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ABSTRACT

DNA methylation can be detected and measured
using sequencing instruments after sodium bisul-
fite conversion, but experiments can be expensive
for large eukaryotic genomes. Sequencing nonuni-
formity and mapping biases can leave parts of the
genome with low or no coverage, thus hampering
the ability of obtaining DNA methylation levels for
all cytosines. To address these limitations, several
computational methods have been proposed that can
predict DNA methylation from the DNA sequence
around the cytosine or from the methylation level
of nearby cytosines. However, most of these meth-
ods are entirely focused on CG methylation in hu-
mans and other mammals. In this work, we study,
for the first time, the problem of predicting cytosine
methylation for CG, CHG and CHH contexts on six
plant species, either from the DNA primary sequence
around the cytosine or from the methylation levels of
neighboring cytosines. In this framework, we also
study the cross-species prediction problem and the
cross-context prediction problem (within the same
species). Finally, we show that providing gene and
repeat annotations allows existing classifiers to sig-
nificantly improve their prediction accuracy. We in-
troduce a new classifier called AMPS (annotation-
based methylation prediction from sequence) that
takes advantage of genomic annotations to achieve
higher accuracy.

INTRODUCTION

DNA methylation is an epigenetic mark that plays a critical
role in regulating a variety of cellular processes, such as gene
expression, genome stability, transposon silencing and gene
imprinting [see e.g. (1–4)]. The most common type of DNA
methylation is the addition of a methyl group to the fifth

carbon of a cytosine residue, indicated as 5mC. In mam-
mals, DNA methylation is mostly found at cytosines that
are followed by guanine base, known as CG methylation.
Long stretches of DNA that are very rich in the dinucleotide
CG, called CpG islands, tend to be less methylated than the
other cytosines in the genome (5–7). As said, DNA methy-
lation is one of several epigenetic mechanisms that cells use
to regulate gene expression (8,9). In humans, the dysregula-
tion of DNA methylation is associated with a variety of dis-
eases, including cancer (10,11) and neurological disorders
(12,13). In plants and other non-vertebrates, however, cy-
tosine methylation in the CHH and CHG contexts (where
H represents any base except G) is almost as common as
methylation in the CG context (14–16). It is now well under-
stood that distinct molecular mechanisms in the cells regu-
late cytosine methylation and demethylation depending on
the context (17–20).

Recent studies suggest the importance of non-CG methy-
lation in both vertebrates and non-vertebrates. In humans,
non-CG methylation is the most abundant form of DNA
methylation in neurons and plays a critical role in cognitive
functions [see e.g. (21–23)]. Dysregulation of this type of
methylation has been associated with mental diseases such
as schizophrenia (24). In plants, it has been shown that (i)
distinct pathways and molecular processes maintain cyto-
sine methylation in CG, CHG and CHH contexts [see e.g.
(17,25)]; (ii) methylation patterns in gene body and repet-
itive elements differ for CG and non-CG methylation [see
e.g. (25–29)]; (iii) both CG and CHG methylation are cor-
related to genome size and repetitive content, while CHH
methylation is not (16); and (iv) methylation inheritable pat-
terns in symmetric contexts (CG and CHG) are different
from those in the nonsymmetric (CHH) context (30).

Several methods are available for reading the methylation
status of cytosines. Whole genome bisulfite sequencing (also
known as BS-Seq) is arguably the most common method.
Other techniques include bead chip arrays (e.g. Illumina
Infinium), Oxford Nanopore (31) or affinity enrichment-
based techniques, such as methylcytosine-specific
antibodies (MeDIP-Seq). BS-Seq allows for quantitative
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cytosine methylation detection at single-base resolution
and is still considered the ‘gold standard’ for the analysis
of DNA methylation. By treating DNA with sodium
bisulfite, unmethylated cytosines transform to uracils,
while methylated cytosines stay intact. Once the DNA
is converted, DNA sequencing (typically carried out on
Illumina instruments) generates the reads that are then
mapped to the reference genome using conversion-aware
mapping tools [e.g. Bismark (32), BS Seeker (33) or
BRAT-nova (34)]. Since the methylation level for each
cytosine is obtained by computing the ratio between the
number of reads that indicate a methylated cytosine and
the number of mapped reads, the statistical confidence
associated with this measurement depends on the depth
of sequencing coverage at each cytosine and the bisulfite
conversion rate. To guarantee that the read coverage is
sufficient for all the cytosines in the genome, the average
sequencing depth needs to be high, which can be expensive
for large eukaryotic genomes. Since sequencing depth is
not uniform across the genome, some cytosines can end up
with low or no read coverage, which prevents the accurate
measurement of their methylation level. This problem is
particularly acute for single-cell experiments because the
coverage is usually much lower and less uniform than bulk
sequencing data.

