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Abstract

Since their introduction in the seventies by Gibbs and
McIntyre, dot plots have proved to be a powerful and in-
tuitive technique for visual sequence analysis and mining.
Their main domain of application is the field of bioinformat-
ics where they are frequently used by researchers in order
to elucidate genomic sequence similarities and alignment.
However, this useful technique has remained comparatively
constrained to domains where the data has an inherent dis-
crete structure (i.e., text).

In this paper we demonstrate how dot plots can be used
for the analysis and mining of real-valued time series. We
design a tool that creates highly descriptive dot plots which
allow one to easily detect similarities, anomalies, reverse
similarities, and periodicities as well as changes in the fre-
quencies of repetitions. As the underlying algorithm scales
well with the input size, we also show the feasibility of the
plots for on-line data monitoring.

1. Introduction

The “diagonal match” or the “diagram method”, as its
founders Gibbs and McIntyre [11] initially called the dot
plot method, was intended as a simple alternative for detect-
ing similarities in amino acid sequences. Table 1 demon-
strates the idea behind the plots: a dot is placed at position

Table 1. The collision matrix for strings atgat and
atgtag

a t g t a g
a • •
t • •
g • •
a • •
t • •

(i, j) in the collision matrix Mmn, for two strings of size
m and n respectively, if their letters on the corresponding
positions match.

The three interesting patterns that could be observed on
the created plots are matches, reverses and gaps. A match is
represented by a diagonal line in the collision matrix, e.g.,
the diagonal for the prefixes of the two sequences above
(atg, atg). The reverses are captured by diagonals per-
pendicular to the main diagonal (atg, gta). The gaps im-
ply a mismatch between the sequences compared and could
be of particular interest if we look for anomalies in the data.
For example if we compare two very similar chromosomes
the plot is likely to have a long diagonal and the gaps in
this diagonal would focus our attention on the regions that
contain mutations.

Later works (see, e.g., [20]) suggested further refine-
ments that would allow the detection of partial homologies
between the sequences. The filters made the plots a lot more
descriptive and lead to their vast popularization among the
bioinformatics community. Yet this simple but very power-
ful technique remains restricted to domains where the data
is represented by strings over a finite alphabet. Some ex-
amples of such domains outside the scope of bioinformatics
are code and text similarity exploration [6], bilingual text
translations [7], detecting hypertext link structure [2], etc.

A natural question that arises is how can we meaning-
fully apply the dot plots on real value time series data. One
possible solution, called recurrence plots, was proposed by
Eckmann et al [10] (see Figure 1-left). Their goal was to de-
sign a tool that would allow for the easier detection of pat-
terns in the recurrent behavior of dynamical systems. The
high dimensional phase space of the systems could be dis-
played on the two dimensional recurrence plot based on the
Heaviside function:

Mij = H(r(xi)− ‖ xi − xj ‖), i, j ∈ 1 . . .m (1)

where xi are the states of the system, and r(xi) is the ra-
dius of the hypersphere around point xi. As of today, a lot
of modifications to recurrence plots have been suggested
mainly in the choice of the radius and the expression on



Figure 1. A sequence is compared to itself. Top:
the input time series. Left: a recurrence plot corre-
sponding to the time series. Right: the time series
dot plot generated with our tool

which the Heaviside function is computed. The modifica-
tions usually target the detection of specific properties as os-
cillations, stationarity, heavy fluctuations etc, but the main
shortcomings with recurrence plots still remain. Namely,
the generated plots contain a significant amount of back-
ground noise similarly to the unfiltered dot plots. This is
due to the fact that they use a local point based criteria
for placing the dots rather than considering whole subse-
quences which also makes them not very suitable for han-
dling approximate as well as time warped motifs. Solutions
like the thresholded recurrence plots have been proposed
to decrease the noise and strengthen the signal of the pat-
tern. However, we believe that the approach of analyzing
the data point-wise is not flexible enough for the purpose of
time series analysis.

