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Verbumculus is a collection of software tools for the efficient and fast detection and
visualization of words that occur unusually often or seldom as substrings in biomolecular
sequences. The inner core of VERBUMCULUS rests on subtly interwoven properties of statis-
tics, pattern matching and combinatorics on words. These properties enable one to limit
drastically and a priori the set of over- or under-represented candidate words of all lengths
in a given sequence, thereby rendering it more feasible both to detect and visualize such
words in a fast and practically useful way.

The VERBUMCULUS software is accessible at

http://www.cs.purdue.edu/homes/stelo/Verbumculus/

The executable code for Solaris (Sparc or Intel architectures) and Linux (Intel architec-
tures) can be downloaded from the site and run locally on the user’s machine. Alternatively,
the web server is available at the same address.

1 Method

The central data structure of our software is the suffiz tree. The suffix tree is a digital search
tree that collects compactly all suffixes of a given text (see, e.g., [1, 9]) which allows many
efficient, and often surprisingly simple and elegant solutions to problems on strings. While
the leaves of the tree correspond one-to-one with the suffixes of the text, the internal nodes
correspond one-to-one to all distinct words occurring in the text.

There are several algorithms for building the suffix tree in linear time with respect to the
size of the input (see, e.g., [14, 19]), and using an appropriate encoding of the words on the
edges of the tree, the space required for the suffix tree is also linear. The advantage of the
tree over standard tables of words is twofold: (1) the suffix tree is time- and space-efficient
resulting in fast analysis and low usage of memory, (2) the tree can be visualized compactly
and therefore conveys effectively the information to the user.

For example, once the tree is built, one can easily compute the number of observed
occurrences. With a simple traversal we collect the number of leaves in the subtrees rooted
at each node of the tree. The number of leaves corresponds exactly to the number of observed
occurrences of the word spelled out on a path from the root to that node.



It turns out that all the other parameters of interest can be computed efficiently on the
suffix tree. The expected value and variance of all substrings in a given sequence can be com-
puted and stored using the (optimal) quadratic-time given in [2] exploiting the combinatorial
structure of the periods of the strings.

In [2] we also show that under several scores the candidates over- or under-represented
oligonucleotides are restricted to a linear number, as opposed to the quadratic number of
possible substrings. Based on this surprising fact, we have designed VERBUMCULUS to detect
favored and unfavored word in our probabilistic framework in overall linear time and space.

The suffix tree for a single string can be easily extended to represent the suffixes of a set
of strings. These suffixes are collected in a tree called generalized suffix tree [9]. Here we are
interested in the number of “colors”, that is the count of distinct sequences that contain a
particular word. The computation of the colors uses the linear time algorithm by Hui [10].

2 Software Structure

VERBUMCULUS is composed by three modules: the tree builder VERBUM, the graph drawing
program DoOT, and the graphic interface TREEV1Z. The entire package consists of more than
ten thousand lines of code.

VERB is written in C++ using the Standard Template Library (STL) [15] which should
allow us easy portability under different platforms. The development of the software has been
facilitated by the use of debuggers and a version control system (Cvs). We have compiled
the code, without any change, under Solaris and Linux.

VERB reads the input sequence(s) and the various parameters supplied by the user, and
creates a (possibly pruned) suffix tree annotated with the score selected at the beginning
by the user (see next Section for the list of available scores). The output is a text file
representing the tree in the dot format (see below). VERB is particularly fast: although the
time taken for the analysis depends on the score and the other parameters, it is usually in
the order of a few seconds for the most common choices.

Dot is a graph drawing program developed by AT&T Labs as part of the GRAPHVI1Z
package [7, 8]. It reads graphs in the dot representation and outputs drawings in a dozen
of formats, among which Postscript and GIF. The source code and binary executables for
common platforms are freely available from the GRAPHV1Z site.

Finally, TREEV1Z is the graphical user interface that runs on the client size, and more
specifically on the browser of the user. It is entirely written in Java, and uses the GRAPPA
libraries by AT&T Labs [8].

A couple of thousands lines of PERL code glue everything together. PERL scripts generate
the HTML for the input forms and control the execution of the various stages, handling
exceptions and errors.