As a result, several methods have been developed in the
last 10 years for predicting or imputing cytosine methyla-
tion levels. These methods are mostly focused on prediction
of CG methylation in humans. In one of these studies, a
deep neural network used sequence and methylation level of
neighboring cytosines to predict the methylation level from
single-cell experiments, exclusively for the CG context in hu-
man and mouse cells (35). Another method targeted at CG
methylation prediction on mouse single-cell data was pro-
posed by Li and Liu (36) using again deep learning. Their
model uses the underlying DNA sequence, the methylation
status and the distance of neighboring cytosines to carry out
methylation prediction. Both Tian et al. (37) and Zeng and
Gifford (38) used a convolutional neural network to pre-
dict CG methylation levels from the DNA sequence in the
human genome. De Waele et al. (39) used a transformer ar-
chitecture for imputation of single-cell methylation levels in
humans and mice. In (40), a large language model based
on BERT transformers was used to predict cytosine methy-
lation, cytosine hydroxymethylation and adenine methyla-
tion from the primary DNA sequence. Wang et al. (41)
proposed a CNN for predicting histone marks H3K4me3,
H3K27me3 and H3K9ac, cytosine DNA methylation, ade-
nine DNA methylation and adenine RNA methylation from
the primary sequence.

Other studies used Illumina Infinium Human Methyla-
tion 450 array data to carry out predictions. In one of
these studies, Zhang et al. (42) proposed a random forest
(RF) model that uses the DNA sequence, the neighboring
cytosines’ methylation levels and the presence of CpG is-
lands to predict CG methylation levels in humans. In a sim-
ilar study, Zheng et al. (43) used an RF model to predict cy-
tosine methylation levels in humans from Infinium methy-
lation levels and the distance of neighboring CG.

All these studies demonstrate that it is possible to predict
CG methylation from the DNA sequence or the neighbor-

ing methylation levels at various levels of accuracy. How-
ever, the problem of predicting non-CG methylation has
been so far largely ignored despite its growing importance in
molecular biology. Even worse, sometimes non-CG methy-
lation is improperly bundled with CG prediction, despite
clear mechanistic differences at the cellular level. Here we
address for the first time, to the best of our knowledge, this
fundamental shortcoming. Specifically, our work makes
the following contributions: (i) We study the problem of
predicting cytosine methylation independently for the CG,
CHG and CHH contexts (and for all three contexts mixed)
on six plant species on either the DNA primary sequence
or the methylation level of neighboring cytosines. (ii) We
study the cross-context prediction problem; i.e. we investi-
gate how hard it is to predict methylation for a specific con-
text when trained on a different one. (iii) We study the cross-
species prediction problem; i.e. we investigate how hard it is
to predict methylation for a specific species when trained
on a different one. (iv) We show that one can obtain higher
predictive accuracy from the levels of neighboring cytosines
than from the DNA sequence. (v) We show that providing
gene and repeat annotations allows any classifier to signifi-
cantly improve its prediction accuracy. (vi) We introduce a
new classifier called AMPS (annotation-based methylation
prediction from sequence) that outperforms state-of-the-art
methylation predictors by taking full advantage of the an-
notations. (vii) We identify a set of statistically significant
motifs that contribute to context-specific DNA methylation
in the species included in this study.

MATERIALS AND METHODS

Data sources and data pre-processing

BS-Seq data for Arabidopsis thaliana, rice (Oryza sativa),
tomato (Solanum lycopersicum), cucumber (Cucumis
sativus) and marchantia (Marchantia polymorpha) were
obtained from the Sequence Read Archive (SRA) of
NCBI/NIH. BS-Seq data for cowpea (Vigna unguiculata)
were generated in the context of the Cyprus national project
‘Cowpea breeding and adaptation to climate change’ (44).
The cowpea genome was recently sequenced and assembled
by our group (45). The other genomes were obtained
from NCBI (see Supplementary Table S1 for source and
assembly versions).

Supplementary Figure S20 shows the location of these
six species on a phylogenetic tree of the major land
plant species (46). These plant species belong to six dis-
tinct orders: Arabidopsis belongs to the Brassicales, cow-
pea to the Fabales, cucumber to the Cucurbitales, tomato
to the Solanales, rice to the Poales and marchantia to
the Marchantiales. Not all plant orders are represented in
our study, but we plan to expand it to the other orders in
the future.

Read quality was checked using FastQC v0.11.5. In some
cases, sequencing primers were detected in the sequenced
reads. Reads that had these anomalies were trimmed with
Trimmomatic v0.33 (47). Reads were mapped against the
corresponding reference genome using Bismark v0.22.2 us-
ing default parameters (32). Only reads that were uniquely
aligned were used by Bismark; i.e. ambiguous reads with
multiple mappings were discarded.
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The output of Bismark was processed using custom
scripts as follows. First, the methylation level of each cyto-
sine was obtained by computing the ratio of the number of
methylated reads over all the reads covering that cytosine.
A cytosine was declared to be methylated if the methylation
level was at least 0.5, unmethylated otherwise. We are aware
that this threshold might be too strict for non-CG methy-
lation (in particular for CHH), but we had to be consistent
with the 50% threshold used in MRCNN (37), CpGenie (38)
and the RF classifier (42). Methylation was called only for
cytosines that had a coverage of >10 reads. Cytosines cov-
ered by <11 reads had an unknown methylation status and
were not used for training or testing.

