latter function is always positive for any choice of pa and n > 5. In fact, if n > 5,

1

³
n ¡ 1

2

´
D

n C 1

2
¡ p

.n¡3/=2
a .2 C pa/ ¸

n C 1

2
¡ 3 > 0:

We can conclude that the most restrictive case is m D 2. If we choose pa < .
p

5 ¡ 1/=2, then b.m/ is
monotonically decreasing when 2 · m · .n C 1/=2, for any choice of n > 0.

Fact 3.10. Let n be the size of a text generated by a Bernoulli process and 2 · m · .n C 1/=2. For
all words w 2 6m, we have

0 · B.w/ · B.am/ ·
pa

1 ¡ pa
.n ¡ m/ ¡

p2
a.1 ¡ pm¡1

a /

.1 ¡ pa/2
:

Proof. We have

B.w/ D
X

d2P.w/

.n ¡ m C 1 ¡ d/

mY

jDm¡dC1

pw[j ]

·
X

d2P.w/

.n ¡ m C 1 ¡ d/pd
a

·
X

d2P.am
/

.n ¡ m C 1 ¡ d/pd
a

D
m¡1X

dD1

.n ¡ m C 1 ¡ d/pd
a

D B.am/

since (1) all terms in the sum are positive (1 · d · m ¡ 1 and m · .n C 1/=2), (2) am has at least all the
periods of w (i.e., P.w/ µ P.am/ D f1; 2; : : : ; m ¡ 1g), and (3)

Qm
jDm¡dC1 pw[j ] · pd

a D pd
max .
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From the derivation of B.am/ in Fact 3.9, we have

B.am/ D
pa

.1 ¡ pa/2

±
n ¡ m ¡ .n ¡ m C 1/pa ¡ .n ¡ 2m C 1/pm¡1

a C .n ¡ 2m C 2/pm
a

²

D
pa

.1 ¡ pa/2

±
n ¡ m ¡ .n ¡ m C 1/pa C pm

a C pm¡1
a .pa ¡ 1/.n ¡ 2m C 1/

²

·
pa

.1 ¡ pa/2

¡
n ¡ m ¡ .n ¡ m C 1/pa C pm

a

¢

D
pa

1 ¡ pa

Á
n ¡ m ¡

m¡1X

iD1

pi
a

!

D
pa

1 ¡ pa
.n ¡ m/ ¡

p2
a.1 ¡ pm¡1

a /

.1 ¡ pa/2

because n ¡ 2m C 1 > 0 and pa ¡ 1 · 0.

We can now get a simple bound on the maximum value achieved by OpB.w/ for any word w 2 6C.

Corollary 3.1. Let w be any substring of a text generated by a Bernoulli process, m D jwj ¸ 2, and
a be the symbol in 6 such that pa D pmax < .

p
5 ¡ 1/=2. Then

0 · OpB.w/ · .n ¡ 2/p3
max :

Proof. We already know that Op · pm
a , and therefore OpB.w/ · pm

a B.w/. Fact 3.10 says that B.am/ is
an upper bound for B.w/ for any word w of the same length and that pm

a B.am/ reach the maximum for
m D 2. Speci� cally, the maximum is p2

maxB.®2/ D p2
max .n ¡ m/pmax .

We are now ready to study the monotonicity of the score with the “exact” variance. We will warm up
studying the family of words am.

Fact 3.11. Let 2 · m · .n C 1/=2. If pa · 0:6, then Var.Zam / is monotonically decreasing with m.

Proof. We study the function

Var.Zam / D .n ¡ m C 1/pm
a .1 ¡ pm

a / ¡ p2m
a .2n ¡ 3m C 2/.m ¡ 1/ C 2pm

a B.am/

de� ned on integer values of m. We study the differences between consecutive values of m. We de� ne the
function

1.m/ ´
Var.Zam/ ¡ Var.ZamC1/

pm
a

:

After some algebraic manipulations, we get

1.m/ D pmC2
a .2nm C n ¡ 3m2 ¡ 2m/ ¡ pmC1

a .2n ¡ 4m/

¡ pm
a .2nm C n ¡ 3m2 C 1/ C pa.n ¡ m/ C n ¡ m C 1:

The function 1.m/ has a root for pa D 1.
We � rst focus our attention on the case m D 2 and study the condition Var.Za2 /¡Var.Za3 / > 0. We get

1.2/ D
Var.Za2/ ¡ Var.Za3 /

p2
a

D p4
a.5n ¡ 16/ ¡ p3

a.2n ¡ 8/ ¡ p2
a.5n ¡ 11/ C pa.n ¡ 2/ C n ¡ 1

D .pa ¡ 1/
±
p3

a.5n ¡ 16/ C p2
a.3n ¡ 8/ ¡ pa.2n C 3/ ¡ n C 1

²
:
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The four roots of this function have been computed with Maple: two roots are negative, one is pa D 1,
and one is positive pa D p¤, where p¤ is de� ned below. The closed form of p¤ is too long to be reported
here. We observe that function 1.2/ is positive in the interval .0; p¤/, which shrinks as n grows. For
n ! 1, p¤ D 0:6056592526.

Repeating the analysis for m D 3, we obtain

1.3/ D
Var.Za3 / ¡ Var.Za4/

p3
a

D p5
a.7n ¡ 33/ ¡ p4

a.2n ¡ 12/ ¡ p3
a.7n ¡ 26/ C n ¡ 2

D .pa ¡ 1/
±

p4
a.7n ¡ 33/ C p3

a.5n ¡ 21/ ¡ p2
a.2n ¡ 5/ ¡ pa.2n ¡ 5/ ¡ n C 2

²
:

It turns out that the interval for pa in which 1.3/ > 0 is larger than .0; p¤/. In fact, as m increases, the
difference Var.Zam / ¡ Var.ZamC1/ becomes positive for larger and larger values of pa .