3 Command Line Usage

Users can download the binary executables VERB and DoOT for Solaris (Intel and Sparc
architecture) from VERBUMCULUS’ site. The most common usage involves running VERB



iriiiiizoii: General
A : read the files in FASTA format
N : data is protein
I : consider both strands (DNA input)
M <order> : set the Markov order (default 0)
B <label> : add a label to the .dot graph
S <file> : use the statistics of <file> instead of [file]
z <type> : z-score (1) counting occurrences: obs - exp
(2) counting occurrences: obs / exp
(3) counting occurrences: (obs - exp) / approx_var
(4) counting occurrences: (obs - exp) / var_complete
(5) counting occurrences: Trifonov
(6) counting occurrences: Tree2Tree (need ext model)
(7) counting sequences: Obs - Exp
(8) counting sequences: Obs / Exp
(9) counting sequences: (Obs - Exp)~2 / Exp
(10) counting sequences: Tree2Tree (need ext model)
tiiiiiioo: Filters

1 <length> : filter out words shorter than <length> (default 2)

L <length> : filter out words longer than <length> (default 10)

x (value) : filter out words having exp. # of occurrences < <value>

X (value) : filter out words having score < <value> (default 0)

D "word" : filter out words having "word" as substring

f : do not exclude strings with symbols not in {a,t,c,g,u,A,G,T,C,U}

iz::rizzzii: Sliding window

w <window> : examines the specified window (1,2,...)

W <size> : sets the window size

tiiiiiiioo: Misc

I : consider both strands

H <size> : randomly shuffle the sequence (keeping constant the count
of substrings of size up to <size>)

G <size> : generate a random file of a given size reading
the statistics from [file]

F <order> : generate a Fibonacci strings of <order>-th order

Figure 1: Command-line options of VERB

on the file containing the sequences to produce the dot file, and then using DOT to create a
graphical representation (PostScript, Gir, FrameMaker, etc.) of the tree.

Figure 1 shows the command line options of VERB. Options -1 and -L define respectively
the minimum and the maximum length of the motifs (default is 2 and 6 bps respectively).
Flag -X sets the threshold on the score: words which score is lower than the threshold (in
absolute value) are filtered out. Flag -x is used to mask words that have expectation lower
than a given value. Flag -D tells VERB to reject words that contain a specified pattern. -w
and -W are used to analyze a specific window, and they control the position and the size of
the window respectively. -B allows the user to add a text label to the tree.

Flag -z controls the type of score we want to use to annotate the tree. We discuss first
those based on a single sequence, where VERBUMCULUS supports the following six different



scores. For each oligonucleotide w we define!

e 2z (w) = Obs(w) — Exp(w)

+ aw) = 258

° z3(w) — Obs(w‘)A/;TE(/‘zg))(w)
° 24(11)) — Obs(w‘)/;rE(]zJ])J(w)
_Obs(w) —E(w)

o 25(w) = max{/2(0).1) as defined by Brendel et al., where £(w) is the expected frequency

of w based a Markov model of order m — 2 (see [6] for details)

e 2s(w) is computed by comparing the number of occurrences of the words of two suffix
trees (requires the submission of an external model with the parameter -S)

where we denote by Obs(w) the number of observed occurrences of w in the input sequence,
by Ezp(w) the number of expected occurrences of w under a Bernoulli model, by Var(w)
the variance on the number of occurrences of w under the same model, and by Var(w) a
first-order approximation of the true variance that is faster to compute. More specifically, if
the size of the sequence is n, and w has length m < (n + 1)/2 then

Exzp(w) = (n —m + 1)p(w)

and
Var(w) = Exp(w)(1 — p(w)) — p(w)*(2n — 3m + 2)(m — 1)
+ 2p(w in—m+1—dl) ﬁ p(w)
=1 j=m—di+1
where p(w) is the probability of occurrence of w and {d;,ds,...,ds} are the periods of w

(see [3, 2] for a detailed explanation).

Likewise, the analysis of the target sequence may proceed considering the sequence as a
whole as well as by performing computations independently within a number of consecutive
segments in a suitable covering of the input, and analyzing one such “window” at a time.

