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Abstract

We are concerned with the fractal approximation of multidimensional functions in L2. In particular, we treat
a position-dependent approximation using orthogonal bases of L2 and no search. We describe a framework that
establishes a connection between the classic orthogonal approximation and the fractal approximation. The main
theorem allows easy and univocal computation of the parameters of the approximating function. From the computa-
tional perspective, the result avoids to solve ill-conditioned linear systems that are usually needed in former fractal
approximation techniques. Additionally, using orthogonal bases the most compact representation of the approximation
is obtained. We discuss the approximation of gray-scale digital images as a direct application of our approximation
scheme. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Some years ago it has been shown that determin-
istic fractal geometry is capable to produce very
complex behaviors using apparently simple math-
ematical models [3]. In particular fractal models
appeared suitable to represent real world images
[6,14,20,21].

In 1987, Barnsley originally proposed to use de-
terministic fractal geometry to obtain a compressed
representation of digital images. Some years later,

one of his students devised the first algorithm ca-
pable to partially achieve that goal [10].

The idea of fractal coding is to represent the
signal, or better, the function to be approximated,
solely by the relations that are present between
affinely transformed parts of the signal and the
signal itself. Through the removal of ‘self-affine
redundancy’, one hopes to obtain a more compact
representation than the original one.

Barnsley [4], Jacquin [10—12] and Jacobs et al.
[9] presented different methods for looking for the
similarities present in digital images. For simplicity
of implementation the search for similarities was
performed only between blocks in which the image
was initially decomposed. The brightness of a block
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was being approximated by a linear transformation
of the brightness of another bigger block. Among
all the bigger candidate blocks the one that best
approximated the original was chosen, together
with a particular transformation.

The whole image was hence represented through
the relationship between blocks and by the coeff-
icients of such brightness transformation. They
originally chose linear transformations with a con-
stant translation term with respect to the position
inside the block. Although later many other strat-
egies has been proposed (see e.g. [1]) the search
process was always computationally very intensive.

Motivated by the desire to reduce substantially
the computational cost, Monro and Dudbridge
proposed a different approach in which the approx-
imation is applied independently on each single
block [16]. The basic method, although simple to
implement and very fast, does not perform well. It
constrains too strong auto-similarities inside the
blocks that are generally not present in real-world
images. To obtain a better quality of the approxi-
mation the authors propose to substitute the con-
stant translation term with a polynomial in the
pixel coordinates. The polynomial approximates
the residual error that cannot be captured by the
fractal approximation.

Barnsley himself introduced, in the one-dimen-
sional case, a class of fractal interpolation functions
which have a self-similarity property [2]. In this
paper we want to show that it is possible to refor-
mulate Barnsley’s theory in terms of fractal approx-
imation functions in L2(Rn). In particular, since we
are going to treat the problem of image coding (i.e.,
the approximation of a brightness function) we will
consider, without loss of generality, the two-dimen-
sional case.

In that framework we will describe a more gen-
eral type of position-dependent approximation
than the one by Monro and Dudbridge, in which
the translation term is a function that belongs to
the subspace generated by a particular orthogonal
basis. Other techniques that use orthogonal basis,
although developed from a different approach, can
be found in [18,19].

The main result of this work is a theorem that
builds the fractal approximation from an approxi-
mation of the gray-scale function expressed with

respect to the same basis. Since the resulting ap-
proximation is optimal with respect to the chosen
basis we will call it the best fractal orthogonal
approximation (BFOA).

In practice, if we suppose to have a ‘classic’
place-dependent approximation the rules of the
theorem ‘turn it’ into a fractal approximation. In
this way, we avoid using heavy numerical methods
to overcome the ill-conditioned problems asso-
ciated to the type of polynomials used in [15—17].

We will show some results on the approximation
of digital images obtained with cosine and Haar
basis. We want to emphasize that the initial ap-
proximation can be computed with any algorithm,
for example with fast technique like FFT or DWT.
However, this work proposes a new approximation
model, and not yet a compression technique.