In this work we break the time series into smaller sub-
sequences which we compare in search of possible motifs,
anomalies or trends. Our approach is based on the algorithm
for probabilistic discovery of approximately repeated sub-
sequences, that some of us introduced in [5]. The algorithm
first obtains a lower dimensional representation of the sub-
sequences to be compared, and then uses a set of hash func-
tions to project them into different classes of equivalence.
The choice of the algorithm was determined by several re-
quirements that we imposed in order to design practically
useful dot plots. Ideally, we wanted to have a method that
is (1) robust to noise, (2) invariant to value and time shifts,
(3) invariant to a certain amount of time warping, and (4)
efficiently computable.

Figure 1-right illustrates the plot generated by our algo-
rithm when applied to a synthetic time series. The input
time series is a simple sum of a sine wave with a square
wave and some additional noise. Our dot plot (right) clearly
emphasizes several important features of the time series that

could be missed on the original recurrence plot (left). First,
the continuous diagonal lines in our dot plot clearly iden-
tify the repeated patterns (due to the periodicity of the sine
wave). Second, the two pairs of perpendicular white lines
clearly show the boundaries of the central shifted region.
At the same time the diagonal lines inside the central re-
gion show that the shifted segment is another repeated pat-
tern. Third, the frequency change in the sine wave is illus-
trated by the curvature of the diagonals. Finally, our dot plot
clearly shows the points that belong to forward (blue) and
reverse (red) matches.

The rest of the paper is organized as follows. In Section 2
we describe the random projection algorithm and give a new
estimate on the number of iterations necessary for the algo-
rithm to identify the time series motifs on the dot plot. The
application of the tool for the purpose of anomaly detection
and pattern finding is demonstrated on several real-world
examples in Section 3. In Section 4 we examine how the
“invariance to time warping” can be detected by employing
ideas from the field of time series segmentation.

2 Methods

To build the time series dot plots we proceed by first
running a sliding window along the series which we want
to compare. For every window position we discretize the
corresponding subsequence. Then we show that the prob-
lem of computing the collision matrix for the time series
dot plots can be reduced to the problem of finding motifs in
the discretized data. Discovering motifs is an essential step
in many time series mining tasks, namely, time series clus-
tering and classification [15], novelty detection [9], robot
planning [21], mining association rules in time series [8],
among others. Here, motifs are discovered by a probabilis-
tic approach based on random projections.

2.1 Problem definition

We follow the notation and the concepts introduced by
Lin et al. [18] and Chiu et al. [5]. In those papers, the
concept of a match, trivial match and a motif is given for
the case of a single time series. Those definitions can easily
be extended to the case in which we are comparing two (and
possibly more) series.

Definition 1. Match: Given a positive real number R
(called range), a subsequence P of a time series T1, and
subsequence Q of a time series T2, we say that Q matches
P if the distance D between them satisfies the inequality
D(P,Q) ≤ R.

If the subsequence Qj starting at position j in T1

matches P , then it is very likely that the subsequence Qj+1

starting at position j + 1 also matches P . If this is the case,



then we call Q2 a trivial match. As it is not desirable to
clutter the dot plot with dots that corresponds to the same
matching, we try to exclude them. A motif can be defined
as any non trivial match. The problem of building dot plots
for time series data could easily be reduced to the problem
of searching for all possible motifs between two time series.

Definition 2. Time Series Dot Plot: Let T1 and T2 be two
time series of length m and n respectively. A time series
dot plot of (T1, T2) is a m × n binary matrix A defined as
follows. Let P be a subsequence in T1 starting at position i
and Q be a subsequence in T2 starting at position j, then

A[i, j] =
{

1 if P is a non trivial match of Q
0 otherwise

In the rest of the paper we will demonstrate examples
of data sets from different application areas, which support
our argument that this definition of the time series dot plots
leads to highly descriptive and intuitive visual representa-
tion.

Before we leave this section, it is worth pointing out that
so far we have not imposed any restriction on the length of
the subsequences P and Q that we compare. That length
could be specified to any number between one and the
length of the time series according the preference of the do-
main expert. When the length is equal to one the dot plot
turns into a recurrence plot. In Section 4 we show that in the
cases in which we cannot decide the size of the sliding win-
dow (i.e., the subsequence length) or when the best length
varies, a dynamically-changing window length could also
be used.