We now turn to the scores associated with frequencies defined on a set of sequences. In
this class, the following four additional scores are supported.

e z;(w) = SObs(w) — SExp(w)

SObs(w)
SEzp(w)

o 2(w) =

o z(w) = GO

lwe denote with w a generic oligonucleotide that occurs in the genetic sequence we are going to analyze,
and wy; ;) a substring of w from position 4 to position j



e z10(w) is computed by comparing the number of colors of the words of two suffix trees
(requires the submission of an external model with the parameter -3)

where SExp(w) is the expected number of sequences that contain at least one occurrence of
w and SObs(w) is the observed number of sequences that contain at least one occurrence of
w. Given k sequences of size n; for ¢ € [1, k|, Pesole et al. [16] define SExzp(w) as follows

SEzp(w i (1 — e~ di(w)(ni— m—l—l))

=1

where §;(w) is the probability of occurrence of w in the i-th sequence.

The parameters of the model, i.e., the probability of the symbols, are estimated from the
sequence itself. Flag -S allows the user to specify a different file from which VERBUMCULUS
will compute parameters of the model.

The flag -M sets the order M of the Markov chain. The default is 0, which corresponds
to the Bernoulli model. We remark that words smaller than M + 2 are not displayed at
all, because the model would “predict” their statistics exactly and therefore they will never
result surprising. Choosing higher Markov orders does not necessarly mean that you will
get better results. As the size of the model grows its ability of prediction grows as well.
Therefore there are less and less surprising words.

When the model is very precise on the reproduction of a particular set of observations but
cannot capture the general characteristics of the source, we have a situation called overfitting.
A related problem is that the bigger is M, the larger is the number of parameters to be
estimated from the data, and the longer has to be the sequence in order to get statistically
meaningful estimates.

Option -A is used to tell VERB that the input is in FASTA format. If -A is not specified,
VERB will assume that the file contains only the sequences with no annotations. We strongly
recommend, however, to use the FASTA format. An example of sequence in FASTA format
is shown in Figure 2. Any line that begins with > or ; is considered to be an annotation
and disregarded. VERB internally converts the sequences to upper case, and resolves the
IUPAC-IUB symbols by generating random substitutions (see Table 1). For example, if
VERB encounters the character R it randomly substitutes the symbol with A or G with equal
probability. Any symbol in the sequence that does not belong to the alphabet of Table 1 is
discarded.

Finally, option -N tells VERB that the input is a set of proteins, instead of DNA. The
alphabet follows the standard naming convention for the amino acids (see Table 2). In
the current version, VERB internally converts the sequences to upper case, and reduce the
alphabet to three symbols H, P, C which represent respectively hydrophobic, polar and
charged amino acids or to four symbols H, 0, +, — which denote respectively hydrophobic,
not charged, positevely charged and negatively charged amino acids. The mappings between
the twenty natural amino acids and the reduced alphabet of the electric charge is shown in the
last column of Table 2. The rationale of reducing the alphabet size is twofold. One one hand,
finding exactly conserved patterns of interesting size over an alphabet of 20 symbols proved
unlikely. On the other, amino acids within certain groups share chemical and structural
properties in such a way that they can actually swap without changing the function of the



>RTS2 RTS2 upstream sequence, from -200 to -1
TCTGTTATAGTACATATTATAGTACACCAATGTAAATCTGGTCCGGGTTACACAACACTT
TGTCCTGTACTTTGAAAACTGGAAAAACTCCGCTAGTTGAAATTAATATCAAATGGAAAA
GTCAGTATCATCATTCTTTTCTTGACAAGTCCTAAAAAGAGCGAAAACACAGGGTTGTTT
GATTGTAGAAAATCACAGCG

>MEK1  MEK1 upstream sequence, from -200 to -1
TTCCAATCATAAAGCATACCGTGGTAATTTAGCCGGGGAAAAGAAGAATGATGGCGGCTA
AATTTCGGCGGCTATTTCATTCATTCAAGTATAAAAGGGAGAGGTTTGACTAATTTTTTA
CTTGAGCTCCTTCTGGAGTGCTCTTGTACGTTTCAAATTTTATTAAGGACCAAATATACA
ACAGAAAGAAGAAGAGCGGA