Finally, when m D .n ¡ 1/=2, we get

1

³
n ¡ 1

2

´
D

n C 3
2

C
pa

4

³
p

nC1
2

a .n C 1/2 ¡ 8p
n¡1

2
a ¡ p

n¡3
2

a .1 C 6n C n2/ C 2n C 2

´
;

and we can choose any pa in the interval .0; 1/. To summarize, p < 0:6 assures the monotonicity for all
n and 2 · m · .n C 1/=2.

Fact 3.12. For any word y and for any d 2 P.y/,

mY

jDm¡dC1

py[j ] D
dY

jD1

py[j ] :

Proof. Let us decompose y D .uv/ku where juj D d . Then, clearly, y starts with uv and ends with
vu, which have the same product of probabilities under the Bernoulli model.

The next three propositions are concerned with the monotonicity of the variance and the corresponding
scores.

Fact 3.13. Let w be a nonempty substring of a text generated by a Bernoulli process and wb a unit
extension of w, b 2 6. If pmax < 1= m

p
4m C 2, then Var.Zwb/ < Var.Zw/.

Proof. Let Zi.w/ be the indicator random variable that w occurs in the text x at position i. Then

Zw D
n¡mC1X

iD1

Zi.w/; Zwb D
n¡mX

iD1

Zi.w/ZiCm.b/:

The proof is divided in two parts. The � rst is to show that Var.Zw/ > Var
¡Pn¡m

iD1 Zi.w/
¢

when pmax <

1= m
p

2m ¡ 1. Then we prove that Var
¡Pn¡m

iD1 Zi.w/
¢

> Var.Zwb/ when pmax < 1= m
p

4m C 2. Since
1= m

p
4m C 2 < 1= m

p
2m ¡ 1, the conclusion holds when pmax < 1= m

p
4m C 2.

Let us start with the � rst part. We have

Var.Zw/ D Var

Á
n¡mX

iD1

Zi.w/

!

C Op.1 ¡ Op/ C 2
n¡mX

iD1

Cov .Zi.w/; Zn¡mC1.w// :

Due to the independence

n¡mX

iD1

Cov .Zi.w/; Zn¡mC1.w// D
n¡mX

iDn¡2mC2

Cov .Zi.w/; Zn¡mC1.w//

¸ ¡.m ¡ 1/ Op2:
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Then

Var.Zw/ ¡ Var

Á
n¡mX

iD1

Zi.w/

!
¸ Op.1 ¡ Op/ ¡ 2.m ¡ 1/ Op2

D Op.1 ¡ .2m ¡ 1/ Op/:

Since Op · pm
max < 1=.2m ¡ 1/, the � rst part of the proof follows.

Let us prove the second part. We have

Var

Á
n¡mX

iD1

Zi.w/

!

¡ Var.Zwb/ D E

ÁÁ
n¡mX

iD1

.Zi.w/ ¡ Op/ ¡
n¡mX

iD1

.Zi.w/ZiCm.b/ ¡ Oppb/

!

¢
Á

n¡mX

iD1

.Zi.w/ ¡ Op/ C
n¡mX

iD1

.Zi.w/ZiCm.b/ ¡ Oppb/

!!

D
n¡mX

iD1

Cov .Zi.w/.1 ¡ ZiCm.b//; Zi.w/.1 C ZiCm.b///

C
n¡mX

iD1

X

j 6Di

Cov
¡
Zi.w/.1 ¡ ZiCm.b//;Zj .w/.1 C ZjCm.b//

¢

D .n ¡ m/. Op.1 ¡ pb/ ¡ Op2.1 ¡ p2
b//

C 2
n¡mX

iD1

iCmX

jDiC1

±
E.Zi.w/.1¡ZiCm.b//Zj .w/.1CZjCm.b//¡ Op2.1¡p2

b/
²

¸ .n ¡ m/ Op.1 ¡ pb/.1 ¡ Op.1 C pb// ¡ 2.n ¡ m/m Op2.1 ¡ p2
b/

D .n ¡ m/ Op.1 ¡ pb/.1 ¡ Op.1 C pb/ ¡ 2m Op.1 C pb//

D .n ¡ m/ Op.1 ¡ pb/.1 ¡ .2m C 1/ Op.1 C pb//:

Since Op · pm
max < 1=.4m C 2/, the second part follows, and also the conclusion.

Fact 3.14. Let w be a nonempty substring of a text generated by a Bernoulli process, and wb a right
extension of w, b 2 6. If pmax <

p
2 ¡ 1, then E.Zwb/p

Var.Zwb/
< E.Zw/p

Var.Zw/
.

Proof. We de� ne 1.w; b/ ´ Var.Zw/E.Zwb/2 ¡ Var.Zwb/E.Zw/2. We have to prove 1.w; b/ < 0.
We have

1.w; b/

Op2 D Var.Zw/p2
b.n ¡ m/2 ¡ Var.Zwb/.n ¡ m C 1/2

D .n ¡ m/2.p2
bVar.Zw/ ¡ Var.Zwb// ¡ .2n ¡ 2m C 1/Var.Zwb/:

First we evaluate Var.Zw/, and we set N D n ¡ m for convenience.

Var.Zw/ D Op
¡
.N C 1/.1 ¡ Op/ ¡ 2.m ¡ 1/ Op.N C 1 ¡ m=2/ C 2B.w/

¢

· Op.N C 1/

Á

1 ¡ Op ¡ 2.m ¡ 1/ Op C
m.m ¡ 1/ Op

N C 1
C 2

N C 1

m¡1X

lD1

.N C 1 ¡ l/pl
b

!

