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Abstract: Most visualization tools introduced in the literature are specialized for a particular 
task. In this work, we introduce a novel framework which allows visualization to take place in 
the background of normal day to day operations of any GUI based operating system such as 
MS Windows, OS X or Linux. Our system works by replacing the standard file icons with 
automatically generated icons that reflect the contents of the files in a principled way. We call 
such icons Intelligent Icons. While there is little utility in examining an individual icon, 
examining groups of them provides a greater possibility of unexpected and serendipitous 
discoveries. The utility of Intelligent Icons can be further enhanced by arranging them on the 
screen in a way that reflects their similarity/differences. We demonstrate the utility of our 
approach on data as diverse as DNA, text files, electrocardiograms, and Space Shuttle 
telemetry. In addition we show that our system is unique in also supporting fast and intuitive 
similarity search. 

Keywords: data mining, visualization, icon 
Categories: H.3.0, H.3.3, H.3.4 

1 Introduction 

At the heart of many information visualization and data mining techniques is a single 
question “compared to what?” [11]. In several application domains, the main 
objective of data exploration is to arrange the data such that meaningful similarities 
and differences are exposed. However the vast majority of visualization/data mining 
tools introduced so far are specialized pieces of software that are explicitly run on a 
particular dataset at a particular time for a particular purpose. The human effort 
involved in this process is high enough that most of these tools are used rarely, even 
when data keeps accumulating at very high rates. 
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In this work we introduce a novel framework which allows lite-weight 
visualization and data mining to take place in the background of quotidian computer 
activities of any GUI based operating system such as MS Windows, OS X or Linux. 
This enables a greater possibility of unexpected, serendipitous and useful discoveries. 

Our system works by replacing the standard file icons with icons that reflect the 
contents of files in a principled way. We call such icons INTELLIGENT ICONS. While 
there is little utility in examining an individual icon, examining groups of them allows 
us to take advantage of small multiples paradigm elucidated by Tufte. We can 
enhance the utility of INTELLIGENT ICONS by arranging them on the screen in a way 
that reflects their similarity/differences, rather than the traditional “view by date”, 
“view by size” etc. As we will demonstrate, our approach has utility for data as 
diverse as DNA, text, and time series. 

The rest of the paper is organized as follows. We conclude Section 1 with a 
discussion of related work. Section 2 introduces our ideas on a single data type, DNA. 
In Section 3 we generalize these ideas to other types of data. Section 4 contains 
demonstrations and experiments. Finally in Section 5 we discuss future directions. 

1.1 Prior and Related Work 

Our work is closest in sprit to the recent VisualIDs work of Lewis et. al. [7]. The 
authors create distinctive icons for files by hashing the file names to seeds of a 
pseudorandom generator that in turn is used to create a shape grammar. In this way, 
similar filenames will map to similar shapes. 

Figure 1 is a simple example which shows the difference between VisualIDs and 
INTELLIGENT ICONS. There are three ASCII text files, each of which contains 
approximately 16,000 base pairs of mitochondrial DNA. We used string edit distance 
as suggested in [7] to measure the distance between file names, and Euclidean 
distance to measure the distance between the file icons (as explained in more detail 
later). Note that two of the species share the same specific name of “americanus” 
(with a different generic name) and this makes them similar in a way that is not 
biologically meaningful, whereas the INTELLIGENT ICON approach captures the correct 
relationship between the three species. 
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Figure 1: The similarity of three DNA files based on name (left) and content (right) 

The idea of using the values of variables to change the shape of an icon (glyph) 
dates back at least to the classic work of Chernoff [4]. Beddow and others extended 
this mapping to colors [3].  Keim et. al. introduced Recursive Patterns in [1]. 
Recursive patterns can be considered as a general technique to map data to bitmaps, 
although icons were not explicitly considered. 
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2 An Example of an Icon Generation Algorithm  

For concreteness we begin with a particular example before considering the general 
framework.  