Section 2 recalls some notations used in the rest
of the paper, while Section 3 introduces a theory
for fractal approximation in L2(R2) with a variant
of the Collage theorem. Section 4 presents the main
result of the BFOA and an issue on the contractiv-
ity of the operator.

The application of BFOA to image approxima-
tion is described in Section 5, where we show the
results of using different orthogonal bases in
a block coding framework. Once we fix the number
of parameters, our approach gives a lower recon-
struction error than the original Monro and Dud-
bridge polynomial approximation. In the same sec-
tion we analyze the best splitting point heuristics as
a searching method and we show the advantages
given by the utilization of bigger blocks than the
ones generally used.

2. Notations

We briefly recall some notation used in the pa-
per. We consider functions in Lp with the metric

d( f, g)"Ef!gE
p
,

where

E f E
p
"AP

R2

D f (x)DpdkB
1@p

.

Let f be a function in Lp and º a subspace of
Lp. With best approximation of f in º we define the
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1w
j
(A)Ww

k
(A)"0 ∀j,k"1,2,N with jOk.

function f *
3Lp that satisfies

E f!f *E
p
"inf

g|U

E f!gE
p
.

In other words, f is the function that achieves the
minimum distance from f * with respect to the par-
ticular norm chosen.

We recall that if º is a finite-dimensional sub-
space, then there exists at least one best approxi-
mation. In particular, if º is generated by an
orthogonal basis Mu

0
, u

1
,2, u

n
N, then the best ap-

proximation of f is given by +n
j/0

c
j
u
j
and it belongs

to º if and only if c
j
"(Eu

j
E2
2
)~1S f, u

j
T. The expres-

sion is called Fourier series and c
j
are the Fourier

coefficients.
In the rest of the paper we will assume p"2

because of the important properties of L2 and
because the L2-norm is the easiest norm to
manipulate. We will denote by S ) , ) T the scalar
product in L2 defined as Sf, f T"E f E2

2
, with " the

operator that composes two functions and with
¹n( f ) the iterated application of ¹ to f, n times.

3. Fractal approximation in L2(R2)

We identify a continuous gray-scale image with
a function f3L2 whose domain is a compact set A,
attractor of an IFS MA; w

1
,2,w

N
N (see [3])

A"

N
Z
i/1

A
i
"

N
Z
i/1

w
i
(A),

where the maps w
i
are affine, contractive and non-

overlapping,1 i.e., w
i
(x)"¸

i
x#q

i
, x3R2, and

where ¸
i
are 2]2 scaling matrices, and q

i
are trans-

lation vectors. The maps w
i
describe the underlying

‘geometry’ of the domain A of the function f.
A fractal approximation of f is a function f * asso-

ciated with an L2-contractive operator such that
f * is the unique fixed point of ¹, that is ¹f *

"f *.
Since the metric space (L2(A),E ) E

2
) is complete,

by the Banach’s theorem there is only one fixed
point that can be obtained by the following recon-

struction algorithm

lim
n?=

¹n(g)"f *, ∀g3L2(A). (1)

The procedure (1) permits to obtain f * by the iter-
ations of the operator ¹ starting from any initial
function g.

The operator ¹ is usually built from the IFS
maps w

i
and from some appropriate functions F

i
:

(¹h)(x)"F
i
(h(w~1

i
(x))), ∀x3A

i
, h3L2(A).

In a more general case, we can consider a place-
dependent operator

(¹h)(x)"F
i
(w~1

i
(x), h(w~1

i
(x))),

∀x3A
i
, h3L2(A), (2)

where F
i
:A][c, d]P[c, d], i"1,2,N, are func-

tions satisfying the Lipschitz condition

DF
i
(x, y

1
)!F

i
(x, y

2
)D)s

i
Dy

1
!y

2
D,

s
i
'0, ∀x3A, ∀y

1
, y

2
3[c,d].