>NDJ1  NDJ1 upstream sequence, from -200 to -1
ATAAAATCACTAAGACTAGCAACCACGTTTTGTTTTGTAGTTGAGAGTAATAGTTACAAA
TGGAAGATATATATCCGTTTCGTACTCAGTGACGTACCGGGCGTAGAAGTTGGGCGGCTA
TTTTGACAGATATATCAAAAATATTGTCATGAACTATACCATATACAACTTAGGATAAAA
ATACAGGTAGAAAAACTATA

Figure 2: The initial portion of a sample set of sequences in FASTA format

Symbol Meaning Nucleic Acid
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracil
AorC
AorG
AorT
Cor G
CorT
GorT
AorCorG
AorCorT
AorGorT
CorGorT
GorAorTorC

=

o@D "< W= I =2cHQQ

54
(@]
=
=

Table 1: IUPAC-TUB symbols for nucleotide nomenclature



protein. Indeed, it is biologically more meaningful to compare amino acids based on their
degrees of similarity rather than in terms of strict equality of residues.

The classification we choose, based on the electric charge of amino acids, is taken from
[21, 18]. This is just one of the possible choices since some amino acids belong to more than
one class (for example H) and some to none (for example P). Also, several classifications have
appeared in the scientific literature, and they not always agree.

The execution of VERB on the file containing the sequence(s) under study creates a file
with the suffix dot that holds the representation of the tree. For example, a run of VERB
on the file of Figure 2 is shown in Figure 3.

The information printed by VERB on the standard output reflects the choices of the user
and summarizes the statistics of the tree. In our example, we submitted 108 sequences for
a total of 5407 base pairs. The complete tree of all the words up to size five is composed by
2935 nodes. The annotation took 0.03 seconds on our 300Mhz Intel/Solaris machine. The
shape of the distribution of the scores is approximately Gaussian.

We will not describe here all the features of DOT. A user guide can be found at http:
//www.research.att.com/sw/tools/graphviz/. The standard usage of DOT to create a
PostScript file is “dot -Tps <filename>.dot -o <filename>.ps”. The picture of the tree
for our running example is shown in Figure 4.

4 Web Server Usage

A portion of the main interface of the web server is shown in Figure 5. The user has the
option to submit the input as a raw sequence of letters or in FASTA format. The input can be
“pasted” into the window or uploaded to the server. In the case of analyzing long sequences,
we advise the user to download the executables VERBUM and DoOT and work locally, to
avoid the overhead of network communication and the relative inefficiencies of Perl scripts
and Java.

Various filters can be used to reduce the size of the output and mask the irrelevant
information. The current filters offered by VERBUMCULUS support the selection of words in
which:

e length is within a specified interval;

z-score (in absolute value) is higher than a fixed threshold;

expectation is higher that a given threshold (this is to filter out rare words);

e occurrence of a particular substring is forbidden.

These filters can be combined in any way to meet the user’s needs.

Another important choice is the type of score used to annotate the tree. Our experi-
ence suggests that words which are highly significant in terms of scores based on counting
occurrences are usually highly significant in terms of colors, and vice versa. As a result, it
does not really matter which score one chooses — the significant words will be discovered.
Unfortunately, signals that are more subtle could be missed using the simpler scores. Some
preliminary comparative analyses on simulated sequences are reported in [4].
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aliphatic