D Op.N C 1/

Á

1 ¡ Op
³

2m ¡ 1 C
m.m ¡ 1/

N C 1

´
C 2

m¡1X

lD1

³
1 ¡

l

N C 1

´
pl

b

!
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implies that

³
N

N C 1

´2 p2
bVar.Zw/

Oppb
· pbN

Á

1 ¡ Op
³

2m ¡ 1 C
m.m ¡ 1/

N C 1

´
C 2

m¡1X

lD1

³
1 ¡

l

N C 1

´
pl

b

!

:

Next we evaluate Var.Zwb/:

Var.Zwb/

Oppb
D

³
N.1 ¡ Oppb/ ¡ 2 Oppb

³
N ¡

m C 1
2

´
m C 2B.wb/

´

¸ N

³
1 ¡ Oppb ¡ 2 Oppb

³
1 ¡

m C 1

2N

´
m

´
:

Note that since we are interested in the worst case for the difference Var.Zw/¡Var.Zwb/, we set B.wb/ D 0
and B.w/ maximal. This happens when w is a word of the form am where a is the symbol with the highest
probability pmax and c 6D a. Recall that Fact 3.10 says that 0 · B.w/ · B.am/. Then

1.w; b/

Oppb.N C 1/2 D

³
N

N C 1

´2

p2
bVar.Zw/ ¡ Var.Zwb/

Oppb

· N

Á

pb ¡ Oppb

³
2m ¡ 1 ¡

m.m ¡ 1/

N C 1

´
C 2pb

m¡1X

lD1

³
1 ¡

l

N C 1

´
pl

b

¡ 1 C Oppb C 2 Oppb

³
1 ¡

m C 1
2N

´
m

´

D N

Á
pb ¡ 1 C Oppb

³
m.m ¡ 1/

N C 1
¡

m.m C 1/

N
C 2

´
C 2pb

m¡1X

lD1

³
1 ¡

l

N C 1

´
pl

b

!

D N

Á

pb ¡ 1 C Oppb

³
2 ¡ m

³
m C 1

N.N C 1/
C 2

N C 1

´´
C 2pb

m¡1X

lD1

³
1 ¡

l

N C 1

´
pl

b

!

· N

Á

pb ¡ 1 C 2 Oppb C 2pb

m¡1X

lD1

pl
b

!

· N

Á

pmax ¡ 1 C 2pmC1
max C 2pmax

m¡1X

lD1

pl
max

!

D N

Á

pmax ¡ 1 C 2pmax

mX

lD1

pl
max

!

D N

Á

¡.pmax C 1/ C 2pmax

mX

lD0

pl
max

!

D N.1 C pmax /

³
¡1 C 2pmax

1 ¡ pmC1
max

1 ¡ p2
max

´
:

We used the fact that pb · pmax , Op · pm
max and that mC1

N.NC1/
C 2

NC1 > 0. A suf� cient condition for the
function 1.w; b/ to be negative is

2.1 ¡ pmC1
max /pmax · 1 ¡ p2

max :
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Table 2. The Value of p¤ for Several Choices of m, for Which Function 1.w; b/

Is Negative in the Interval pmax 2 .0; p¤/. p¤ Converges to
p

2 ¡ 1

m p¤ m p¤ m p¤

2 0.4406197005 5 0.4157303841 30 0.4142135624
3 0.4238537991 10 0.4142316092 50 0.4142135624
4 0.4179791697 20 0.4142135651 100 0.4142135624

Table 2 shows the root p¤ of 2.1 ¡ pmC1
max /pmax ¡ 1 C p2

max D 0 when pmax 2 [0; 1]. For large m, it
suf� ces to show that 2pmax · 1 ¡ p2

max , which corresponds to pmax ·
p

2 ¡ 1.

Theorem 3.3. Let x be a text generated by a Bernoulli process. If f .w/ D f .wv/ and pmax <

minf1= m
p

4m;
p

2 ¡ 1g, then

f .wv/ ¡ E.Zwv/
p

Var.Zwv/
>

f .w/ ¡ E.Zw/
p

Var.Zw/
:

Proof. The choice N.w/ D
p

Var.Zw/, ½.w/ D E.w/=
p

Var.Zw/ satis� es the conditions of Theo-
rem 3.1 because the bound on pmax satis� es the hypothesis of Facts 3.13 and 3.14.

An interesting observation by Sinha and Tompa (2000) is that the score in Theorem 3.3 obeys the
following relation:

z.w/ ·
f .w/ ¡ E.Zw/p
E.Zw/ ¡ E.Zw/2

when E.Zw/ ¡ E.Zw/2 > 0

since Var.Zw/ ¸ E.Zw/ ¡ E.Zw/2 (see Sinha and Tompa [2000] for details). It is therefore suf� cient
to know E.Zw/ to have an upper bound of the score. If the bound happens to be smaller than than the
threshold, then the algorithm can disregard that word, avoiding the computation of the exact variance.

Theorem 3.4. Let x be a text generated by a Bernoulli process.
If f .w/ D f .wv/ ´ f and pmax < minf1= m

p
4m;

p
2 ¡ 1g, then

­­­­
f .wv/ ¡ E.Zwv/

p
Var.Zwv/

­­­­<

­­­­
f .w/ ¡ E.Zw/

p
Var.Zw/

­­­­ iff f > E.Zw/
°

p
Var.Zw/ C

p
Var.Zwv/

p
Var.Zw/ C

p
Var.Zwv/

where ° D E.Zwv/=E.Zw/.

Proof. The choice N.w/ D
p

Var.Zw/, ½.w/ D E.w/=
p

Var.Zw/ satis� es the conditions of Theo-
rem 3.2 because the bound on pmax satis� es the hypothesis of Facts 3.13 and 3.14.

Table 3 collects these properties.