2.2 Discretizing the Time Series

The first step of our dot plot building procedure is the
discretization of the time series. It serves several important
purposes. First, it provides us with a lower dimensional pre-
sentation that reduces the effect of the noise in the raw time
series data and at the same time preserves its main proper-
ties. Second, it gives us a natural string presentation that
will be used in the subsequent step by the PROJECTION al-
gorithm. We choose the Symbolic Aggregate approXima-
tion (SAX) [19] for our discretization step. Here we briefly
discuss the general idea behind the SAX procedure. For a
more detailed description we refer the reader to [19].

SAX accepts as input parameters the time series P =
p1, p2, . . . , pn that we want to discretize, the desired length
w of the symbolic representation and the size |Σ| of the al-
phabet to be used. First P is normalized to have a mean
of zero and standard deviation one. Then, P is split into
equal-length segments and the averages on all segments are

Figure 2. The symbolic representation of a time
series obtained through SAX. The alphabet is Σ =
{a,b,c,d} and the word length is w=4.

computed producing P̄ = p̄1, p̄2, . . . , p̄w where

p̄i =
w

n

n
w i∑

j= n
w (i−1)+1

pj (2)

This lower dimensional representation P̄ is known as
Piecewise Aggregate Approximation (PAA) [16]. The PAA
representation is fast to compute and is demonstrated to be
competitive with other more sophisticated techniques [14].

Once all p̄i are computed they are quantized into |Σ| in-
tervals in such a way that approximately the same number of
them fall into each interval. This guarantees equiprobable
symbols in the final representation of the sequence, which is
crucial for the PROJECTION algorithm. Finally SAX assigns
the same letter to all p̄i that belong to the same interval. Fig-
ure 2 illustrates the discretization of a time series using the
SAX algorithm.

The experiments in [14] show that words of length 4-
16 usually capture quite accurately the shape of the series
and produce a precise estimate for the distances between
the sequences. This is essential again for the PROJECTION
algorithm as we will see in the following section.

2.3 Probabilistic Discovery of Time Series Motifs

We have shown that building the time series dot plots
could be reduced to the problem of discovering time series
motifs. In this section we focus our attention on motif dis-
covery algorithms that satisfy the initial constraints for in-
variance, efficiency and robustness to noise.

In [5] the authors describe a method for probabilistic dis-
covery of time series motifs, which turns out to meet all our
requirements. The algorithm discovers approximate motifs
of a specified length w, which occur frequently with up to
d < w mismatches. These motifs are called (w, d)-motifs.
The d mismatches can be thought as “don’t care” positions
in the motif. These latter positions are of an essential util-
ity in time series analysis as they allow robust handling of
noise, scaling and translations. They also allow to ignore re-
gions which according to the domain expert may be inessen-
tial for the inter-sequence comparisons [1, 15].



As the probabilistic motif discovery algorithm [5] is
based on Buhler and Tompa’s PROJECTION algorithm [3],
we start by briefly explaining the planted motif problem and
the idea of PROJECTION.

2.3.1 PROJECTION and the Planted Motif Problem

The algorithm that Buhler and Tompa proposed was in-
tended as a computationally efficient alternative for solving
Pevzner and Sze’s planted (w, d)-motif problem [22].

Planted (w, d)-motif problem. INPUT: integers w and
d, and t sequences {x1, . . . , xt} of length n generated at
random, where symbols in the alphabet are equiprobable.
Each sequence is planted with exactly one occurrence of
an unknown motif y of length w. Each occurrence dif-
fers in exactly d positions from y. QUESTION: Given the
{x1, . . . , xt}, w and d find the unknown motif y.

The “challenge problem” that Pevzner and Sze pro-
posed was the planted (15, 4)-motif problem with t=20 se-
quences of length n=600 over the four letter DNA alphabet.
This problem turns to be very hard computationally as one
planted occurrence corresponds to several potential motifs.
As a consequence, even if we guessed the correct positions
of all planted occurrences it may still not be enough to re-
construct the motif y.