Gene body methylation profiles

To obtain the average species-specific gene methylation pro-
file, we collected the methylation levels for each annotated
gene, as well as the methylation levels in 2 kb upstream and
downstream of each gene. Gene bodies and flanking regions
were split into 5 bins each, for a total of 15 bins. For each
bin r ∈ [1, 15], the average methylation level M(r) was cal-
culated as follows:

M(r ) =
(

G∑
i=1

m(r, i )l(r, i )

)
/

(
G∑

i=1

l(r, i )

)
,

where G is the total number of annotated genes in that
species, m(r, i) is the ratio of methylated cytosines over all
cytosines in bin r of gene i and l(r, i) is the length of bin r in
gene i (a bin is 400 bp for flanking regions; it is one-fifth of
a gene for the bins within a gene).

Training set design

For classifiers that rely on the DNA sequence, a context-
specific training set was composed of n DNA sequences
of length Ws centered at a cytosine (i.e. Ws/2 bases up-
stream and Ws/2 bases downstream of the cytosine) cho-
sen uniformly at random among all possible cytosines that
belonged to that particular context (either CG, CHH or
CHG), in which n/2 were methylated (i.e. have a methy-
lation level of at least 0.5) and n/2 were unmethylated
(i.e. have a methylation level below 0.5). The training set was
balanced because the highly skewed distribution in some
contexts could make the prediction trivial. For example,
>99% of cytosines in the CHH context for Arabidopsis are
unmethylated; thus, a ‘classifier’ that predicts every cyto-
sine in the CHH context for Arabidopsis to be unmethylated
would achieve >99% accuracy. In contrast, almost 90% of
cytosines in the CG context for tomato are methylated; thus,
a ‘classifier’ that predicts every cytosine in the CG con-
text for tomato to be methylated would achieve almost 90%
accuracy. In some cases, n was limited by the number of
available methylated cytosines genome-wide (e.g. CHH in
Arabidopsis; see Supplementary Table S4). Even in those
cases, however, we kept the training set balanced in terms
of methylated/unmethylated cytosines. For the combined
context (indicated as ‘ALL’ in the figures), we balanced the
three contexts (CG, CHG and CHH) in equal proportions
because otherwise the skewed distribution in some contexts

could make the prediction trivial. For example, for tomato a
classifier that calls (i) all cytosines in the CG context methy-
lated, (ii) all cytosines in the CHG context methylated and
(iii) all cytosines in the CHH context unmethylated would
achieve an expected 92% accuracy, based on Supplemen-
tary Table S6 and some basic probability calculations (not
shown). Since the DNA sequences were one-hot encoded,
the training set was composed of n binary matrices of size
Ws × 4. Several choices of the window size Ws and the train-
ing set size were tested, as explained in the ‘Effect of the
window size and training set size on the prediction accu-
racy’ section.

For classifiers that rely on genomic annotations (in addi-
tion to the primary DNA sequence), the one-hot encoded
Ws × 4 input was augmented with a few bit vectors rep-
resenting the annotations. We used two bit vectors to rep-
resent gene annotations (one for each strand) and one bit
vector for the repeats. The binary values of these bit vec-
tors indicated the annotation status of each nucleotide in
the window. If a nucleotide was contained in a particular
functional element (e.g. coding sequence), the correspond-
ing value in the strand-specific bit vector was 1 (and zero
otherwise). Supplementary Table S5 lists the functional el-
ements used for each species.

Repeat annotations for marchantia were downloaded
from PlantRep (48). For the other species in this study, Re-
peatMasker v4.1.2 was used to annotate the genome for re-
peats. The default repeat database was used for Arabidopsis,
rice and tomato. The repeat library for cucumber was down-
loaded from msRepDB (49). The repeat library for Phaseo-
lus vulgaris was used for cowpea.

For classifiers that rely on the methylation level of neigh-
boring cytosines, the context-specific training set was com-
posed of n vectors of length Wp, where the first Wp/2 com-
ponents of the vector are methylation levels (in the range [0,
1]) of the cytosines upstream and the second Wp/2 compo-
nents of the vector are methylation levels of cytosines down-
stream of a cytosine chosen uniformly at random among all
possible cytosines that belong to that particular context (ei-
ther CG, CHH or CHG). For the combined context, the
training set was composed of an equal number of examples
from CG, CHG and CHH. Again, we made sure that the
training set was balanced: n/2 samples had a center cytosine
that was methylated and n/2 samples had an unmethylated
center cytosine. Please note that while the center cytosine
is context-specific, the vector contained methylation levels
for cytosines in any context, as long they had sufficient read
coverage (i.e. >10 reads).

In all experiments, 80% of the data was used for training,
10% was used for validation and 10% was used for testing.
Validation and test data sets had the same characteristics of
the training set, but we made sure no DNA sequence in the
training set appeared in the test set.