2.1 DNA to Intelligent Icon 

A DNA string is a very long sequence of symbols drawn from the alphabet {A, C, G, 
T}. For example the human mitochondrial DNA has 16,571 such symbols, beginning 
with GATCACAGGTCTATCACCCTATTAACCACT. 

Although the rich literature on the problem of classifying DNA sequences 
contains very sophisticated approaches, here we pursue a very simple technique based 
on the frequency of short substrings. First we divide a bitmap into four quadrants and 
count the frequency of each of the four possible base pairs. Then we map the 
observed frequencies to a linear colormap and produce an icon by filling each section 
of the bitmap with the corresponding indexed color, as shown in Figure 2. 
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Figure 2: Illustration of the file icon generation for DNA 

Note that in this case both the arrangement of the four letters and the choice of 
colormap are arbitrary. In order to use as much of the color spectrum as possible, we 
normalize the data such that the symbol with lowest frequency maps to zero and the 
symbol with highest frequency maps to one. More concretely, if j is one symbol in the 
alphabet, then the color index of j is denoted as ci( j), and calculated as: 

)](),(),(),(max[/)])(),(),(),(min[)(()( TfGfCfAfTfGfCfAfjfjci −=  (1) 

We apply this simple mapping to DNA sequences of different mammals. 
Unsurprisingly however there is very little difference between the icons obtained. To 
improve the discrimination ability of the icons we use more features. Below we show 
a general mapping for DNA that has a potentially useful property.  

We begin by assigning each letter a unique key value, k:  
A → 0 C → 1 G → 2 T → 3 

We use l to represent the length of the DNA words. Each word has an index for 
the location of each symbol, for clarity we show them explicitly as subscripts. For 
example, the first word with l = 4 extracted from the human mitochondrial DNA is 
GOA1T2C3. So in this example we would say k0 = G, k1 = A, k2 = T and kl = C. To map a 
word into a bitmap we use the following equation to find its row and column values: 
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Figure 3: The mapping of DNA words of l = 1, 2 and 3 

Figure 3 shows the mapping for l = 1, 2 and (part of) 3. Note that bitmaps 
generated this way might be self-similar across different scales, as shown in Figure 4. 

 

 

Figure 4: The icons created for two species at each level from 1 to 4 

2.2 Optimizing and Arranging the Icons 

We measure the similarity of icons by the Euclidean distance between their frequency 
counts matrices. The distance between two matrices A and B, of the same level l, is 
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In Figure 5 we have clustered five familiar species based on the Euclidean 
distance between their bitmap representations. 
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Figure 5: Five species clustered by the distance between their bitmap representations 

Although the clustering is objectively correct, the differences are very subtle to 
the naked eye. For example the bottom right element of all five icons shown in Figure 
5 appears to be minor variations of blue violet. This motivates us to enhance the 
subjective visual discriminatory power of the icons by normalizing the (ith, jth) 
element across all icons. In Figure 6 left, normalization has emphasized the 
differences among the bottom right element of all five icons. At this point, we finally 
see a hint of the potential utility of INTELLIGENT ICONS. Imagine we encountered the 
icon shown in the right of Figure 6. Simply by glancing at all the file icons we might 
guess that this animal is more similar to the chimps/human than to the elephants. In 
fact, this is the case, Macaca mulatto is commonly known as the rhesus monkey. 
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Figure 6: Left) Five species clustered by the distance between their normalized 
bitmap representations. Right) The icon for another African mammal 

We can further leverage off the INTELLIGENT ICONS by arranging them within a 
file browser based on their similarity. By way of contrast consider the classic file 
browser interaction shown in Figure 7. Using the bounding box section tool, it is hard 
to extract meaningful subsets. 
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Figure 7: Twelve DNA files, sorted by name, in a typical file browser 