3.2. The expected number of occurrences under Markov models

Fact 3.15. Let w and v be two nonempty substrings of a text generated by a Markov process of order
M > 0. Then OE.Zwv/ · OE.Zw/.

Proof. Let us � rst prove the case M D 1 for simplicity. Recall that an estimator of the expected count
when M D 1 is given by

OE.Zw/ D
f .w[1;2]/f .w[2;3]/ : : : f .w[jwj¡1;jwj]/

f .w[2]/f .w[3]/ : : : f .w[jwj¡1]/
:
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Table 3. Monotonicities for Scores Associated with the Number of Occurrences f under the
Bernoulli Model for the Random Variable Z; We Set ° ´ E.Zwv/=E.Zw/

Property Conditions

(2.1) E.Zwv/ < E.Zw/ none

(2.2) f .wv/ ¡ E.Zwv/ > f .w/ ¡ E.Zw/ f .w/ D f .wv/

(2.3)
f .wv/

E.Zwv/
>

f .w/

E.Zw/
f .w/ D f .wv/

(2.4)
f .wv/ ¡ E.Zwv/

E.Zwv/
>

f .w/ ¡ E.Zw/

E.Zw/
f .w/ D f .wv/

(2.5)
f .wv/ ¡ E.Zwv/p

E.Zwv/
>

f .w/ ¡ E.Zw/p
E.Zw/

f .w/ D f .wv/

(2.6)

­­­­
f .wv/ ¡ E.Zwv/

p
E.Zwv/

­­­­>

­­­­
f .w/ ¡ E.Zw /

p
E.Zw/

­­­­ f .w/ D f .wv/; f .w/ > E.Zw/
p

°

(2.7)
.f .wv/ ¡ E.Zwv//2

E.Zwv/
>

.f .w/ ¡ E.Zw//2

E.Zw/
f .w/ D f .wv/; f .w/ > E.Zw/

p
°

(2.8)
f .wv/ ¡ E.Zwv/p

E.Zwv/.1 ¡ Op Oq/
>

f .w/ ¡ E.Zw/p
E.Zw/.1 ¡ Op/

f .w/ D f .wv/; Op < 1=2

(2.9) Var.Zwv/ < Var.Zw / pmax < 1=
m
p

4m

(2.10)
E.Zwv/p
Var.Zwv/

<
E.Zw/p
Var.Zw/

pmax <
p

2 ¡ 1

(2.11)
f .wv/ ¡ E.Zwv/p

Var.Zwv/
>

f .w/ ¡ E.Zw/p
Var.Zw/

f .w/ D f .wv/; pmax < minf1=
m
p

4m;
p

2 ¡ 1g

(2.12)

­­­­
f .wv/ ¡ E.Zwv/p

Var.Zwv/

­­­­>

­­­­
f .w/ ¡ E.Zw /p

Var.Zw /

­­­­ f .w/ D f .wv/; pmax < minf1=
m
p

4m;
p

2 ¡ 1g

and f .w/ > E.Zw/
°

p
Var.Zw/ C

p
Var.Zwv/p

Var.Zw / C
p

Var.Zwv/

Let us evaluate

OE.Zwv/

OE.Zw/
D

f .w[1;2]/f .w[2;3]/ : : : f .w[jwj¡1;jwj]/f .w[jwj]v[1]/f .v[1;2]/ : : : f .v[jvj¡1;jvj]/

f .w[2]/f .w[3]/ : : : f .w[jwj¡1]/f .w[jwj]/f .v[1]/ : : : f .v[jvj¡1]/

f .w[1;2]/f .w[2;3]/ : : : f .w[jwj¡1;jwj]/

f .w[2]/f .w[3]/ : : : f .w[jwj¡1]/

D
f .w[jwj]v[1]/f .v[1;2]/ : : : f .v[jvj¡1;jvj]/

f .w[jwj]/f .v[1]/ : : : f .v[jvj¡1]/
:

Note that numerator and denominator have the same number of factors and that f .w[jwj]v[1]/ · f .w[jwj]/,
f .v[1;2]/ · f .v[1]/, : : : , f .v[jvj¡1;jvj]/ · f .v[jvj¡1]/. Therefore,

OE.Zwv/

OE.Zw/
· 1:
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Suppose now we have a Markov chain of order M > 1. Using a standard procedure, we can transform
it into a Markov model of order one. The alphabet of the latter is composed of symbols in one-to-one
correspondence with all the possible substrings of length M ¡ 1.

Since the argument above is independent from the size of the alphabet, the conclusion holds for any
Markov chain.

Fact 3.16. Let x be text generated by a Markov process of order M > 0. If f .w/ D f .wv/, then

1. f .wv/ ¡ OE.Zwv/ ¸ f .w/ ¡ OE.Zw/;

2.
f .wv/

OE.Zwv/
¸

f .w/

OE.Zw/
;

3.
f .wv/ ¡ OE.Zwv/

OE.Zwv/
¸

f .w/ ¡ OE.Zw/

OE.Zw/
;

4.
f .wv/ ¡ OE.Zwv/q

OE.Zwv/

¸
f .w/ ¡ OE.Zw/q

OE.Zw/

:

Proof. Directly from Theorem 3.1 and Fact 3.15.

Fact 3.17. Let x be text generated by a Markov process of order M > 0. If f .w/ D f .wv/ ´ f , then

1.

­­­­­­
f .wv/ ¡ OE.Zwv/q

OE.Zwv/

­­­­­­
¸

­­­­­­
f .w/ ¡ OE.Zw/q

OE.Zw/

­­­­­­
iff f > E.Zw/

p
° ;

2.
.f .wv/ ¡ OE.Zwv//2

OE.Zwv/
¸

.f .w/ ¡ OE.Zw//2

OE.Zw/
iff f > E.Zw/

p
°

where ° D E.Zwv/=E.Zw/.

