
      

 

   

 

   

   Int. J. Data Mining and Bioinformatics, Vol. 1, No. 3, 2007 241    
 

   Copyright © 2007 Inderscience Enterprises Ltd. 
 
 

   

 

 

       
 

A parallel edge-betweenness clustering tool  
for Protein-Protein Interaction networks 

Qiaofeng Yang and Stefano Lonardi* 
Department of Computer Science and Engineering, 
University of California, Riverside, CA 92521, USA 
Fax: 1-951-827-4643 E-mail: qyang@cs.ucr.edu 
E-mail: stelo@cs.ucr.edu 
*Corresponding author 

Abstract: The increasing availability of protein-protein interaction graphs 
(PPI) requires new efficient tools capable of extracting valuable biological 
knowledge from these networks. Among the wide range of clustering 
algorithms, Girvan and Newman’s edge betweenness algorithm showed 
remarkable performances in discovering clustering structures in several  
real-world networks. Unfortunately, their algorithm suffers from high 
computational cost and it is impractical for inputs of the size of large PPI 
networks. Here we report on a novel parallel implementation of Girvan  
and Newman’s clustering algorithm that achieves almost linear speed-up for up 
to 32 processors. The tool is available in the public domain from the authors’ 
website. 
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1 Introduction 

Recent advances in proteomics such as yeast two-hybrid, phage display and mass 
spectrometry have resulted in several genome-scale PPI map projects. The identification 
of functionally related proteins is among the most urgent computational challenges  
facing the proteomics community. In the literature, the problem has been approached by 
analysing the topological properties of interaction networks (see, e.g., Bader and Hogue, 
2003; Rives and Galitski, 2003) or by comparing networks from several model organisms 
(see, e.g., Kelley et al., 2003; Koyuturk et al., 2005; Sharan et al., 2004). 

Here, we are interested in discovering functionally related proteins by clustering 
interaction graphs based on their topological properties. It has been shown  
(see, e.g., Maslov and Sneppen, 2002) that proteins that are involved in the same cellular 
process or reside in the same protein complex are expected to have strong interactions 
with their partners. At the same time, interactions between distinct functional modules are 
expected to be suppressed in order to increase the overall robustness of the network by 
localising effects of deleterious perturbations. Such characteristic network organisation 
motivates to use an algorithm in the divisive class of clustering algorithms, which 
discover and break down the relatively few links between different functional modules, 
thus revealing the clustering structure in the network. 

Among the wide spectrum of graph clustering algorithms available in the literature, 
we selected the algorithm by Girvan and Newman (2002), which showed remarkable 
performances in discovering clustering structures in several networks, such as social 
networks, scientific collaborations, food web, and PPI networks (Dunn et al., 2005). 
Girvan and Newman’s algorithm is a novel divisive clustering algorithm for graphs, 
which iteratively removes the edges of the graph, thus dividing the network progressively 
into smaller and smaller disconnected subgraphs. Our implementation also incorporates 
their computation of the modularity (Newman and Girvan, 2004) to assess the quality of 
the clusters. 

Unfortunately, the high computational cost of Girvan and Newman’s clustering 
algorithm has been an obstacle to its use on relatively large graphs, such as large PPI 
networks. In fact, the computational cost of the algorithm is already prohibitive when the 
input is a graph with a few thousand edges. Here we report on a parallel implementation 
of the algorithm, which allows users to analyse large PPI networks on a distributed 
cluster of computers. Experimental results show that our implementation achieves almost 
linear speed-up up to 32 processors. Our tool would be useful even for users that do not 
have access to a cluster of computers, but happen to own a dual processor computer. 
Preliminary experiments on several PPI networks show that it is effective in identifying 
clusters corresponding to functional related protein modules. 

2 Implementation 

For completeness of the presentation, we first briefly review Girvan and Newman’s 
clustering algorithm. Because of its high computational cost on large PPI networks, we 
devise a parallel implementation of their clustering algorithm, which is discussed in detail 
next. Our implementation incorporates the computation of the modularity (Newman and 
Girvan, 2004) that assesses the quality of the clusters obtained by the algorithm. 
 