We can use INTELLIGENT ICONS to solve this problem by arranging the icons in 
the file browser based on their similarity. Here we adopt Multi-Dimensional Scaling 
(MDS) and the “snap-to-grid” technique suggested by Basalaj [2] to arrange the icons. 
Figure 8 shows 12 mammals being arranged in this way. Using standard bounding 
rectangles, we can select several logical groups, such as both types of Rhinos 
(Rhinocerotidae), both types of elephants (Elephantidae), etc. We call the 
combination of INTELLIGENT ICONS and the MDS layout a Smart Browser. 
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Figure 8: Twelve DNA files, arranged by Intelligent Icons, in a typical file browser 
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3 Generalizing from the DNA Example  

We have seen a concrete example of INTELLIGENT ICONS and their utility. We want to 
have a software tool that is capable of changing the individual icons of selected file 
types and allows arranging the file icons by similarity.  The user must create or 
download plug-ins that tell our software how to convert their file types. 

Below we consider plug-ins for text, time series, and metadata and provide 
general guidelines for arbitrary data types. Let us begin by considering the desirable 
properties of INTELLIGENT ICONS. 

3.1 Desirable Properties of INTELLIGENT ICONS 

Below we list four desirable properties of INTELLIGENT ICONS: 
• File types should retain distinctiveness. In current operating systems, most 

file types (e.g., PDF, PowerPoint, etc.) have a particular icon associated with 
them. This makes it easy to determine the file type at a glance. 

• Similar files should have similar icons. This is the fundamental property 
which allows users to spot clusters, duplicates and outliers in their data.  

• File icons should look similar at different resolution (cf. Figure 4). This is 
because most operating systems allow user to view icons at various sizes. 

• File icon updates should be fast. It is important that files can be added, 
deleted or edited, and have their icons instantaneously reflect their content.   

3.1.1 Distinctiveness of file type 

There is little doubt that having distinctive icons for different file types aids rapid file 
navigation. We can retain file distinctiveness while allowing individuality by a 
combination of two techniques: 1) Using different colormaps for different file types; 
2) Using different mappings for different file types. Figure 9 shows an example. 
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Figure 9: i) Colormaps used for different file types. ii) Examples of different 
mapping templates. iii) A screen capture of a folder with three different file types 
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3.1.2 Similar files should have similar icons 

The basic idea discussed in Section 2 of extracting features from the file, measuring 
their frequency, and mapping these frequencies to color and spatial arrangements can 
be easily applied to other domains. We provide some general guidelines in this section. 
Text: Files containing text, such as MS Word, PDF, TEX, TXT files etc. are perhaps 
the most commonly encountered file types for the majority of people. To map these 
files to icons, we first discard stop words, such as “the”, “of”, “and” etc. Such words 
tend to have equal frequency across all documents and thus have little discriminative 
power. Next we stem the words using Porters algorithm [9], so that variations on a 
word map to a single root, for example “dividing”, “divided” and “divide” all map to 
“divid”. Since the number of words left is still much greater than the number of pixels 
available, we use a classic text-processing algorithm called Latent Symantec Indexing 
(LSI) to reduce the dimensionality of the features.  
Time Series: Time series are a ubiquitous and increasingly prevalent type of data.  
There is some existing work on visualizing time series that could be adapted for our 
needs. For example the Recursive Pattern work of Ankerest et. al. [1] allows recursive 
generalization of arbitrary line and column oriented arrangements. Another possibility 
is to discretize time series and use the approach for text, or to discretize the time 
series into exactly four symbols and use the algorithm for DNA. Here we consider the 
later approach in more detail. 

We adopt the SAX technique of Lin et. al. [8] to convert real valued time series 
into discrete symbols. The SAX representation is created by taking a real valued 
signal and dividing it into equal sized sections. Each section is then substituted by its 
mean value. This representation is then discretized in such a manner as to produce a 
word with approximately equi-probable symbols. Figure 10 shows a relatively short 
time series being converted into a pseudo DNA word of 8 symbols. 
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Figure 10: A real valued time series being discretized into a SAX word 

Metadata: It is extremely difficult to extract useful features from many file types, 
including executables, music and video files. Fortunately, many such file types can be 
mapped to extensive repositories of metadata. For example, we create icons for MP3 
music files based not on the file contents, but on metadata provided (automatically) 
by CDDB.com. The features available include, Track Artist, Record Label, Year, 
Beats Per Minute etc. For video games, there is no completely automatic metadata 
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server, but an hour’s work enabled us to write a crawler which extracted features from 
www.metacritic.com/games/pc/scores/. 