When (+N
i/1

Ddet ¸
i
D s2

i
)1@2(1 then ¹ is contractive

in L2(A). Indeed, since the sets A
i
are disjoint, we

have

E¹h!¹gE2
2
"

N
+
i/1
P
Ai

DF
i
(w~1

i
(x), h(w~1

i
(x)))

!F
i
(w~1

i
(x), g(w~1

i
(x)))D2dk

"

N
+
i/1

Ddet¸
i
DP

A

DF
i
(x, h(x))!F

i
(x, g(x))D2dk

)

N
+
i/1

Ddet¸
i
Ds2
i P

A

Dh(x)!g(x)D2 dk

"

N
+
i/1

Ddet¸
i
Ds2
i
Eh!gE2

2
. (3)

Of particular interest is the linear case

F
i
(x, y)"a

i
y#q

i
(x), a

i
3R, q

i
3L2(A), (4)

in which the operator ¹ becomes

(¹h)(x)"a
i
h(w~1

i
(x))#q

i
(w~1

i
(x)),

∀x3A
i
, h3L2(A). (5)

From Eq. (3) it follows that if
(+N

i/1
Ddet¸

i
Da2

i
)1@2(1 then ¹ is contractive in

L2(A). It is interesting to remark that ¹ can be
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contractive even if not all of the maps satisfy
Da

i
D(1.

3.1. The inverse problem

The problem of finding a contractive operator
¹ whose fixed point is f, or better, close to f, is called
the inverse problem. The Collage theorem provides
directions on how to evaluate a given operator.

Theorem 1. ¸et f3L2(A), ¹ :L2(A)PL2(A) be the
contractive operator defined in Eq. (2) with contrac-
tivity factor 0)K(1, and f * its fixed point. If

E f!¹f E
2
(e,

then

E f *
!f E

2
(

e
1!K

,

or equivalently,

E f *
!f E

2
((1!K)~1E f!¹f E

2
.

Proof. The proof proceeds as for the classic IFS
theory [3]. h

The theorem states that once we are given with
a particular f3L2(A) to approximate, if ¹ is such
that f and its image under ¹ are ‘near enough’, then
f will be ‘near enough’ to f *.

Note that the theorem is not constructive. It
provides a measure of the quality of the approxima-
tion without having to compute the fixed point of
¹, but it does not suggest any method to find an
explicit form of ¹.

3.2. Best fractal approximation in L2

In the rest of the paper we consider the case of
the linear operator described in Eq. (5). In particu-
lar, we assume that the functions q

i
have been

chosen in a subspace º of L2(A).
We call best fractal approximation of f the fixed

point f * of the operator ¹ such that f has minimum

distance from ¹f. That is,

inf
qi|U,K:1

E f!(a
i
f "w~1

i
#q

i
" w~1

i
)E

2
,

where K"(+N
i/1

Ddet¸
i
Da2

i
)1@2.

Alternatively, the search for the best fractal ap-
proximation of f can be carried out by looking for
the parameters a

i
and the functions q

i
which min-

imize

Ef "w
i
!(a

i
f#q

i
)E2

2
∀i"1,2, N, (6)

since

E f!(a
i
f "w~1

i
#q

i
"w~1

i
)E2

2

"

N
+
i/1
P
Ai

D f (x)!(a
i
f (w~1

i
(x))#q

i
(w~1

i
(x)))D2dk

"

N
+
i/1

Ddet¸
i
DP

A

D f (w
i
(x))!(a

i
f (x)#q

i
(x))D2dk

"

N
+
i/1

Ddet¸
i
DE f" w

i
!(a

i
f#q

i
)E2

2
.

4. The best fractal orthogonal approximation

When the functions q
i
belong to a subspace º

generated by an orthogonal basis Mu
0
, u

1
,2, u

n
N,

the operator ¹ can be obtained by fairly simple
rules.

The following theorem allows us to construct the
function that approximates f "w

i
, i.e., the function

that minimizes E f "w
i
!(a

i
f#q

i
)E

2
with respect

to q
i
3º, a

i
3R. We call such approximating func-

tion the best fractal orthogonal approximation of
f "w

i
in º.