      

 

   

 

   

    A parallel edge-betweenness clustering tool 243    
 

    
 
 

   

 

 

       
 

2.1 Edge betweenness clustering 

Given the input graph to be clustered, consider the shortest paths between all pairs of 
vertices in the graph. The betweenness of an edge is defined as the number of these paths 
running through it. When the graph is made of densely intra-connected and loosely  
inter-connected clusters, all shortest paths between vertices in distinct clusters have to 
traverse the few inter-cluster connections, which therefore have a high betweenness 
value. By removing those edges first, the clusters are separated from one another, thus 
revealing the underlying clustering structure in the graph. Girvan and Newman’s 
clustering algorithm works as follows. 

1 calculate the betweenness for all edges in the network 

2 remove the edge with the highest betweenness 

3 recalculate the betweenness for all edges affected by the removal 

4 repeat from step 2 until no edge remains. 

Girvan and Newman’s algorithm is computationally expensive. Evaluating the 
betweenness value for all edges requires O(nm) time, where n is the number of vertices 
and m the number of edges in the graph. The iterative removal of all m edges leads a 
worst-case time complexity of O(nm2), which makes the algorithm practically unfeasible 
for large networks. 

2.2 Parallel edge betweenness clustering 

First, we observe that by finding all-pairs shortest paths using Breadth-First Search (BFS) 
starting from each vertex in the graph, the edge betweenness value can be obtained by 
summing pair-dependencies (Brandes, 2001) over all the traversals. The pair-dependency 
is defined as δst(v) = σst(v)/σst, where σst denotes the number of shortest paths from s ∈ V 
to t ∈ V and σst(v) is the number of shortest paths from s to t which go through v.  
Pair-dependencies calculated from each BFS for every vertex in the graph are additive. 
Summations from all traversals will give us the overall vertex betweenness, from which 
edge betweenness can be obtained by a trivial generalisation. Since BFS can be 
performed independently and simultaneously from each vertex in the graph, the 
calculation required at each iteration of finding the edge with the highest betweenness 
value can be done by parallelising all-pairs shortest paths. The parallel algorithm is 
sketched in Figure 1. 

The vertices of the graph are evenly assigned to all the processors, but each processor 
has its own copy of the graph. The procedure is initiated by a host processor, and then 
each processor performs BFS from all the vertices assigned to it and sums up partial  
pair-dependencies obtained from each BFS. The partial pairdependencies are then sent  
to the host processor. The host processor is responsible for summing up all the partial 
pair-dependencies from each processor, obtaining the global pair-dependencies, and 
finding the edge with the highest betweenness value. The edge with the highest 
betweenness value is then broadcast by the host processor to all the processors in the 
communication world. All the processors delete the edge received in their own graph 
copy and start the next iteration until no edges are left in the graph. 
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Figure 1 Sketch of the parallel edge betweenness clustering algorithm 

 

2.3 Modularity 

The output of Girvan and Newman’s betweenness algorithm is the order of removal of 
the edges, which implicitly defines a hierarchical tree on the nodes of the graph. In order 
to determine where to cut the tree to create the clusters, the notion of modularity is used. 

Suppose there are k clusters in the current iteration of the algorithm. A symmetric 
matrix E of size k × k is constructed as follows. An element eij in E represents the  
fraction of all edges that link the vertices in cluster i to the vertices in cluster j and eii 
represents the fraction of edges that connect vertices within cluster i. Thus, summation of 
row (or column) elements 
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=

=∑  represents the fraction of all edges that connect 

vertices to and within cluster i. 
The modularity is then defined as 2
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Q e c

=
= −∑  which measures the fraction of 

the edges that connect vertices within the same cluster minus the expected value of the 
same quantity in the network (Newman and Girvan, 2004). For a random network with 
random decomposition, Q approaches 0. Values approaching Q = 1, which is the 
maximum, indicate strong clustering structure. The higher is the value, the stronger is the 
clustering structure in the network. 