Buhler and Tompa showed that the (15, 4)- as well as a
set of other difficult problems like the (14, 4)-, (16, 5)- and
(18, 6)-motif problems, could be successfully approached
by using a probabilistic scheme. Their algorithm belongs to
the family of locality-preserving hashing methods. A prop-
erty of these methods is that they hash multidimensional
points that are close to each other to values that are also
likely to be close to each other in a lower dimensionality
space [13]. It is important to mention however, that these
methods perform well when the number of dimensions is
comparatively small, e.g. between ten and twenty.

PROJECTION applies a set of hash functions to all sub-
strings of length w. Each function splits the set of substrings
into a number of classes of equivalence. When all functions
are applied if in some of those classes there is more than a
predefined number of strings hashed, then with a very high
probability these strings correspond to the planted motif.

2.3.2 Projection for Time Series Dot Plots

Once we have the symbolized sequences we need to find
out which of them correspond to approximate motifs. To il-
lustrate the procedure consider the following example. As-
sume that we compare two time series T1 and T2 of length
m=1024, using a sliding window of size n=128, word
length w=4 and alphabet size |Σ|=3 (see Figure 3).

Figure 3. Time series T1 and its symbolic repre-
sentation T̄1. Time series length m=1024, sliding
window n=128, word size w=4, alphabet size |Σ|=3

We obtain similar string table, as the one on Figure 3, for
the second time series too (if we compare a series with it-
self, only one table is necessary). Obviously we do not need
to keep all consecutive elements that symbolize to the same
string. In our example, the second entry in the table corre-
sponds to the tenth sequence, which means that sequences
one to nine all map to the string bcba. This optimization is
simply the run-length encoding compression.

Suppose that we would like to discover (4, 0)- and (4, 1)-
motifs, i.e. motifs that allow up to d=1 don’t care positions.
If we project k < w − d positions, it is very likely to ob-
tain the same projection value for strings between which the
Hamming distance is less or equal to d.

On Figure 4-top we have selected k=2 random positions
and projected the strings on those positions (in the exam-
ple the second and the fourth position were selected). All
strings with the same projection are hashed to the same bin.
We also keep a flag indicating to which time series the el-
ements belong. Finally we scan the bins and all elements
from the first time series are paired with all elements from
the second series. For all pairs the counters in the corre-
sponding cells in the collision matrix are set to one (see
Figure 4-Bottom).

The described procedure is repeated m times and in each
iterations new random projecting positions are selected and
the counters in the collision matrix are being set or in-
creased. After the last iteration a threshold s is applied,
filtering all positions in the matrix that have a counter larger
or equal to s. Finally a dot is placed on the corresponding
locations of the dot plot.

2.3.3 Estimating the Number of Iterations

Separating the motifs into bins requires just one pass
through the time series on each iteration. If the time se-
ries length is n, pairing the positions in the worst case could



Figure 4. Top: projection of the two time series and
the corresponding bins. Bottom: elements from
different time series that were hashed to the same
bin are paired.

have time complexity O(n2). For practical data sets, how-
ever, the number of pairs is clearly sub-quadratic. More
precisely, the space and time required by the algorithm are
respectively O(|M |) and O(m|M |), where |M | is the num-
ber of elements in the sparse collision matrix and m is the
number of iterations. Buhler and Tompa showed that, pro-
vided we know the other parameters, the required iterations
for results within the 95% confidence threshold, could eas-
ily be estimated. Unfortunately this number may be very
large, which increases unacceptably the time for building
the plots. For example, if we use word size w=16, projec-
tion size k=7 and d=3 don’t care symbols, the iterations to
be performed would be m=132. For the same settings if we
allow for d=5 don’t care positions the iterations increase to
m=3599.

Raphael et al. [24] suggested an optimization to PRO-
JECTION in which rather than selecting k positions uni-
formly at random, the positions are selected in a way that
would allow to sample the space of the projections more ef-
ficiently. This improvement is demonstrated to decrease the
number of iterations required by PROJECTION to converge.
However, we noticed that even with uniformly selected po-
sitions, the plots are very descriptive with far less iterations
than those estimated by PROJECTION. Usually an order of
ten iterations is sufficient to capture the information struc-
ture in the data. The reason for this is that the condition
of detecting occurrences with exactly d differences is a bit
over-restrictive for the task of time series motif finding. In-
stead, if the more relaxed condition of finding motifs of up
to d differences is considered, then the estimated iterations

are close to the values that lead to correctly defined plots.
Another important feature to notice is that the projection
size k is very essential for both the number of iterations and
for filtering the results. Smaller values of k would obvi-
ously lead to smaller number of iterations, but would also
make it harder to distinguish between occurrences with up
to d and more than d differences. Based on these observa-
tions, we tried to design some guidelines for the following
optimization problem. Find out k-s that are sufficient to fil-
ter the occurrences, and estimate for those projection sizes
the minimum number of iterations required to discover the
motifs with up to d differences.