Classifiers

We first studied the prediction accuracy of an RF because
RF has been used in the literature for this problem [see
e.g. (42,43)]. RF was implemented using Python Scikit-
learn (version 0.24.2) and trained with 50 estimators and
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unlimited tree depth. All other parameters for RF were the
defaults in the Scikit-learn module.

The most effective ML methods in the literature to pre-
dict cytosine methylation are, however, based on deep learn-
ing [see e.g. (35–39)]. To carry out an extensive set of predic-
tion experiments, we created a deep learning architecture
based on CNNs.

We called our architecture for the prediction of cytosine
methylation AMPS. As explained in the previous section,
the input to AMPS is a matrix of size Ws × (4 + a), where a is
the number of bit vectors representing the annotations (a =
0 when AMPS uses only the sequence, i.e. no annotations).
The input was first processed by a 1D convolutional layer
with kernel size of (4 + a). This convolution layer had 16
channels followed by a ReLU function. The next layer was
a fully connected layer with 128 nodes using a ReLU acti-
vation function. To avoid overfitting, a dropout ratio of 0.5
was used for the fully connected layer. The last layer was a
single node using a sigmoid activation function. A stochas-
tic gradient descent optimizer was used, and the loss func-
tion was binary cross-entropy. The architecture of AMPS is
illustrated in Supplementary Figure S2.

The input to the network for the prediction of cytosine
methylation from neighboring cytosines was a vector of
methylation levels in the range [0, 1] of length Wp. The net-
work was composed of four fully connected layers with 20,
16, 8 and 1 node, respectively. The hidden layers used ReLU
as their activation function. A dropout ratio of 0.5 was used
to prevent overfitting. A stochastic gradient descent was
used for optimization, and binary cross-entropy was used
for the loss function.

We also designed a CNN-based architecture that predicts
cytosine methylation from the (i) sequence, (ii) annotation
and (iii) methylation levels of neighboring cytosines. The
DNA sequence and the annotation were provided as a ma-
trix of size Ws × (4 + a), where a is the number of annota-
tions. This portion of the input was processed through two
convolutional layers followed by a ReLU activation func-
tion and a flatten layer. The resulting vector was combined
with a vector of length Wp for the methylation levels of p
neighboring cytosines. The combined vector was processed
through three fully connected layers with 16, 8 and 1 node,
respectively. The first two layers were followed by a ReLU
activation function, while the last one was processed by
a sigmoid activation function. A dropout rate of 0.5 was
used in the fully connected layers to prevent overfitting. A
stochastic gradient descent was used for optimization, and
binary cross-entropy was used for the loss function. The ar-
chitecture was trained with batch size 32, 20 epochs and a
learning rate of 0.001.

Motif finding

We used Grad-CAM to score the importance of the input
position for the prediction of the methylation status. Grad-
CAM is a tool for the analysis of CNN architectures to de-
termine the importance of pixels in an image to determine
the correct label (50). After training AMPS for a specific
species and context, we selected 10 000 inputs that were
correctly classified as methylated and 10 000 inputs that
were correctly classified as unmethylated. The two sets were

given in input to Grad-CAM (along with the weights of
the AMPS network) to score the importance of each po-
sition in the input vectors. Since the input has 3200 dimen-
sions, we selected the most important subsequence by slid-
ing a window of length 50 along the input and reporting the
window with the highest average. The DNA sequences cor-
responding to those windows were fed into MEME v5.4.1
(51), using default parameters. The top 10 motifs produced
by MEME were recorded for each species and each context,
separately for methylated and nonmethylated inputs. The
top motifs were matched against the plant motif database
JASPAR 2020 (52) using TOMTOM v5.4.1 (51).

RESULTS

Context- and species-specific prediction

As said earlier, while vertebrate DNA cytosine methylation
is primarily found in the CG context, plants have significant
levels of DNA methylation in the CG, CHG and CHH con-
texts (17,53). To investigate CHG and CHH methylation,
we selected six plant species, namely (i) A. thaliana repre-
senting the Brassicales order, (ii) rice (O. sativa) representing
the Poales order (the only monocotyledons in our study),
(iii) tomato (S. lycopersicum) representing the Solanales or-
der, (iv) cucumber (C. sativus) representing the Cucurbitales
order, (v) cowpea (V. unguiculata) representing the Fabales
order and (vi) the early land plant M. polymorpha represent-
ing the Marchantiales order (the only non-angiosperm in
this study). We selected these species to cover a wide range
in the phylogenetic tree of the plant kingdom (see Supple-
mentary Figure S20), including a non-angiosperm. Data
sources and the processing of BS-Seq reads are described
in the ‘Materials and Methods’ section. Supplementary Ta-
ble S2 summarizes the main statistics of the BS-Seq reads
for each plant species.