Theorem 2. ¸et f3L2(A), ALR2 be a compact
set with k(A)(#R and Mw

1
,2,w

N
N be non-over-

lapping contractive affine maps, such that
A is the attractor of the associated IFS. ¸et
Mu

0
, u

1
,2, u

n
N denote an orthogonal system in

L2(A), º the subspace generated by its elements,
+n

j/0
c
j
u
j

and +n
j/0

cJ (i)
j
u
j

the best approximation
in º of f and f "w

i
, respectively. ¹hen, for

each i"1,2,N, there is an element in º,
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g
i
"+n

j/0
u(i)
j
u
j
, univocally defined by

u(i)
j
"cJ (i)

j
!aL

i
c
j
, aL

i
"

:
A

f ) f "w
i
dk!+n

j/0
Eu

j
E2
2
c
j
cJ (i)
j

:
A

f 2dk!+n
j/0

Eu
j
E2
2
c2
j

(7)

such that aL
i
f#g

i
, i"1,2, N, is the best fractal

orthogonal approximation of f "w
i

in º. In other
words, for any i, aL

i
f#g

i
has the minimum distance

from f "w
i
with respect to chosen orthogonal basis.

If :
A

f 2 dk!+n
j/0

Eu
j
E2
2
c2
j
"0, we have to

set aL
i
"0; in this case the functions g

i
correspond

with the best approximation of f "w
i
in º.

Proof. First of all, note that if +n
j/0

c
j
u
j

and
+n

j/0
d
j
u
j
are, respectively, the best approximation

of f and g, with respect to the orthogonal basis
Mu

j
N
j/0,2,n

, we have

Tf!
n
+
j/0

c
j
u
j
, g!

n
+
j/0

d
j
u
jU

"S f, gT!
n
+
j/0

Eu
j
E2
2
c
j
d
j
. (8)

The reason is explained in the following derivation:

Tf!
n
+
j/0

c
j
u
j
, g!

n
+
j/0

d
j
u
jU

"S f, gT!
n
+
j/0

d
j
S f, u

j
T!

n
+
j/0

c
j
S g, u

j
T

#

n
+
j/0

n
+
k/0

c
j
d
k
Su

j
, u

k
T

"S f, gT!
n
+
j/0

Eu
j
E2
2
c
j
d
j
,

where

Su
j
, u

k
T"0, then kOj, Su

j
, u

j
T"Eu

j
E2
2
,

c
j
"(Eu

j
E2
2
)~1S f, u

j
T, d

j
"(Eu

j
E2
2
)~1Sg, u

j
T,

j"0,2, n, Eu
0
E2
2
"P

A

dk"k(A),

and where u
0

is the unitary function.
Having fixed the coefficients a

i
, let g

i
"

+n
j/0

u(i)
j
u
j

be the best approximation in º of
f "w

i
!a

i
f (see Section 2). Therefore, u(i)

j
are the

Fourier coefficients of f "w
i
!a

i
f,

u(i)
j
"(Eu

j
E2
2
)~1S f "w

i
!a

i
f, u

j
T.

Define now an auxiliary function

G(a
i
)"E f "w

i
!(a

i
f#g

i
)E2

2

"E( f "w
i
!a

i
f )!g

i
E2
2
. (9)

It is well known that

G(a
i
)"min

qi|U

E( f " w
i
!a

i
f )!q

i
E2
2
.

In addition to this, the minimum is unique. It
follows that

u(i)
j
"(Eu

j
E2
2
)~1S f "w

i
, u

j
T!a

i
(Eu

j
E2
2
)~1S f, u

j
T

"cJ (i)
j
!a

i
c
j
,

and hence

g
i
"

n
+
j/0

cJ (i)
j
u
j
!a

i

n
+
j/0

c
j
u
j
,

where

c
j
"(Eu

j
E2
2
)~1S f, u

j
T, cJ (i)

j
"(Eu

j
E2
2
)~1S f "w

i
, u

j
T.

Substituting in Eq. (9) we have

G(a
i
)"KK( f " w

i
!a

i
f )!A

n
+
j/0

cJ (i)
j
u
j
!a

i

n
+
j/0

c
j
u
jBKK

2

2

"KKA f "w
i
!

n
+
j/0

cJ (i)
j
u
jB!a

iA f!
n
+
j/0

c
j
u
jBKK

2

2

"P
A
CA f "w

i
!

n
+
j/0

cJ (i)
j
u
jB

!a
iA f!

n
+
j/0

c
j
u
jBD

2
dk.