Consider two pairs of sequences corresponding to po-
sitions (i1, j1) and (i2, j2). Let the sequences from the
first pair have up to d differences and the sequences from
the second one have more than d differences. Let also X1

and X2 are the numbers in the collision matrix at positions
(i1, j1) and (i2, j2) after m iterations. X1 and X2 are bino-
mially distributed with probability mass function equal to
the probability of projecting the corresponding sequences to
the same value in a single iteration. To compute this proba-
bility we first compute the probability that two strings have
exactly d differences.

pd =
(

w

d

) (
1− 1

a

)d (
1
a

)w−d

(3)

where a is the size of the alphabet. The probability that two
strings have up to d differences is

pall =
d∑

i=0

pi (4)

The probability that two strings with d differences
project to the same value is

p̂d =

(
w−d

k

)(
w
k

) (5)

Finally, the probability that we will hash the sequences
at position (i1, j1) to the same value is

p1 =
d∑

i=0

pi

pall
p̂i (6)

Similarly the probability mass function for X2 is

p2 =
w−k∑

i=d+1

pi

1− pall
p̂i (7)

Now if µx and σx are the mean and the standard devia-
tion of X , we can express our problem with the system of
inequalities:

µx1 − µx2

σx1 + σx2

≥ α1 (8)

µx1 − α2σx1 ≥ 0 (9)



Figure 5. Dot plots for the synthetic time series
from Figure 1. Left: 132 iterations have been used
as estimated by PROJECTION. Right: 15 iterations
have been used. For both plots w=16, k=7, d=3

Inequality 8 has the same structure as the standard t-test
and gives us the statistical significance of the difference be-
tween the two distributions. We use it to identify the pro-
jection size and the number of iterations required in order to
filter out motifs with more than d differences. The second
inequality verifies that the number of iterations which we
perform produces at least one hit in the collision matrix for
most motifs with up to d differences. In our experiments we
found out that values of α1 greater than 1 usually separate
well the two classes, and 1 ≤ α2 ≤ 2 allows the detection
of most of the existing motifs.

Just for comparison, if we use PROJECTION’s estimate
for w=16, d=3, k=7 as mentioned above we need to per-
form 132 iterations, while the new estimate suggest fifteen
iterations. Figure 5 shows that the plots for both settings
have exactly the same information structure.

2.3.4 On-Line Motif Discovery

The projection method exhibits the two essential properties
of an on-line mining algorithm, namely good time perfor-
mance and updatability. As we already mentioned the time
complexity of the algorithm is O(m|M |), where for realis-
tic data sets M is very sparse, and m, as justified in the pre-
vious section, can be restricted to comparatively small val-
ues. The updatability property can also easily be achieved
with the slight overhead of keeping all m hash tables that
we have used so far to build the plot.

Assume that the user needs updates every l data points.
Rather than recomputing the whole new matrix we could
reuse the m hash tables and project the new l sequences on
them. Of course we need to make sure that we have re-
moved the elements corresponding to the first l time points
that will now drop out of the plot. Now all we have to do
is to find out the possible pairings between the already ob-
served and the newly formed l sequences. Again we can
come out with some theoretical cases when the new data
will pair with all sequences so far, which will make the
complexity of the update linear with respect to the time se-

Figure 6. ECG data with V anomalies and the cor-
responding dot plot. Right: detected and omitted
motifs

ries length, but for realistic data sets the update will remain
constant.

Having support for streaming data allows us to introduce
the idea of applying the plots for monitoring purposes. Such
an application could be of a great utility in different fields,
e.g. monitoring cardio activities, seismological readings,
observing the change in continuous natural phenomena as
tides, winds, sun bursts, etc.