The average cytosine coverage from BS-Seq mapped
reads ranged from 5× in tomato to 21× in Arabidopsis (see
Supplementary Table S3). To ensure high statistical confi-
dence in the determination of methylation levels, a strict
threshold for coverage was adopted; we only called cy-
tosines that were covered by >10 reads. A cytosine was con-
sidered methylated if more than half of the reads covering
it indicated methylation (and unmethylated otherwise). We
are aware that this threshold might be too strict for non-
CG methylation (in particular for CHH), but we had to be
consistent with the 50% threshold used in MRCNN (37),
CpGenie (38) and the RF classifier (42). It is well known
that different contexts exhibit differences in average per base
cytosine methylation. Observe that the percentage of CG,
CHG and CHH methylation varies greatly among differ-
ent species. Supplementary Table S4 shows that >89% of
cytosines in the CG context are methylated in tomato com-
pared to only ∼27% in Arabidopsis, >62% of cytosines in
the CHG context are methylated in tomato compared to
only 11% in Arabidopsis and 2.73% of cytosines in the CHH
context are methylated in tomato compared to 0.17% in
marchantia.

Our cytosine prediction analyses can be logically orga-
nized in six steps, which are described hereafter and sum-
marized in Supplementary Figure S1.
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In the first step, we established a baseline for the methyla-
tion classification problem using a simple classifier, i.e. RF.
Figure 1A shows the accuracy of RF on Arabidopsis, cow-
pea, rice, cucumber, tomato and marchantia independently
for each context (CG, CHG, CHH) and for all contexts
mixed (ALL). First, observe that the prediction perfor-
mance of cytosine methylation from the sequence is highly
dependent on the context. Also observe that the prediction
of methylation in the CHH context is often more accurate
than the prediction of methylation in the other two contexts,
which suggests that the CHH methylation could be more
sequence dependent in plants than CG or CHG. Mixing
all the contexts results in a decrease in classification perfor-
mance, which supports the need of an individual classifier
for each context.

In the second step, we investigated the observations re-
ported in the literature that the methylation levels in plants
vary drastically in gene bodies compared to upstream and
downstream regions (25–28). Figure 1B shows the methy-
lation levels for template and nontemplate strands in the
gene body and 2 kb flanking regions averaged over all genes
in tomato and cucumber (see the ‘Materials and Methods’
section for details). Supplementary Figure S3 shows the cor-
responding analyses for the other plant species in this study.
Observe that CG and CHG methylation levels dip in corre-
spondence to the gene boundaries, and that overall shape
of methylation levels is context dependent. Similarly, it has
been shown that the methylation patterns in plants are dra-
matically different in repetitive regions of the genome com-
pared to the nonrepetitive regions. Methylation levels for
all contexts are the highest in repetitive regions, mainly as a
means to silence transposable elements (16,54).

These analyses prompted the question of whether pro-
viding the classifier with genomic annotation informa-
tion (e.g. gene boundaries, coding sequence boundaries,
intron/exon boundaries and repeats) could boost the clas-
sification performance for cytosine methylation. To answer
this question, we designed a new classifier that uses the an-
notations listed above in addition to the DNA sequence.
Our classifier, called AMPS, is a deep learning architecture
that uses convolutional neural networks (see details in the
‘Materials and Methods’ section). Since we planned to use
annotations related to genes and repeats, we investigated
how much of each genome is annotated by these genomic
features. Supplementary Figure S18 shows that the 65% of
the smallest genome (Arabidopsis) is annotated as a gene,
while only 17% of the largest genome (tomato) is anno-
tated as a gene. The fraction of each genome annotated
as repetitive ranges from 16% (Arabidopsis) to 43% (cow-
pea). Supplementary Figure S19 shows the context-specific
species-specific fraction of all cytosines covered by annota-
tions. To determine whether annotations would improve the
classification accuracy, we carried out a comparative anal-
ysis against previously published methods, as well as our
classifier without annotations, which led to the third step in
the analysis.

In the third step, we compared the performance of AMPS
to RF, CpGenie (38), MRCNN (37), iDNA-ABF (40) and
SMEP (41). We chose to compare AMPS against CpGe-
nie, MRCNN, iDNA-ABF and SMEP because they are
considered state-of-the-art methods for methylation predic-

tion exclusively from DNA sequence. In fairness, we should
note that most of these tools were optimized for predicting
methylation in the CG context on the human genome. We
retrained all these tools on our species-specific and context-
specific plant data set, but their architectures might not be
optimal for non-CG nonhuman methylation. We should
also note that most of these tools use a more sophisticated
deep learning architecture than AMPS, resulting in a larger
number of weights and hyperparameters. iDNA-ABF con-
verts the input DNA sequence into k-mers and then feeds
them into a BERT encoder. iDNA-ABF was trained using a
learning rate of 0.000005 and batch size of 256 because the
default parameters prevented us to retrain it on our plant
data sets. SMEP is a CNN-based architecture that was re-
trained using the parameters provided by the authors. The
hyperparameters of AMPS were not highly optimized to en-
sure that the method would be able to generalize, but the
effect of window size and the training set size on the predic-
tion performance was extensively studied in the ‘Effect of
the window size and training set size on the prediction accu-
racy’ section. In all experiments, AMPS’ window size (with
or without annotation) was 3.2 kb, CpGenie’s window size
was 1 kb, MRCNN’s window size was 400 bp, iDNA-ABF’s
window size was 71 bp and SMEP’s window size was 41 bp.
These window sizes were prescribed by the corresponding
architectures proposed by the authors. All classifiers were
trained on 500 000 DNA sequences selected uniformly at
random from the genome (a discussion about training set
size can be found in the ‘Materials and Methods’ section), if
available. As explained in the ‘Effect of the window size and
training set size on the prediction accuracy’ section (and
shown in Supplementary Figure S7), the variance in per-
formance across multiple random samples was negligible,
so all the experiments were carried out on a single sample
to reduce the overall computational cost.