Now, once we consider G as a function of a
i
, we can

see that it is differentiable and it has a unique
stationary point given by the solution of

P
A
A f!

n
+
j/0

c
j
u
jBAf "w

i
!

n
+
j/0

cJ (i)
j
u
jBdk

"a
iP

A
A f!

n
+
j/0

c
j
u
jB

2
dk. (10)

By Eq. (8) we have G(2) (a
i
)"2(:

A
f 2dk!

+n
j/0

Eu
j
E2
2
c2
j
). Using the Bessel’s inequality and the
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hypothesis of the theorem it follows that
G(2) (a

i
)'0, which means the point is a minimum.

Eq. (10) can be rewritten as follows:

a
iTf!

n
+
j/0

c
j
u
j
, f!

n
+
j/0

c
j
u
jU

"Tf!
n
+
j/0

c
j
u
j
, f "w

i
!

n
+
j/0

cJ (i)
j
u
jU.

Finally, using Eq. (8), we have

a
iAS f, f T!

n
+
j/0

Eu
j
E2
2
c2
jB

"S f, f " w
i
T!

n
+
j/0

Eu
j
E2
2
c
j
cJ (i)
j

,

and we obtain, as a solution, the value aL
i

in
Eq. (7). h

4.1. Remark

Actually, we do not have any guarantee that by
using Eq. (7) we will satisfy the condition K(1
since the parameters are obtained through an un-
constrained minimization. However, we have al-
ways verified experimentally the contractivity
condition in our test cases with different approxi-
mation orders, i.e., choices of n. The general results
resisted all our attempts to prove it formally. How-
ever, under some particular condition, we can show
that the operator ¹ obtained by Eq. (7) is contrac-
tive in L2(A).

Proposition 3. ¸et f3L2(A) be a non-negative func-
tion with E f E

2
O0. ¼hen considering the zero-

order approximation, i.e. n"0, and a
i
*0, u(i)

0
*0,

u(i)
0

are not all zero, the operator ¹ defined by the
parameters of Eq. (7) is a contraction in L2(A).

Proof. Rewriting Eq. (7) for j"0 we have

a
i
(E f E2

2
!c2

0
)"S f, f "w

i
T!c

0
cJ (i)
0

,

and hence

a
i
E f E2

2
#E f E

1
u(i)
0
"S f, f "w

i
T,

where u(i)
0
"cJ (i)

0
!a

i
c
0
, and f is non-negative. By

the Schwartz’s inequality,

a
i
E f E2

2
#E f E

1
u(i)
0
)E f E

2
) E f "w

i
E
2
. (11)

For convenience of notation, we indicate
D

i
"Ddet¸

i
D. Squaring both sides in Eq. (11), multi-

plying by D
i
and summing over i we get

E f E4
2

N
+
i/1

D
i
a2
i
#E f E2

1

N
+
i/1

D
i
(u(i)

0
)2

#2 E f E2
2
E f E

1

N
+
i/1

D
i
a
i
u(i)

0
)E f E4

2
,

since

E f E2
2
"

N
+
i/1

D
i
E f "w

i
E2
2
.

Hence,

E f E4
2A

N
+
i/1

D
i
a2
i
!1B#E f E2

1

N
+
i/1

D
i
(u(i)

0
)2

#2 E f E2
2
E f E

1

N
+
i/1

D
i
a
i
u(i)
0
)0.

When a
i
*0, u(i)

0
*0 and u(i)

0
are all not zero, the

left member is strictly greater than
E f E4

2
(+N

i/1
D

i
a2
i
!1).

Finally, we have

E f E4
2A

N
+
i/1

D
i
a2
i
!1B(0,

that guarantees the required contractivity since
E f E

2
O0 by hypothesis. h

5. Applications to block image coding

In order to apply the BFOA to image coding we
consider the image decomposed in square blocks of
8]8 or 16]16 pixels. A single block becomes the
domain A of the brightness function f, the function
we want to approximate. We choose w

1
, w

2
,w

3
,w

4
as the functions that map a square in its four equal
sub-quadrants. Later in this section we will discuss
a more general subdivision of blocks.