aromatic o
positive

non-polar

charged 0 n

-g v X =3 ~§ S qq.) LR
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Name Symbol I & |2 R[S |w 8 |3 [8 3 > >
Alanine A, ALA | o oo 7.49% | H | H
Arginine R, ARG ° oo 522% | C | +
Asparagine | N, ASN ° ° 453% | P | 0
Aspartic acid | D, ASP ololo|e 522% | C | —
Cysteine C,CYS | e ° 1.82% | P | O
Glutamic acid | E, GLU o oo 6.26% | C | —
Glutamine Q, GLN . 4.11% | P | O
Glycine G, GLY | e oo 710% | H | O
Histidine H,HIS |e | e oo . 223% | P | +
Isoleucine I, ILE |e 5.45% | H | H
Leucine L,LEU | e 9.06% | H | H
Lysine K,LYS | e | e oo 582% | C | +
Methionine | M, MET | e 227% | H | H
Phenylalanine | F, PHE | e ° 391% | H | H
Proline P, PRO . 512% | H | H
Serine S, SER . ° 734% | P | O
Threonine T, THR | o . 596% | P | 0
Tryptophan | W, TRP | e ° 1.32% | P | H
Tyrosine Y, TYR | e o 325% | P | O
Valine V,VAL | e ° o | 648% | H | H

Table 2: Amino acids naming and classification (table based on [21], picture based on [18]).
H, P, C, 0,4+, and — denote respectively hydrophobic, polar, charged, not charged, positevely
charged and negatively charged amino acids. Occurence statistics were compiled using the
NCBI database



~/data> verb -X 9 -L 5 -z 3 EarlyI.100.fasta
Reading data file EarlyI.100.fasta
Total size data set 5407
Number of sequences data set 108
Min_length 2
Max_length 5
Zoom 10
Score 3
Threshold 9
Building Suffix Tree
Annotating the tree
Size of the dataset tree 2935 nodes
Seconds 0.03
Writing EarlyI.100.fasta.dot
max: 16.4924
min: -0.840909
mean: 3.45274
std dev: 2.6454
——————— HISTOGRAM [-9, 9] ------

<-9 0
[-9,-5] 0
[-5,-1] 0
[-1,0] 14
[0,1] 136
[1,2] 248
[2,3] 208
[3,4] 192
[4,5] 122
[5,6] 88
[6,7] 64
[7,8] 37
[8,9] 31
>9 35

* Printed 35 nodes in the .dot file

Figure 3: A run of VERB on a sample FASTA sequence



GCGGCT

GAAA

GGCGGC

TIT —— TTTT —

TA

CTTTTC AAAG

GAAAA — GAAAAA

TTTTC TTTTCT

TTTTT

AAAAG
AAAAAG

AA T AAAA - apaan

T AAAAAA

AAGAAA

AGAAA

Earlyl.600bps.z4.L6.X8

Figure 4: DOT output on a sample set of sequences
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Figure 5: Web interface of VERBUMCULUS
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Verbumculus Tree Visualizer (1.0)

= T =
m Pop-up "bird’s eye" Generate GIF | Generate Postscript | Quit |
[ Unsigned Java Applet Window

Figure 6: TREEVIZ output on a sample sequence

For performance reasons, we have limited the visualization of TREEV1Z to 100 nodes:
when the tree becomes bigger, VERBUMCULUS generates a Postscript file with the drawing
of the tree. If the user wants to take advantage of the interactive facilities of TREEVIZ he
will have to increase the effectiveness of the filters in order to produce a smaller tree.

Once TREEVIZ has drawn a tree, the user can wander about it. The magnitude of a
score value is transduced through font size, in the sense that for every word w, the higher
the absolute value of the score of w, the bigger the font used to represent w. Words with
a negative score are, in addition, printed in red italics (see Figure 6). At any time the user
can click on a word and get information about the number of occurrences, the expected
number of occurrences, and the value of the score. Along with these, a representation of the
occurrences in the original sequence is produced (see Figure 8).

Figure 8 refers to the output of the analysis of a set of sequences. The two panels show
the usual information about two words picked from the tree, along with their positions inside
the submitted sequences. The original set of sequences is displayed in the window where the
occurrences of the selected words are highlighed in red. The first row shows the position of
each base relative to the beginning the sequence.

Since the tree can be fairly big, TREEV 1z offers the option to get an overall picture of the
tree by clicking on the “bird’s eye” button (the small window in Figure 6). Also, TREEV1Z
can generate drawings in Postscript or GIF that can be saved on the user’s machine for
further scrutiny.