Proof. Directly from Fact 3.3 and Fact 3.15.

3.3. The expected number of colors for Bernoulli and Markov models

Fact 3.18. Let w and v be two nonempty substrings of a text generated by a any process. Then
E.Wwv/ · E.Ww/.

Proof. Recall that

E.Ww/ D k ¡
kX

jD1

P[Zj
w D 0]

where Z
j
w represents the number of occurrences of the word w in th j -th sequence. Since we have

P[Zj
wv D 0] D P[Zj

w D 0] C P[Zj
w 6D 0 and Zj

wv D 0];

then

E.Ww/ ¡ E.Wwv/ D
kX

jD1

P[Zj
w 6D 0 and Zj

wv D 0] ¸ 0

and therefore the conclusion follows.



302 APOSTOLICO ET AL.

The following three facts are a direct consequence of Fact 3.1 and Fact 3.18.

Fact 3.19. Let x be a text generated by any process. If c.w/ D c.wv/, then

1. c.wv/ ¡ E.Wwv/ ¸ c.w/ ¡ E.Ww/;

2.
c.wv/

E.Wwv/
¸

c.w/

E.Ww/
;

3.
c.wv/ ¡ E.Wwv/

E.Wwv/
¸

c.w/ ¡ E.Ww/

E.Ww/
;

4.
c.wv/ ¡ E.Wwv/

E.Wwv/
¸

c.w/ ¡ E.Ww/

E.Ww/
:

Proof. Directly from Theorem 3.1 and Fact 3.18.

Fact 3.20. Let x be a text generated by any process. If c.w/ D c.wv/ ´ c, then

1.

­­­­
c.wv/ ¡ E.Wwv/

p
E.Wwv/

­­­­̧

­­­­
c.w/ ¡ E.Ww/

p
E.Ww/

­­­­ iff c > E.Ww/
p

° ;

2.
.c.wv/ ¡ E.Wwv//2

E.Wwv/
¸

.c.w/ ¡ E.Ww//2

E.Ww/
iff c > E.Ww/

p
°

where ° D E.Wwv/=E.Ww/.

Proof. Directly from Fact 3.3 and Fact 3.18.

Tables 4 and 5 summarize the collection of these properties.

4. COMPUTING EQUIVALENCE CLASSES AND SCORES

Here we pursue substring partitions fC1; C2; : : : ; Clg in forms which would enable us to restrict the
computation of the scores to a constant number of candidates in each class Ci . Speci� cally, we require,
for all 1 · i · l, max.Ci/ and min.Ci/ to be unique; Ci to be closed, i.e., all w in Ci belong to some
.min.Ci/; max.Ci//-path; and all w in Ci to have the same count. Of course, the partition of all substrings
of x into singleton classes ful� lls those properties. In practice, we want l to be as small as possible.

We begin by recalling a few basic facts and constructs from, e.g., Blumer et al. (1987). The experienced
reader may skip most of this part. We say that two strings y and w are left-equivalent on x if the set of
starting positions of y in x matches the set of starting positions of w in x. We denote this equivalence
relation by ´l . It follows from the de� nition that if y ´l w, then either y is a pre� x of w, or vice
versa. Therefore, each class has unique shortest and longest words. Also, by de� nition, if y ´l w, then
f .y/ D f .w/.

For instance, in the string ataatataataatataatatag the set fataa, ataat, ataatag is a left-
equivalent class (with position set f1; 6; 9; 14g) and so are ftaa, taat, taatag and faa, aat, aatag. We
have 39 left-equivalent classes, much less than the total number of substrings, which is 22 £ 23=2 D 253,
and than the number of distinct substrings, in this case 61.

We similarly say that y and w are right-equivalent on x if the set of ending positions of y in x matches
the set of ending positions of w in x. We denote this by ´r . Finally, the equivalence relation ´x is de� ned
in terms of the implication of a substring of x (Blumer et al., 1987; Clift et al., 1986). Given a substring
w of x, the implication impx.w/ of w in x is the longest string uwv such that every occurrence of w in
x is preceded by u and followed by v. We write y ´x w iff impx.y/ D impx.w/. It is not dif� cult to see
the following.



MONOTONY OF SURPRISE 303

Table 4. Monotonicities for Scores Associated with the Number of Occurrences f

under Markov Model for the Random Variable Z; We Set ° ´ E.Zwv/=E.Zw/

Property Conditions

(3.1) OE.Zwv/ · OE.Zw/ none

(3.2) f .wv/ ¡ OE.Zwv/ ¸ f .w/ ¡ OE.Zw/ f .w/ D f .wv/

(3.3)
f .wv/

OE.Zwv/
¸ f .w/

OE.Zw/
f .w/ D f .wv/

(3.4)
f .wv/ ¡ OE.Zwv/

OE.Zwv/
¸ f .w/ ¡ OE.Zw/

OE.Zw/
f .w/ D f .wv/

(3.5)
f .wv/ ¡ OE.Zwv/q

OE.Zwv/

¸
f .w/ ¡ OE.Zw/q

OE.Zw/

f .w/ D f .wv/

(3.6)