Figure 1C reports the accuracy of the classifiers listed
above, including AMPS without annotations. Observe that
(i) in the CG, CHG and ALL contexts, AMPS (with anno-
tations) achieved higher accuracy than the other five meth-
ods on all six species (SMEP performed better than AMPS
in the CHH context on four species out of six), (ii) AMPS
with annotations had the biggest improvement over AMPS
without annotations in the CHG context (which is the con-
text in Supplementary Figure S19 that has the highest per-
centage of cytosines covered by gene annotations, irrespec-
tive on the species) and (iii) in some cases, the accuracy of
AMPS without annotation was lower than other predic-
tors, suggesting the critical advantage of using genomic an-
notation as an input feature. Also, observe in Figure 1C
that (i) the accuracy of different classifiers is context de-
pendent and (ii) in 23 out of 30 experiments, the predic-
tion accuracy that used all the contexts mixed was lower
than training on each context independently. The same ex-
perimental results are shown in Supplementary Figure S8,
but grouped by classifier instead of species. Supplementary
Figure S9 compares the performance of AMPS when us-
ing different types of annotations (no annotation, only re-
peats, only genes or repeats + genes). Observe that gene
annotations helped more than repeat annotations in 19
of the 24 experiments. AMPS’ performance when using
both repeats and gene annotation was always the best. To
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A

C

B

Figure 1. (A) Context-specific species-specific prediction accuracy of an RF binary classifier on the six plant species included in this study. (B) Context-
specific gene body methylation levels for tomato (top row) and cucumber (bottom row) for the template and nontemplate strands. (C) Context-specific
species-specific prediction accuracy for RF, iDNA-ABF, MRCNN, CpGenie, SMEP, AMPS without annotations and AMPS with annotations (AMPS is
the new method proposed here).

determine which gene annotation was the most informative,
we measured the accuracy of AMPS on Arabidopsis using
individual functional element, namely gene, CDS or exons.
Supplementary Figure S12 shows that each annotation by
itself performs as well as all functional annotations com-
bined. We wondered whether the performance of MRCNN,
RF and CpGenie could be rescued if they had used func-
tional annotations. For this purpose, we modified the input
layer of RF, MRCNN and CpGenie to allow sequence and
annotations as input. Supplementary Figure S11 shows that
in all cases the prediction accuracy for MRCNN and AMPS
improved using annotations. For RF, the prediction accu-
racy improved in 22 out of 24 cases. For CpGenie, the pre-
diction accuracy improved in 23 out of 24 cases. Observe
that (i) often the improvement in prediction accuracy was
very significant and (ii) the only three cases in which the an-
notation degraded the performance are for CHH. Finally,
Supplementary Figure S10 compares the performance of
the four methods when annotations are used. Observe that
in 16 out of 30 experiments AMPS achieved the highest
accuracy.

While accuracy is the main metric of performance for
classifiers trained on balanced data sets, other statistical
measures can be considered for choosing the best classifier.
In Supplementary Figure S4, we report precision, recall and
F1 score for all contexts and all species for the tools listed
in Figure 1C. Observe that (i) in 17 out of 24 experiments,
AMPS (with annotation) achieved a higher precision than
the other tools, (ii) in 17 out of 24 experiments, AMPS (with

annotation) achieved a higher recall than the other tools,
and (iii) in 20 out of 24 experiments, AMPS (with annota-
tion) achieved a higher F1 score than the other tools.

Cross-context and cross-species prediction

In the fourth step, we investigated the ability of the pre-
dictor to carry out cross-species prediction from the DNA
sequence and annotations. Figure 2A shows the accuracy
of AMPS with annotations when trained with one species
and tested on another, for each context individually and all
contexts mixed. In this case, we could not use all annota-
tions because of the different number of functional elements
available for each organism, so we used only the subset of
annotations shared by all the species. Observe that train-
ing and testing on the same species achieves the highest ac-
curacy, as expected. Supplementary Figure S13 shows the
performance of AMPS without annotation when trained on
one species and tested on another. Again, the highest accu-
racy was obtained when training and testing on the same
species.