3 Experimental Results

We tested our tool on a number of datasets from differ-
ent domains (e.g. medicine, industry, stock markets, nat-
ural phenomena, music), and with different characteristics.
Some of the datasets are recurrent, some could be modeled
as random walk, etc. We start by exploring the applicability
of the tool for anomaly detection.

3.1 Dot Plots for Anomaly Detection

ECG data. Very often we search for anomalies in the
recurrent behavior of a system. In these cases periodic oc-
currences of the pattern would be displayed as diagonals,
and the anomaly in the occurrences will be manifested as a
white cross on the plot.

Figure 6 shows the plot of an ECG dataset from the
MIT-BIH Supraventricular Arrhythmia Database, part of
the PhysioNet project [12] (We omit the reverse matches
in the remaining plots, to make the regions of interest better
observable). A word length w=16 and a maximum number
of differences d=2 have been used. The two premature ven-
tricular contractions could be identified on the dot plot by
the corresponding white perpendicular lines. The anomaly



Figure 7. Power consumption in an Italian city dur-
ing the first half of 1995

is comparatively easy to spot on the time plot too, so in this
case the dot plot does not reveal much additional informa-
tion. Still we include the dataset here as it demonstrates
some interesting features of the tool.

Having a dot line that intercepts the white band of the
anomaly shows that the two anomalies are of the same type.
Figure 6-A demonstrates that both anomalies were symbol-
ized to strings that are within the predefined distance d=2.
Another interesting fact is that the selected approach proves
to be quite robust in handling small local time warps and
fluctuations. This is due to the combined effect of the PAA
representation and the allowed don’t care positions (see Fig-
ure 6-B). Unfortunately, larger time warps are more difficult
to capture (see Figure 6-C). Most of the interceptions in the
lines are due to the fact that the data though recurrent does
not have a fixed length period. Therefore using a fixed slid-
ing window causes many of the motifs to be out of phase. A
solution that mitigates this effect is to prefer shorter sliding
window sizes over the larger ones. An even better solution
of using a dynamically changing window will be presented
in Section 4.

Powerplant data. As pointed above it is comparatively
easy to spot V anomalies on the ECG time plots. How-
ever, if the time plot is too dense then spotting the anoma-
lies could be really hard. In those settings the dot plot is of
a real utility as the anomaly can usually be observed much
easier on it. Figure 7 shows the plot for the hourly power
consumption in an Italian city during the first six months of
1995.

There are two anomalies depicted by our tool. The white
band in the very beginning of the plot corresponds to the
New Year’s week. The other band is due to several official
holidays during the second half of April (Easter and Liber-
ation Day) and the beginning of May (Labor Day). In both
cases the power consumption pattern for the week differs
from the general weekly pattern, e.g., Figure 7-A shows a

Figure 8. The daily stocks of Yahoo! and Nex-
tel over a 5-year period. Though the time plots
look very similar, the dot plot captures regions of
anomalies(A) and patterns(B)

week with unusually small power consumption on Monday.
As the size of the period for this data set is constant (one
week corresponding to 168 samples) the fixed sliding win-
dow performs very well, and the diagonals for the patterns
are not intercepted as in the case of the heart beat data.

3.2 Dot Plots for Pattern Detection

Stock Market Data. We explored the daily stock quotes
of two companies, Yahoo! and Nextel Corporation, over
a period of five years (the data were obtained from Ya-
hoo!Finance). As the time plots of the two series were very
similar (see Figure 8), we expected a dot plot with well de-
fined, though slightly scattered due to the high volume of
noise, main diagonal.

The plot, however, revealed some really interesting pat-
terns and anomalies that were difficult if not impossible to
spot on the time plots. As we were interested in not so triv-
ial long term similarities we decided to use a sliding win-
dow of 128 time points, which is comparatively equal to the
half year quotes of the companies. We observed that though
the time plots seemed similar, the main diagonal of the dot
plot was intercepted at several regions. One such region is
shown on Figure 8-A. When we looked at the data for this
region, we found out that it corresponds to the second half
of 2001 and the beginning of 2002. During this period after
an unstable quarter for both companies Yahoo! recovered
while Nextel’s stock continued dropping steadily.