2.4 Platforms 

The parallel edge betweenness clustering tool was written in C++ under Linux.  
The minimum requirement for the software is LAM (7.1.1 preferred) and the Boost 
Graph Library (both of which are in the public domain). In principle, any platforms on 
which LAM/MPI can be installed and have a gcc compiler can compile and run our tool. 
The implementation was extensively tested on the Linux cluster at the Bioinformatics 
Core Facility at UC, Riverside. The cluster consists of 32 dual processor Athlon  
MP 2800 nodes with 1 GB of RAM each. 
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2.5 Usage 

The tool does not require any parameter other than the input filename. The input file must 
be formatted as an edge list of the PPI network, in which each pair of interactions 
between two proteins is listed on a single line. For example, one line of the input  
file may look like protein_name1 protein_name2 (separated by a space).  
The computation is carried out on the largest connected component of the network.  
The software outputs all the clusters at the point where the modularity value reaches 
maximum. Clusters are indexed by an integer ID, which is followed by a list of the 
proteins which belong to the same cluster. 

3 Results and discussion 

Five different PPI networks downloaded from DIP database (Xenarios et al., 2002) were 
used. We ran the algorithm on the largest component in the network. The size of the 
largest component in each of the datasets is summarised in Table 1. The parallel edge 
betweenness clustering algorithm was run on each of the five datasets using the 
modularity value (Newman and Girvan, 2004) as an indicator for the quality of the 
clusters. Table 1 summarises the number of clusters in each network when the modularity 
value reaches its maximum. We used the web-based tool Pandora (Kaplan et al., 2003) to 
annotate the clusters obtained from the algorithm. The annotation for the clusters with the 
overall highest modularity value in yeast PPI network is shown in Table 2. The results 
show strong functional correlations among the proteins in the same cluster using 
SwissProt annotation database. For example, the fifth cluster has 116 proteins of which 
101 are annotated in SwissProt database. Most of the proteins in the fifth cluster are 
involved in transcription regulation. 

Figure 2 shows the speed-up of the parallel implementation of the edge between ness 
calculation over the sequential algorithm on 1, 2, 4, 8, 16, 32 processors. The speed-up is 
close to linear for up to 32 processors for two largest PPI networks (D. melanogaster and 
S. cerevisiae). The parallel implementation makes it possible to run the clustering 
algorithm on a graph of 7,000 vertices and 20,000 edges in less than 7 hours if run on  
16 processors, in less than 5 hours if run on 32 processors, which would take almost three 
days if run on a single processor. 

Table 1 Dataset summary n and m are the number of vertices and edges, respectively. C is the 
number of clusters produced. Q is the value of the modularity 

Organism n m C Q 
D. melanogaster 6926 20745 914 0.36 
S. cerevisiae 4687 15138 342 0.48 
C. elegans 2386 3825 81 0.63 
H. pylori 686 1351 45 0.50 
H. sapiens 563 870 17 0.82 
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Table 2 Annotations of the clusters with the highest modularity values in S. cerevisiae PPI 
network 

C Size Function assignment 
1 652 Cell cycle 
2 316 Protein biosynthesis 
3 152 Transmembrane proteins 
4 130 mRNA splicing 
5 116 Transcription regulation 
6 86 Nuclear transport 
7 86 mRNA-processing 
8 83 Hypothetical proteins 
9 79 Mitochondrion transmembrane proteins 
10 68 Hydrolases and transferases 

Figure 2 Speed-up on D. melanogaster (top) and S. cerevisiae (bottom) PPI networks. The x-axis 
is the number of processors and the y-axis is the speed-up 

 

4 Conclusions 

Our tool is a practical software tool that allows the exploration of clustering structures in 
large PPI graphs (and potentially in other large biological network). The tool is designed 
for the efficient utilisation of the computational resources available in distributed cluster 
of computers. 
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