We first choose Legendre and Chebychev poly-
nomials as orthogonal system Mu

i
N
i/0,2,n

. How-
ever, the best results were obtained with the cosine
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Table 2
RMS error for ‘Lena’ using cosine basis. Blocks are 8]8 pixels.
By * we indicate a choice of intermediate order. The order is m as
in Eq. (12)

Order Parameters RMS

0 2 7.73009
1 4 4.75527

* 6 3.42942
2 7 3.09499

* 8 2.73753
3 11 2.05501

Table 1
RMS error for ‘Lena’ using Monro—Dudbridge polynomial.
Blocks are 8]8 pixels

Order Parameters RMS

0 2 7.73009
1 4 4.81795
2 6 4.01304
3 8 3.80255

Table 3
RMS error for ‘Lena’ using Haar basis. Blocks are 8]8 pixels.
The resolution factor is m as in Eq. (13)

Resolution factor Parameters RMS

0 2 7.73009
1 3 7.10770
2 5 5.00614
3 9 4.17559
4 17 0.00000

Fig. 1. RMS error for ‘Lena’ choosing different bases: e cosine
basis, # Haar basis, h Monro—Dudbridge polynomial.

basis which is briefly described in appendix A. Also
we did some experiments using the Haar wavelet
basis (see Appendix A).

For each block we compute from Eq. (7) the
coefficients a

i
and u(i)

j
, i"1,2, 4, which build the

best fractal orthogonal approximation. The encod-
ing of the block is represented only by these coeffi-
cients. The problem of quantization of the encoding
is outside the scope of this paper. Our work pro-
poses a new approximation model, and not yet
a compression technique.

However, we compare our results with a similar
place-dependent method which uses standard poly-
nomials for the q

i
, called the Bath Fractal Trans-

form [15—17], when no search is performed. In the
BFT, the authors obtain the coefficients of the
polynomials and the value of a coefficient that
plays the role of a

i
by a least-squares optimization

performed by a numerical resolution of linear
systems.

In Tables 1—3 and in Fig. 1 we show the approx-
imation error evaluated in the L2-norm for ‘Lena’
(Fig. 3) using the BFOA with different orthogonal
bases. When the number of parameters are equal

our approach gives a reconstruction error lower
than the polynomial approximation in [15]. Addi-
tionally, not having ill-conditioned problems that
are instead present in the BFT, it is possible to get
an approximation error as low as we want by
simply raising the order.

Finally, in order to evaluate the benefits of
a more general tiling of the blocks, we implemented
an adaptive searching of the best splitting point of
the IFS that describes the domain A. The underly-
ing motivation is to understand how much a better
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Table 4
RMS error for ‘Lena’ with searching for the best (r, s)

Block size Basis Parameters Data/total parameters RMS

8]8 Haar 4 4 : 1 5.36103
8]8 Cosine 4 4 : 1 4.34129

16]16 Cosine 16 4 : 1 3.80247

Fig. 2. The subdivision of A in w
i
(A). Fig. 3. ‘Lena’ digitized 512]512, 8 bit per pixel.

representation, in the fractal sense, of the domain of
f could contribute to a better overall approxima-
tion.

Let us assume that the block dimension is P]P
pixels. Each choice of (r, s) in the set of admissible
points

D"GA
k
1

P
,
k
2

PBK(k1, k2)3[1,2,P!1]

][1,2,P!1]H,
defines an IFS MA,w

1
, w

2
, w

3
, w

4
N with attractor A.

An example of a particular choice (r, s)3D and the
corresponding maps w

i
is shown in Fig. 2. We con-

sider the best splitting point the one whose IFS
minimizes Eq. (6).

The optimization problem in D is solved through
a gradient descent method, starting from the center
of the block. We verified that our algorithm con-
verges always to the global minimum and that

checks on average one-fourth of the cardinality
of D.