­­­­­­
f .wv/ ¡ OE.Zwv/q

OE.Zwv/

­­­­­­
¸

­­­­­­
f .w/ ¡ OE.Zw /q

OE.Zw/

­­­­­­
f .w/ D f .wv/; f .w/ > E.Zw /

p
°

(3.7)
.f .wv/ ¡ OE.Zwv//2

OE.Zwv/
¸ .f .w/ ¡ OE.Zw//2

OE.Zw/
f .w/ D f .wv/; f .w/ > E.Zw /

p
°

Table 5. Monotonicities of the Scores Associated with the Number of Colors c

under Any Model for the Random Variable W ; We Set ° ´ E.Wwv/=E.Ww/

Property Conditions

(4.1) E.Wwv/ · E.Ww/ none

(4.2) c.wv/ ¡ E.Wwv/ ¸ c.w/ ¡ E.Ww/ c.w/ D c.wv/

(4.3)
c.wv/

E.Wwv/
¸ c.w/

E.Ww/
c.w/ D c.wv/

(4.4)
c.wv/ ¡ E.Wwv/

E.Wwv/
¸ c.w/ ¡ E.Ww/

E.Ww/
c.w/ D c.wv/

(4.5)
c.wv/ ¡ E.Wwv/

p
E.Wwv/

¸
c.w/ ¡ E.Ww/

p
E.Ww/

c.w/ D c.wv/

(4.6)

­­­­
c.wv/ ¡ E.Wwv/

p
E.Wwv/

­­­­̧

­­­­
c.w/ ¡ E.Ww/

p
E.Ww /

­­­­ c.w/ D c.wv/; c.w/ > E.Ww /
p

°

(4.7)
.c.wv/ ¡ E.Wwv//2

E.Wwv/
¸ .c.w/ ¡ E.Ww//2

E.Ww/
c.w/ D c.wv/; c.w/ > E.Ww /

p
°
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Lemma 4.1. The equivalence relation ´x is the transitive closure of ´l [ ´r .

More importantly, the size l of the partition is linear in jxj D n for all three equivalence relations
considered. In particular, the smallest size is attained by ´x , for which the number of equivalence classes
is at most n C 1.

Each one of the equivalence classes discussed can be mapped to the nodes of a corresponding automaton
or word graph, which becomes thereby the natural support for our statistical tables. The table takes linear
space, since the number of classes is linear in jxj. The automata themselves are built by classical algorithms,
for which we refer to, e.g., Apostolico et al. (2000), Apostolico and Galil (1997), and Blumer et al. (1987)
with their quoted literature, or easy adaptations thereof. The graph for ´l , for instance, is the compact
subword tree Tx of x, whereas the graph for ´r is the dawg, or directed acyclic word graph Dx , for x.
The graph for ´x is the compact version of the the dawg.

These data structures are known to commute in simple ways, so that, say, an ´x-class can be found
on Tx as the union of some left-equivalent classes or, alternatively, as the union of some right-equivalent
classes. Following are some highlights for the inexperienced reader. Beginning with left-equivalent classes
that correspond one-to-one to the nodes of Tx , we can build some right-equivalent classes as follows. We
use the elementary fact that whenever there is a branching node ¹ in Tx corresponding to w D ay; a 2 6,
then there is also a node º corresponding to y, and there is a special suf� x link directed from º to ¹.
Such auxiliary links induce another tree on the nodes of Tx that we may call Sx . It is now easy to � nd a
right-equivalent class with the help of suf� x links. For this, we traverse Sx bottom-up while grouping in a
single class all strings such that their terminal nodes in Tx are roots of isomorphic subtrees of Tx . When
a subtree that violates the isomorphism condition is encountered, we are at the end of one class and we
start with a new one.

For example, the three subtrees rooted at the solid nodes in Fig. 2 correspond to the end-sets of ataata,
taata and aata, which are the same, namely, f6; 11; 14; 19g. These three words de� ne the right-
equivalent class fataata, taata, aatag. In fact, this class cannot be made larger because the two

FIG. 2. The tree Tx for x D ataatataataatataatatag: subtrees rooted at the solid nodes are isomorphic.



MONOTONY OF SURPRISE 305

subtrees rooted at the end nodes of ata and tataata are not isomorphic to the substree of the class.
We leave it as an exercise for the reader to � nd all the right-equivalence classes on Tx . It turns out that
there are 24 such classes in this example.

Subtree isomorphism is checked by a classical linear-time algorithm by Aho et al. (1974). But on Tx

this is done even more quickly once the f counts are available (Apostolico and Lonardi, 2002; Gus� eld,
1997).

Lemma 4.2. Let T1 and T2 be two subtrees of Tx . T1 and T2 are isomorphic if and only if they have
the same number of leaves and their roots are connected by a chain of suf� x links.

Proof. If T1 and T2 are isomorphic, then clearly they have same number of leaves. Also, if they were
not linked by a chain of suf� x links, strings w1 and w2 corresponding to the path-labels of the roots of
T1 and T2 could not be a suf� x of one another. Hence, their end-sets would be different, contrary to the
hypothesis of the isomorphism of the subtrees T1 and T2.

Let us assume, w.l.o.g., that there is a chain formed by l suf� x links from the root of T1 to the root of
T2, l ¸ 1. Let uw be the path-label for the root of T1, and w the path-label for the root of T2, whence
l D juj. In general, we have that endpos.uw/ µ endpos.w/. Since we know that f .uw/ D f .w/, then
the only possibility is that endpos.uw/ D endpos.w/; hence, the subtrees are isomorphic.

If, during the bottom-up traversal of Sx , we put in the same class strings such that their terminal arc
leads to nodes with the same frequency counts f , then this would identify and produce the ´x -classes,
i.e., the smallest substring partition.

