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Abstract

A popular way to describe and build the DAWG or Directed Acyclic Word Graph of a string is by transformation of
the corresponding subword tree. This transformation, which is not difficult to reverse, is easy to grasp and almost trivial to
implement except for the assumed implication of a standard tree isomorphism algorithm. Here we point out a simple property
of subword trees that makes checking tree isomorphism in this context a straightforward process, thereby simplifying the
transformation significantly. Subword trees and DAWGs arise rather ubiquitously in applications of string processing, where
they often play complementary roles. Efficient conversions are thus especially desirable. 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

We recall, in informal terms, that a subword tree is
the compact tree storing all suffixes of a given string,
while the DAWG, or Directed Acyclic Word Graph,
for a string is a special finite automaton recognizing
all subwords of that string. We assume some familiar-
ity of the reader with the salient properties and con-
structions of these structures, for which we refer to the
bibliography [1–8].
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It is customary (see, e.g., [2–5]) to introduce a
DAWG as the result of a two-step transformation of
a subword tree. The first step involves the identifica-
tion and juxtaposition of all roots of isomorphic sub-
trees, beginning with the leaves. This produces an in-
termediate or “compact” DAWG consisting of a di-
rected acyclic graph with one source and one sink, and
requiring linear space for nodes and edges except for
the edge labels, that can charge quadratic space in the
worst case.

The second step takes care of reducing the overall
space to linear. This exploits the fact that the edges
reaching a same node are labeled by some consecu-
tive suffixes of a same, longest word. This property
supports a more succinct representation for the bun-
dle of edges reaching each node. Achieving such a
representation requires the following two simple ac-
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tions: first, the edge with the longest label is broken
down into a chain of unit edges, and then all other
edges are re-directed to an appropriate node in the
chain.

Of the two main steps above, the second one is
trivial to implement. The first one is done by invoking
some variant of the classical algorithm for testing tree
isomorphism devised by Hopcroft and Tarjan [6] in
connection with their linear planarity test (see, e.g.,
[1, Chapter 3, pp. 84–86]). Although this algorithm
is linear and not prohibitively involved, we show
here that there is a faster and more natural way
to test isomorphism on subword trees. Combined
with the simplicity of step 2, this makes it faster
to commute a subword tree into its corresponding
DAWG.

2. Speeding up the isomorphism test

We useTx to denote the subword tree of stringx$,
where $ is a symbol not inx. The following two easy
facts are well known to hold forTx .

Fact 1. Let a be a symbol of the alphabet andv a
possibly empty string. If the path labeledw = av from
the root ofTx ends precisely at a node, then so does
the path labeledv.

The property in Fact 1 finds crucial use in the
efficient constructions ofTx . To exploit the property,
suffixlinks are maintained in the tree that lead from the
terminal node of each stringav to the terminal node
of its suffix v. Such links are thus a byproduct of the
construction.

Fact 2. Let µ be the node reachable from the root
of Tx on the shortest path labeledwv, where v is
possibly empty. Then, the starting positions of all the
occurrences ofw in x are precisely the leaves in the
subtree ofTx rooted atµ.

Fact 2 can be re-phrased by saying that the number
of occurrences ofw in x equals the number of leaves
in the subtree ofTx rooted atµ. A trivial bottom-
up computation onTx will weight each node with
the number of leaves in the subtree rooted at that
node. Facts 1 and 2 support our main property below.

The property shows that, having weighted the tree as
stated, the juxtaposition of isomorphic trees in step 1
can be accomplished just by collapsing to a single
node each chain of suffix links that connects nodes
with the same weight.

Fact 3 (Main fact). Any two subtreesT 1 and T 2 of
Tx are isomorphic if and only if they have the same
number of leaves and their roots are connected by a
chain of suffix links.

Proof. Let µ1 andµ2 be the nodes that are roots of
T 1 and T 2, respectively, and let stringsw1 and w2,
where we take without loss of generality|w1| > |w2|,
be the respective labels of the paths from the root of
Tx to those nodes. We also useendpos(w) to denote
the set of the end positions of all occurrences of string
w in x.

If T 1 andT 2 are isomorphic then the collection of
the labels from their respective roots to their leaves
must describe a same set of suffixes ofx. Thus the
trees must have, in particular, the same number of
leaves. Letk be the starting position inx of a suffix
contained in bothT 1 andT 2. Then, by the structure of
Tx , leavesk − |w1| andk − |w2| must be found inT 1

andT 2, respectively. This is equivalent to saying that
k − 1 is in endpos(w1) as well as inendpos(w2). But
thenw2 is a suffix ofw1, and there must be a chain of
suffix links fromµ1 to µ2.

Let us assume now that there is a chain composed by
l > 0 suffix links from the root ofT 1 to the root ofT 2

and thatT 1 andT 2 have the same number of leaves.
From the first one of these assumptions, it must be
possible to writew1 = uw, andw2 = w, where|u| = l.
Now, in general, we haveendpos(uw) ⊆ endpos(w).
Since we know from the second assumption that
|endpos(uw)| = |endpos(w)|, then the only possibility
is thatendpos(uw) = endpos(w), henceT 1 andT 2 are
isomorphic. ✷
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