In the fifth step, we investigated cross-context predictions.
The performance of AMPS (with annotations) was evalu-
ated when trained on one context and tested on another.
Figure 2B shows the prediction accuracy for all pairs of
training/testing contexts (including the mixed contexts) for
all species. Observe that in most of the cases, cross-context
prediction accuracy is the highest when training and test-
ing on the same context, as expected, but not when all
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A B

Figure 2. (A) Cross-species methylation prediction accuracy of AMPS with annotation (for the subset of annotations shared by all the species). (B) Cross-
context methylation prediction accuracy of AMPS with annotations.

contexts are mixed. A similar observation can be made
on the cross-context prediction accuracy for AMPS with-
out annotation (Supplementary Figure S14). Also observe
that training on CG overall allows good predictions on
CHG, and vice versa; CHH seems quite different, which
is supported by studies that show the molecular mecha-
nisms for CHH are distinct from those for CG and CHG
[see e.g. (54)]. We also carried out cross-accession experi-
ments for two Arabidopsis accessions, namely Columbia-0
and C24. Supplementary Figure S17 shows the accuracy of
AMPS (with annotations) when trained on one accession
and tested on another. Observe that the accuracy of AMPS
is quite high. In fact, the accuracy of AMPS is higher in
cross-accession experiments than cross-species experiments,
as expected.

Interpretability analysis

In the sixth and last step, we carried out an interpretabil-
ity analysis of the classifier using Grad-CAM, MEME and
TOMTOM. Briefly, we used Grad-CAM to identify the
most important 50-mer in the input window for the cor-
rect classification of the methylation status; the 50-mers
were processed by MEME to compute statistically signifi-
cant motifs and then MEME motifs were matched against
known motifs in the plant motif database JASPAR using
TOMTOM (see the ‘Materials and Methods’ section for
details).

Figure 3 lists all the statistically significant motifs found
by our analysis in all species that matched JASPAR (those
on the left are for the CG context and those on the right are
for CHH/CHG). The Venn diagram in the middle shows
the assignment of motifs to different contexts. Observe
that most of the motifs are for the CG context. Also ob-
serve that almost all the motifs for the CG context are in
the AP2/EREBP (ethylene-responsive element binding pro-
teins) class, which have been shown to affect DNA methy-
lation in plants (55,56). More specifically, Zhu et al. (56)
showed that under drought stress, cytosine methylation is

altered in the promoter region of genes containing the
AP2/EREBP domain. López et al. (57) showed that under
heat stress, 31% of the 99 transcription factor genes associ-
ated with differentially methylated regions in the strawberry
genome had the AP2/EREBP domain. The MA1284.1 mo-
tif (in common to all contexts) is the structural motif for a
basic helix–loop–helix, which belongs to a family of tran-
scription factors whose binding is known to be inhibited by
DNA methylation [see e.g. (58)]. One of the listed motifs in
Figure 3 is the binding site for zinc finger-type factors that
are known to be readers of methylated DNA (59). We could
not find any relation between the tryptophan cluster factors
and DNA methylation in the literature.

Prediction based on neighboring cytosines

In this section, we studied the problem of predicting cyto-
sine methylation from the methylation levels of the neigh-
boring cytosines, which is common in the literature for data
imputation. In this case, the classifier took in input a vec-
tor of methylation levels (half upstream and half down-
stream, under the condition that cytosines had to have a
sufficient read coverage to be included) and predicted the bi-
nary methylation status of the center cytosine. In all exper-
iments, we used 20 methylation levels (10 downstream and
10 upstream). The data set size was 50 000 methylation vec-
tors uniformly sampled from the genome, in which half of
them were centered at a methylated cytosine while the other
half were centered at an unmethylated cytosine. Eighty per-
cent of the data set was used for training, 10% was used
for validation and 10% was used for testing. Our classifier
was a fully connected neural network with four hidden lay-
ers (more details are provided in the ‘Materials and Meth-
ods’ section). As we did earlier, we carried out methylation
prediction for each species and for each context individu-
ally, but also for all contexts combined. Figure 4A shows
that the prediction accuracy is again context- and species-
specific. More specifically, observe that (i) cytosine methyla-
tion in the CG context is the easiest to predict, while methy-
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Figure 3. Statistically significant motifs that are critical for the accurate prediction of methylated and unmethylated cytosines in all contexts and all species.

A B

Figure 4. (A) Methylation prediction accuracy from the methylation levels of the neighboring cytosines. (B) Cross-species methylation prediction accuracy
from the methylation levels of the neighboring cytosines.

lation in the CHH context is the hardest (somewhat the
opposite of what we observed for sequence-based predic-
tion, as shown in Figure 1), (ii) combining the contexts de-
grades the prediction performance compared to context-
specific classifiers and (iii) methylation prediction in tomato
appears to be harder than other species. Also observe that
the accuracy appears to be correlated with the average cyto-

sine coverage (Supplementary Table S3). For instance, the
worst overall accuracy is for tomato, which has the low-
est average cytosine coverage. The best overall accuracy
is for Arabidopsis, which has the highest average cytosine
coverage.