3.1.3 File icon at different resolution should look similar to itself 

File icons should look similar when viewed at different scales because most operating 
systems allow user to view icons at different resolutions. In some cases this “self-
similar” property can be easily arranged. For example in Figure 4 our mapping for 
DNA has this property, and our mapping function for time series inherits it.  

More generally, this property may be hard to ensure if we wish to use every pixel 
of say a 48*48 bitmap. When we reduce the size of this bitmap to 24*24, we must 
average the quartets of pixels into one. If the original pixels elements are independent 
(a general requirement cf. section 3.1.2), the smaller bitmaps will not resemble the 
larger bitmaps. The good news is that it is unlikely we would use all 2,304 pixels of 
the largest icon size. Decades of research in machine learning and information 
retrieval strongly suggests that although objects may exist in very high dimensional 
spaces, meaningful similarity can best be captured in some low dimensional subspace. 
We therefore restrict ourselves to some small number of features, typically less than 
one hundred, and map each feature to several contiguous pixels in the smallest 
bitmap. The larger sizes bitmaps can then be obtained by simple linear extrapolation. 
Figure 11 shows how we combine variable level mappings and simple linear 
extrapolation for the DNA file icons. The smallest icon is a level 2 mapping of one 
feature to 4 pixels; the next size up is simply an enlargement of the smallest size. The 
32*32 size icon is a level 3 mapping of one feature to 4 pixels, and the largest icon is 
simply an enlargement of the second largest size. 
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Figure 11: Four different sized DNA icons for Argulus americanus 

3.1.4 File icon updates should be fast 

In general, if we only need to process a few files to create their INTELLIGENT ICONS, 
time complexity might not be an issue. However the issue of time complexity does 
become important if the mapping algorithm requires access to multiple files.For 
example, we have shown that DNA icons look better if we normalize the frequencies 
across all icons. This means that every update (deletions, insertions, and editing 
changes) to our files should be accompanied by an update to all icons. These updates 
could become unacceptably slow if we have many files. 

Our solution is to use a classic idea in the database community, lazy updates [6]. 
The basic idea is to learn the best mapping on all N files offline and use it to create 
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icons for all N files. If we later add a new file to the collection, we simply use the 
current mapping function to immediately create the new icon, and wait for an 
opportunity to create the optimal icons for all N + 1 icons.  

4 Experimental Evaluation of INTELLIGENT ICONS  

The central claim of our paper is that INTELLIGENT ICONS allow unexpected and 
serendipitous discoveries. This is difficult to prove in anything but an anecdotal way.  

We begin by using Smart Browser to browse the hundreds of datasets in the UCR 
archive [5]. One such dataset, known as Kalpakis_ECG, contains 18 normal ECGS. 
Figure 12 shows the dataset as most people have viewed it.  

 

 

Figure 12: Kalpakis_ECG dataset shown in a typical Window XP file browser 

When we glanced at this dataset with our Smart Browser, as shown in Figure 13, 
we immediately noticed that five of the 18 thumbnails had radically different icons.  
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Figure 13: Kalpakis_ECG dataset shown in a Smart browser 
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This structure was so unexpected that we asked UCLA cardiologist, Dr. Helga 
Van Herle to explain these findings. She informed us that the 5 recordings in question 
are not ECGs! They are in fact examples of the action potential of a normal 
pacemaker cell (not to be confused with the man-made devices which mimic them, 
and are named after them). Figure 14 illustrates the difference. 
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Figure 14: Top) Four snippets randomly chosen from Kalpakis ECGs. Bottom) A 
snippet from the “normal18.txt” ECG 