For instance, starting from the right-equivalent class C D fataata, taata, aatag, one can aug-
ment it with of all words which are left-equivalent to the elements of C . The result is one ´x -class
composed by fataa, ataat, ataata, taa, taat, taata, aa, aat, aatag. Their respective pos

sets are f1; 6; 9; 14g, f1; 6; 9; 14g, f1; 6; 9; 14g, f2; 7; 10; 15g, f2; 7; 10; 15g, f2; 7; 10; 15g, f3; 8; 11; 16g,
f3; 8; 11; 16g, f3; 8; 11; 16g. Their respective endpos sets are f4; 9; 12; 17g, f5; 10; 13; 18g, f6; 11; 14; 19g,
f4; 9; 12; 17g, f5; 10; 13; 18g, f6; 11; 14; 19g, f4; 9; 12; 17g, f5; 10; 13; 18g, f6; 11; 14; 19g. Because of
Lemma 4.1, given two words y and w in the class, either they share the start set, or they share the
end set, or they share the start set by transitivity with a third word in the class, or they share the end set by
transitivity with a third word in the class. It turns out that there are only seven ´x -classes in our example.

Note that the longest string in this ´x -class is unique (ataata) and that it contains all the others
as substrings. The shortest string is unique as well (aa). As said, the number of occurrences for all the
words in the same class is the same (four in the example). Figure 3 illustrates the seven equivalence
classes for our running example. The words in each class have been organized in a lattice, where edges
correspond to extensions (or contractions) of a single symbol. In particular, horizontal edges correspond
to right extensions and vertical edges to left extensions.

While the longest word in an ´x -class is unique, there may be in general more than one shortest
word. Consider for example the text x D akgk , with k > 0 (see Fig. 4). Choosing k D 2 yields a
class which has three words of length two as minimal elements, namely, aa, gg, and ag. (In fact,
impx.aa/ D impx.gg/ D impx.ag/ D aagg.) Taking instead k D 1, all three substrings of x D ag

coalesce into a single class which has two shortest words.
We recall that by Lemma 4.1 each ´x -class C can be expressed as the union of one or more left-

equivalent classes. Alternatively, C can be also expressed as the union of one or more right-equivalent
classes. The example above shows that there are cases in which we cannot merge left- or right-equivalent
classes without violating the uniqueness of the shortest word. Thus, we may use the ´x -classes as the Ci ’s
in our partition only if we are interested in detecting overrepresented words. If underrepresented words are
also wanted, then we must represent the same ´x -class once for each distinct shortest word in it.

It is not dif� cult to accommodate this in our subtree merge procedure. Let p.u/ denote the parent of u

in Tx . While traversing Sx bottom-up, we merge two nodes u and v with the same f count if and only
if u and v are connected by a suf� x link and p.u/ and p.v/ are also. This results in a substring partition
slightly coarser ´x , which will be denoted by Q́x . In conclusion, we can state the following fact.
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FIG. 3. A representation of the seven ´x -classes for x D ataatataataatataatatag. The words in each class
can be organized in a lattice. Numbers refer to the number of occurrences.

FIG. 4. One ´x-class for the string x D aktk .
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Fact 4.1. Let fC1; C2; : : : ; Clg be the set of equivalence classes built on the equivalence relation Q́x

on the substrings of text x . Then, for all 1 · i · l,

1. max.Ci/ and min.Ci/ are unique,
2. all w 2 Ci are on some .min.Ci/; max.Ci//-path,
3. all w 2 Ci have the same number of occurrences f .w/;

4. all w 2 Ci have the same number of colors c.w/:

We are now ready to address the computational complexity of our constructions. In Apostolico et al.
(2000), linear-time algorithms are given to compute and store expected value E.Z/ and variance Var.Z/

for the number of occurrences under the Bernoulli model of all pre� xes of a given string. The crux of
that construction rests on deriving an expression of the variance (see Expression 1) that can be cast within
the classical linear time computation of the “failure function” or smallest periods for all pre� xes of a
string (see, e.g., Aho et al. [1974]). These computations are easily adapted to be carried out on the linked
structure of graphs such as Sx or Dx , thereby yielding expectation and variance values at all nodes of Tx ,
Dx , or the compact variant of the latter. These constructions take time and space linear in the size of the
graphs, hence, linear in the length of x. Combined with our monotonicity results this yields immediately:

Theorem 4.1. Under the Bernoulli models, the sets O T
z and U T

z for scores

z1.w/ D f .w/ ¡ E.Zw/

z2.w/ D
f .w/

E.Zw/

z3.w/ D
f .w/ ¡ E.Zw/

E.Zw/

z4.w/ D
f .w/ ¡ E.Zw/

p
E.Zw/

z5.w/ D
f .w/ ¡ E.Zw/p

E.Zw/.1 ¡ Op/
.when Op < 1=2/

z6.w/ D
f .w/ ¡ E.Zw/

p
Var.Zw/

.when pmax < minf1=
m
p

4m;
p

2 ¡ 1g/

and the set S T
z for scores

z7.w/ D
­­­­
f .w/ ¡ E.Zw/

p
E.Zw/

­­­­

z8.w/ D
.f .w/ ¡ E.Zw//2

E.Zw/

z9.w/ D
­­­­
f .w/ ¡ E.Zw/

p
Var.Zw/

­­­­.when pmax < minf1=
m
p

4m;
p

2 ¡ 1g/

can be computed in linear time and space.

The computation of OE.Zy/ is more involved in Markov models than with Bernoulli. Recall from Ex-
pression 2 that the maximum likelihood estimator for the expectation is

OE.Zy/ D f .y[1;MC1]/

m¡MY

jD2

f .y[j;jCM]/

f .y[j;jCM¡1]/
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where M is the order of the Markov chain. If we compute the (Markov) pre� x product pp.i/ as

pp.i/ D

8
>><

>>:

1 if i D 0

iY

jD1

f .x[j;jCM]/

f .x[j;jCM¡1]/
if 1 · i · n

then OE.Zy/ is rewrittten as

OE.Zy/ D f .y[1;MC1]/
pp.e ¡ M/

pp.b/

where .b; e/ gives the beginning and the ending position of any of the occurrences of y in x. Hence, if
f .y[1;MC1]/ and the vector pp.i/ are available, we can compute OE.Zy/ in constant time.