We also carried out cross-species and cross-context pre-
dictions using neighboring cytosines. Figure 4B shows the
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prediction accuracy when training on a species and test-
ing on another. Observe that the accuracy does not change
significantly as one moves down the rows of the matrix. This
indicates that the prediction accuracy is somewhat indepen-
dent of the trained species, which is again different from
what we observed for sequence-based prediction (as shown
in Figure 2A). Supplementary Figure S15 shows the pre-
diction accuracy when training on a context and testing on
another. With some exceptions, observe again that the ac-
curacy does not significantly change as one moves down the
rows. This implies that the prediction accuracy is somewhat
independent of the trained context.

Finally, we investigated the predictive performance of
AMPS when providing in input (i) the sequence, (ii) the an-
notations and (iii) the methylation levels of neighboring cy-
tosines. The architecture of this classifier is described in the
‘Classifiers’ section. Supplementary Figure S16 compares
the prediction accuracy obtained from methylation levels of
neighboring cytosines to the accuracy obtained when the se-
quence, annotations and methylation levels of neighboring
cytosines are used. Observe that (i) in most cases, the accu-
racy did not significantly improve when sequence and an-
notations were provided, (ii) the accuracy improvement on
tomato was significant and (iii) in two cases (for the ALL
context), the accuracy decreased when sequence and anno-
tations are used.

Effect of the window size and training set size on the predic-
tion accuracy

Two critical parameters for the prediction accuracy from the
DNA sequence are (i) the size of the training set and (ii) the
size of the input sequence (or window size). Here, we car-
ried out extensive tests to determine the optimal values for
these two parameters using AMPS (with annotations) as a
classifier.

As expected, the size of the training set directly affects the
performance of the classifier. We recorded the accuracy of
AMPS (with annotations) on all species and all contexts us-
ing a data set with 40k, 80k, 120k, 200k, 400k, 600k, 800k
and 1M sequences. Eighty percent of the data was used for
training, 10% was used for validation and 10% was used
for testing. For some (organism, context) pairs, the number
of cytosines that had sufficient read coverage to be called
methylated (or not) was insufficient to satisfy the data set
needs. In those cases, the larger data sets are missing from
the analysis and the figures. To investigate the extent of vari-
ations induced by the random sampling of the training set,
we carried out 10 replicates on all contexts in Arabidop-
sis and recorded average and standard deviation of AMPS
accuracy (see Supplementary Figure S7). Observe that the
standard deviation is very low, which allowed us to avoid
replicates (and thus save on compute time) for all other ex-
periments in this manuscript.

Supplementary Figure S5 illustrates AMPS’ accuracy as
a function of the data set size for all plant species. Ob-
serve that for data set with 400 000 sequences or more, the
accuracy is high and relatively stable in all plant species.
Based on this observation, we used data sets composed of
500 000 sequences, if there were sufficient cytosines avail-
able. If there were not, we used all the available cytosines.

Supplementary Figure S6 shows AMPS’ accuracy as a
function of the window size (100, 200, 400, 800, 1600, 3200
and 6400 bp) for all plant species. Observe that context-
specific predictions are differently affected by the window
size. For CG and CHG, the prediction accuracy increases
up to a window size of 3200 bp. However, for CHH the accu-
racy does not change or degrade by increasing the window
size. We do not have an explanation for this phenomenon.

DISCUSSION

In this study, we investigated the problem of predicting cy-
tosine methylation in plants from either the DNA sequence
or the neighboring cytosines. To the best of our knowledge,
this is the first time that independent predictions for differ-
ent contexts and plant species have been carried out and
compared. We can summarize our findings in three major
categories.

Our first finding is that the cytosine methylation predic-
tion from the sequence is more accurate when a context-
specific species-specific classifier is used. Combining the
contexts during training, which is what most studies in the
literature have done so far (although some focus only on
CG), degrades the classifier’s performance. Our study sug-
gests that context-specific species-specific predictive mod-
els are necessary for obtaining the best overall predictive
performance for cytosine methylation from the primary se-
quence in plants, and possibly in other organisms. This is
true whether annotations are used or not.

The second finding is that the predictive accuracy of cy-
tosine methylation from the methylation levels of neigh-
boring cytosines is higher than the predictive accuracy ob-
tained from the sequence only (with or without annota-
tion). This is consistent with results reported in the liter-
ature for other organisms (mostly vertebrates). However,
to the best of our knowledge, no study has compared pre-
dictions from neighboring cytosines across multiple or-
ganisms or across contexts. In fact, cross-accession, cross-
species and cross-context prediction appears sufficiently ac-
curate, which opens the possibility of methylation impu-
tation across species or accessions, especially when anno-
tations are available. While imputation for a small frac-
tion of genome-wide cytosines is feasible, we would be very
cautious using methylation predictions for an entire new
genome based on training the classifier on a related species.
Interestingly, while the easiest context to predict from the
sequence is CHG, the easiest context to predict from neigh-
boring methylation levels is CG.

The final finding of our study is that using annotation
data (gene and repeat location) dramatically improves the
predictive accuracy of cytosine methylation from the se-
quence, not only for our classifier but also for all the classi-
fiers that we could instrument with this additional layer of
information. While this finding is not completely surprising,
the extent of the improvement is striking.
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