Another dataset we examined was a NASA dataset containing examples of 
telemetry from a Space Shuttle valve. Figure 15 shows five such time series.  
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Figure 15: Five NASA Marotta MPV-41 valve trace files shown in a Smart Browser 
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It is immediately apparent that one file has a quite different structure to the rest. 
NASA engineers explained the difference: while the other four files are normal 
sequences, file TEK00016.CSV is an abnormal trace, as shown in Figure 16. 
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Figure 16: The five time series whose Intelligent Icons are shown in Figure 15  
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Figure 17: Twelve monthly power demand time series shown in a Smart Browser 

As a final example we consider twelve monthly electrical power demand time 
series from Italy. Figure 17 shows the data viewed in a Smart Browser. It is 
immediately apparent that there are two major clusters that correspond to winter 
months and summer months. Such a division makes sense. Given that the demand for 
heating dominates the winter power demand (Air conditioning is still fairly rare in 
Italy). The other obvious observation is that the month of August is an outlier. To get 
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some insight into this phenomenon we visualize the entire year as a single time series 
as in Figure 18. Clearly the month of August is a true outlier, but what is going on? 

The answer lies in an Italian cultural phenomenon. According to travel writer 
Nella Nencini, “By the middle of July, normal activity begins to wane and by the 
beginning of August, shops no longer close between 1 and 4 p.m., they close for two 
or three weeks. Dry cleaners close, mechanics close, factories close, wineries close, 
restaurants close, even some museums close. Cities like Florence and Venice would 
be abandoned if not for the tourists braving the heat to visit artistic treasures.” The 
dramatic change in power demand reflects the fact that most major employers (like 
Fiat and many government offices) simply shut down for the month. 
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Figure 18: One year of Italian Power Demand in 1997 

4.1 Intelligent Icon Search 

Although the primary use of INTELLIGENT ICONS is visualization and data mining, 
their utility for query by content is related and potentially so useful that we briefly 
consider it here. 

Most operating systems support search by ‘name’, ‘date’, ‘size’ etc, and further 
enhance the search by ‘name’ by allowing wildcards. However, no current operating 
systems support query by content. The utility of such search is becoming increasing 
obvious as commercial hard drives now exceed 400 gigabytes in size. For example, 
suppose we know that we have a preliminary version of a paper buried among our 
files, but we don’t remember its name. It would be useful to be able to simply right 
click on the icon, and choose an option “find most similar file”. We have built such a 
utility into our Smart Browser tool. When searching for the most similar icon we 
exclude from consideration files in the same folder as the query file (for files in the 
same folder, user can easily locate the most similar icon with a Smart Browser). 

In general, query-by-content search using icons provides very intuitive results. 
For example, we have arranged DNA icons for approximately 245 mammals, reptiles 
and birds in folders that reflect their geographical location rather than their taxonomic 
relationship. If we search for the most similar file to chimpanzee.dna in the 
African folder, we are told that the closest match is orangutan.dna in the Asian 
folder. Likewise, as shown in Figure 19, a search for the most similar file to 
american black bear.dna, returns Polar Bear.dna1. 

We omit a detailed study of the efficiency of this search feature for brevity, 
except to note that we can search 50,000 icons in an average of 31.9 milliseconds. 
                                                           
1 The Polar Bear is found in the Alaska and Canada, in addition to Iceland, Greenland and Russia, so the 

choice of placing it in the Europe folder was somewhat arbitrary. Note that the Asiatic Black Bear 
(Ursus thibetanus), which may be more similar to the American Black Bear, has not yet been sequenced. 
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Figure 19: A screen capture of a search interaction with Smart Browser 

5 Conclusions and Future Work  

We have introduced INTELLIGENT ICONS, a novel technique for allowing visualization 
to take place in the background of day-to-day computer use. Future research 
directions include an extensive user study and providing support for other file types.  
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