It is not dif� cult to compute the auxiliary products pp.i/ in overall linear time, e.g., beginning at the
node of Tx which is found at the end of the path to x[1;MC1] and then alternating between suf� x- and direct
edge transitions on the tree. We leave the details for an exercise. When working with multisequences, we
have to build a vector of pre� x products for each sequence using the global statistics of occurrences of
each word of size M and M C 1. We also build the Bernoulli pre� x products to compute E.Z/ for words
smaller than M C2, because the estimator of OE.Z/ cannot be used for these words. The resulting algorithm
is linear in the total size of the multisequence.

The following theorem summarizes these results.

Theorem 4.2. Under Markov models, the sets O T
z and U T

z for scores

z11.w/ D f .w/ ¡ OE.Zw/

z12.w/ D
f .w/

OE.Zw/

z13.w/ D
f .w/ ¡ OE.Zw/

OE.Zw/

z14.w/ D
f .w/ ¡ OE.Zw/q

OE.Zw/

and the set S T
z for scores

z15.w/ D
­­­­
f .w/ ¡ E.Zw/

p
E.Zw/

­­­­

z16.w/ D
.f .w/ ¡ E.Zw//2

E.Zw/

can be computed in linear time and space.

We now turn to color counts in multisequences. The computation of E.W / and Var.W/ can be ac-
complished once array fE.Z

j
y/ : j 2 [1 : : : k]g, that is, the expected number of occurrences of y in each

sequence is available. E.Z
j
y / has to be evaluated on the local model estimated only from the j -th sequence.

Once all E.Z
j
y / are available, we can use Equation 3 to compute E.Wy/ and Var.Wy/.

Having k different sets of parameters to handle makes the usage of the pre� x products slightly more
involved. For any word y , we have to estimate its expected number of occurrences in each sequence, even
in sequences in which y does not appear at all. Therefore, we cannot compute only one pre� x product for
each sequence. We need to compute k vectors of pre� x products for each sequence at an overall O.kn/

time and space complexity for the preprocessing phase, where we assume n D
Pk

iD1

­­x.i/
­­. We need an
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additional vector in which we record the starting position of any of the occurrences of y in each sequence.
The resulting algorithm has overall time complexity O.kn/.

The following theorem summarizes this discussion.

Theorem 4.3. Under any model, the sets O T
z and U T

z of a multisequence fx.1/; x.2/; : : : ; x.k/g for
scores

z17.w/ D c.w/ ¡ E.Ww/

z18.w/ D
c.w/

E.Ww/

z19.w/ D
c.w/ ¡ E.Ww/

E.Ww/

z20.w/ D
c.w/ ¡ E.Ww/

p
E.Ww/

and the set S T
z for scores

z21.w/ D
­­­­
c.w/ ¡ E.Ww/

p
E.Ww/

­­­­

z22.w/ D
.c.w/ ¡ E.Ww//2

E.Ww/

can be computed in O
±
k

Pk
iD1

­­x.i/
­­
²

time and space.

5. CONCLUSIONS

We have shown that under several scores and models, we can bound the number of candidate over- and
underrepresented words in a sequence and carry out the related computations in correspondingly ef� cient
time and space. Our results require that the scores under consideration grow monotonically for words in
each class of a partition of which the index or number of classes is linear in the textstring. As seen in this
paper, such a condition is met by many scores. The corresponding statistical tables take up the form of
some variant of a trie structure of which the branching nodes, in a number linear in the textstring length,
are all and only the sites where a score needs be computed and displayed. In practice, additional space
savings could achieved by grouping in a same equivalence class consecutive branching nodes in a chain
of nodes in which the scores are nondecreasing. For instance, this could be based on the condition that the
difference of observed and expected frequency is larger for the longer word and the normalization term
is decreasing for the longer word. (The case of � xed frequency for both words is just a special case of
this.) Note that in such a variant of the trie the words in an equivalence class are no longer characterized
by having essentially the same list of occurrences. Another way of giving the condition is to say that the
ratio of the frequency of the longer word to that of the shorter word should be larger than the ratio of their
corresponding expectations. In this case, the longer word has the bigger score. Still, an important question
regards more the generation of tables for general scores, particularly for those that do not necessarily
meet those monotonicity conditions. There are two quali� cations to the problem, respectively regarding
space and construction time. As far as space is concerned, we have seen that the crucial handle towards
linear space is represented by equivalence class partitions fC1; C2; : : : ; Clg that satisfy properties such as
in Fact 4.1. Clearly, the equivalence relations ´l , ´r , and Q́x all meet these conditions. We note that a
class Ci in any of the corresponding partitions represents a maximal set of strings that occur precisely at
the same positions in x, possibly up to some small uniform offset. For our purposes, any such class may
be fully represented by the quadruplet fmax.Ci/; min.Ci/; .i1; l1; zmax /; .i2; l2; zmin/g where .i1; l1; zmax /

and .i2; l2; zmin/ give the positions, lengths, and scores of the substrings of max.Ci/ achieving the largest
and smallest score values, respectively. The monotonicity conditions studied in this paper automatically
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assign zmax to max.Ci/ and zmin to min.Ci/, thereby rendering redundant the position information in a
quadruplet. In addition, when dealing with ´l (respectively, ´r ), we also know that min.Ci/ is a pre� x
(respectively, suf� x) of max.Ci/, which brings even more savings. In the general case, a linear number of
quadruplets such as above fully characterizes the set of unusual words. This is true, in particular, for the
partition associated with the equivalence relation Q́x , which achieves the smallest number of classes under
the constrains of Fact 4.1. The corresponding graph may thus serve as the natural support of exhaustive
statistical tables for the most general models. The computational costs involved in producing such tables
might pose further interesting problems of algorithm design.
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