An alternate viewer that uses hyperbolic geometry has been added in the latest version of
TREEV1Z. Figure 9 shows a view of a pruned suffix tree projected on a sphere. The software
is an adapted version of the visualization applets by A. Robinson, based on the work by
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Verbumculus Tree Viz (1.0) (o]

Hode Informations

=1ofx]

Werd | CGACG
Exp | 0.02
Hode InformationitelERl [
score | 7138
word | GCGAC

Sequence  TGAATTCTGCCACGATAGCGGT
Exp |0.02
obs | 1.00
score | 71.98 15 Unsigned Java Applet Window

Sequence  TGAATTCTGCGACGATAGCGGTATTG

TCTGC

TCAAC

TCGTC
GAACG
GACGA

GCGAC
GCGGT
GCAAA

Close

Close |

(& Unsigned Java Applet Wincow

AC(CSCA

) i
ol [ P
4 Pop—up "bird’s eye” Generate GIF | Generate PostScript window || P uit |
] Unsigned Java Applet Window

Figure 7: TREEVIZ output in the case of sliding window

word | CCGGG

Exp |o‘oo

abs [ 300

Score | 100,00

E78901234568783012345678901234567830123456 785012
GCTTCTTTTTACCTTGTCTTTTGCAAGTAGCGTCTTCAGATCCTT
GTACACCAATCTARATCTCGTCCOOOTTACACAACACTTTCTCCT
TTCTAARACCGGCATTATCACAATAAGAAGCCCCTATCAGCTATC
COTAATTTACCCOOOCARARCARGARTCATCCCCCCTARATTTCK

Sequences

=

Close

N

N

7

- @unsigned Java Applet Window

werd | GCGGC

Exp |o.0o
Obs |3.oo
scare [77.18

I45678901234567890123456789301234567830123456789C
TACCGTCTTCACATCCTTCCTTTTTOTCTCAGCATTOTTATCTT
TTACACAACACTTTGTCCTGTACTTTGAARAC TGGAARARCTCCG
CAACGCCCTATGACCTATCATTGTAAAGCAACTGOTCTAAAATTO
TCATCOCCOCTAAATTTCOGCCOCTATTTCATTCATTCAAGTATA

Sequences

Al

i

A

=
: Close | \\

- EUns\gned Java Applet Windaw

. 7]
! I
| Pop-up "bird’s eye” Generate GIF Generate PostScript | Hyperbolic Viewer | Quit

E Unsigned Java Applet Window

Figure 8: TREEVIZ output in the case of a set of sequences: note the panels showing the
positions of the selected word in the submitted sequences
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Lamping et al. [11,12]. The idea is to lay out the tree uniformly on the hyperbolic plane and
map the plane onto a circular display region. The projection onto the disk provides a natural
mechanism for assigning more space to a portion of the hierarchy while still embedding it in
a much larger context. Change of focus is accomplished by translating the structure on the
hyperbolic plane, which allows a smooth transition without compromising the presentation
of the context.

The beauty of such visualization technique is that it allows the viewer to keep a global
perspective of the data (i.e., the context) while examining selected regions in detail (i.e.,
to focus in). In the hyperbolic projection, as one moves away from the origin, the dis-
tance increases, but not in a linear fashion. Thus, the perimeter of the projection actually
corresponds to being at infinity and therefore all space may be shown in the projection.

The visualization of the suffix tree decorated with z-scores in the hyperbolic space poses
some additional problems. The font size of each word conveys the score, and therefore must
be maintained. However, when the words approach the boundary of the hyperbolic plane
they could become too small to be seen. In this case, they are drawn with a fixed size font in
grey (instead of black, if over-represented) or orange (instead of red, if under-represented).
The overall effect is to “dim” words close to the boundary to avoid the cluttering, but at the
same time to keep track of them.

The hyperbolic viewer support several interactive facilities:

e dragging the pointer on the display will cause the scene to be translated;

e holding down “shift” while dragging on the display will cause the scene to be rotated
about the root node;

e if the “+” and “-” keys are pressed during the display of the tree, the number of levels
of the tree shown will be increased and decreased respectively;

e if the “=” is pressed during the display of the tree, the number of levels of the tree
shown will reset to the default.

The web server of VERBUMCULUS is available at the address http://www.cs.purdue.
edu/homes/stelo/Verbumculus/
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