Table 4 summarizes our experiments that em-
ploy the above strategy. Since we can afford to
increase the order of the approximation we can
safely have a bigger block dimension. If one
chooses, for example, 16]16 blocks with 16 para-
meters per transformation, we have the same ratio
data/parameters as for the 8]8 blocks with 4 para-
meters per transformation, but the reconstruction
error is lower (cf. Figs. 4—6).

6. Conclusions

We introduced a general theory for the position-
dependent fractal approximation of functions in
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Fig. 4. Blocks 8]8 pixels, cosine basis, 4 parameters per trans-
formation with searching for the best (r, s), RMS"4.34129.

Fig. 5. Blocks 8]8 pixels, Haar basis, 4 parameters per trans-
formation with searching for the best (r, s), RMS"5.36103.

Fig. 6. Blocks 16]16 pixels, cosine basis, 16 parameters per
transformation with searching for the best (r, s), RMS"3.80247.

L2(Rn), called the ‘best fractal orthogonal approxi-
mation’, that connects IFS and orthogonal bases.
Loosely speaking, our method is capable of ‘trans-

forming’ a classic place-dependent approximation
into a fractal approximation.

Our approach can be very useful in multidimen-
sional signal processing. In particular, we showed
an application to two-dimensional discrete data,
and specifically to digital images. Compared with
other position-dependent approximation described
in [15—17] it yields better quality of the approxima-
tion and less computational efforts.

More adaptive geometry, better methods of
searching block similarities and more adaptive
functional approximation seems to be the main
goals of the future progresses in fractal image com-
pression.

Recent papers [5,7,13,22] propose to search the
similarity relations in the wavelet domain of the
images. The results are comparable to state-of-
the-art methods for image coding and they are
attracting new research interests.
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Appendix A. Some remarks on the orthogonal bases
used

In the following we outline the two prominent
basis we used in our experimentations: the cosine
basis and the Haar wavelet basis.

A.1. Cosine basis

It is well known that the functions

u
i
(x) u

j
(y), i, j"0,1,2, where u

k
(t)"cos kpt,

form a complete orthogonal system on the set
I2"[0,1]][0,1].

The decomposition of f (x, y) of order m is given
by

m
+
i/0

m~i
+
j/0

a
ij
u
i
(x) u

j
(y)" +

0xi`jxm

a
ij
u
i
(x) u

j
(y), (12)

where

a
ij
"

1

h
ij
P

1

0
P

1

0

f (x, y)u
i
(x) u

j
(y) dxdy,

with

h
ij
"P

1

0
P

1

0

u2
i
(x)u2

j
(y) dxdy

"G
1 i"0"j,

1/4 i, j'0,

1/2 i"0, or j"0, iOj.

A.2. Haar basis

Theorem 2 is also remarkable because it allows
to use wavelets. We choose the following ortho-
gonal basis of elementary wavelets — a set of func-
tion generated by dilation and translation of single
function t, called the ‘mother wavelet’ —

t
jk

(x)"2j@2 t(Bjx!k), x3R2, j3Z, k3Z2,

where as mother wavelet we choose

t(x)"G
1 x3[0,1]][0,1/2),

!1 x3[0,1]][1/2,1],

and the matrix B, called matrix dilation, is

A
0 2

!1 0B .

This two-dimensional orthogonal basis of wavelets
can be considered a generalization in L2(R2) of the
Haar’s system [8].

If one chooses the orthogonal basis t
jk
, the de-

composition of f (x) at the resolution factor m is
given by

m
+
j/0

+
k|Z2

a
jk
t
jk
(x), x3I2, (13)

where the coefficients a
jk

are

a
jk
"P

I2
f (x)t

jk
(x) dx.

The sum in Eq. (13) is taken over multi-index
k such that x3I2.

Note that the integrals involved in the computa-
tion of the coefficients, with respect to the bases
described above, can be easily implemented as dis-
crete summation. Alternatively, it is possible to
compute directly the coefficients by using efficient
algorithms like the FFT for the cosine basis, or the
DWT for wavelets.
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