Also surprising were the many distinct diagonals, par-
allel to the main one, indicating similar stock movements
for unaligned time frames. The diagonal on Figure 8-B for
example corresponds to the first two quarters of 2001 for
Nextel and the second and the third quarter of 2004 for Ya-
hoo!. Both stocks dropped twice for this period though for



Figure 9. A 23sec sample of "Jingle Bells". Rep-
etitions as the whole chorus (A) and ”jingle bells,
jingle bells” (B) could be observed on the dot plot.
Left: Word of size w=14 is used. Right: Word of
size w=16 is used.

different reasons, devaluation for Nextel and a 2:1 split for
Yahoo!.

Audio data. Another interesting application of the tool
is the visual mining of common tunes in audio streams.

We proceed by first applying pitch extraction on the data.
Inspecting directly the pitch time series again does not re-
veal much information about the interesting patterns in the
signal, see Figure 9-top. The figure demonstrates a short
sample from ”Jingle Bells”. Regions marked with A on the
dot plot clearly depict the repetition of the chorus, which
comprised approximately one third of the sample. Using
larger word sizes or reducing the number of allowed differ-
ences filters the noise on the plot even further but it also
deteriorates the patterns that were not exactly identical or
comparatively short like those from regions B (the repeti-
tion in the ”jingle bells, jingle bells” tune).

Discrete data. Sometimes though the sequences are ex-
pressed over a finite alphabet it may still be beneficial to
convert them into real value time series. Consider for exam-
ple two very similar DNA strings that differ only in several
point mutations. One or few base pairs have been inserted
or deleted, causing identical frames from the two sequences
to have different positions. Now if we want to downsample
the strings, different base pairs from the homologous frames
might be selected in the samples. Figure 10 illustrates the
phenomenon.

In this example we have generated two random strings
over the DNA alphabet and we have inserted a common
pattern in both of them but at an odd and an even posi-
tion respectively. Figure 10-top illustrates how MUMer
[17] performs on the problem. While the pattern is detected
on the original strings, on the downsampled versions it is
not identified regardless of the size of the mums (Maximal
Unique Matches) used. At the same time, if we convert
the DNA string to a real value time series and apply our

Figure 10. Top: The plots generated by MUMer for
the original and the downsampled DNA strings.
Bottom: The dot plots for the original and the down-
sampled X-projections.

tool, we can clearly identify the patterns on both the origi-
nal and the downsampled series. For the example only the
X-projections from the 3D DNA representation suggested
by [4] were used.

4 Dynamic Sliding Window

As already pointed out, using a fixed sliding window
could lead to interceptions, implying anomalies in the recur-
rent states, while such anomalies may not really exist. The
reason for this is that often two sequences will represent the
same pattern but one of them will be a warped version of
the other. Now we will demonstrate how this information
could be included in the plot. To approach the problem we
employ a technique in which the sliding window resizes dy-
namically according to the bounds of the recurrent patterns.
Finding those bounds is not trivial and is closely related to
the problem of segmenting time series data.

Here we do not try to solve the problem of segmentation
as we consider it an orthogonal and tightly data and task
dependent issue. Instead we simply demonstrate that if we
select an appropriate, for our task and data, segmentation
algorithm then the dynamic window technique would pro-
duce more accurate dot plots than the fixed window one.
To check this assumption we applied several simple change
point detection heuristics. In the first heuristics we select as
change points the points that have higher than a predefined
threshold deviation. A similar model, though with more
complex evaluation, is used for example in [23] where a
dominant class is identified first and at each time instant
the deviation from this class is measured. The result is pre-
sented on Figure 11-left. The synthetic dataset on the figure



Figure 11. Left: Dynamic sliding window plot for
the synthetic ECG data set. Deviation heuristics
is used for the segmentation. Right: The corre-
sponding fixed sliding window plot

was obtained from a real ECG time series by downsampling
some of the heartbeat periods, and thus simulating a change
in the frequency of the heartbeat rate.

The blue vertical lines on the time plot indicate the seg-
ment bounds selected by the heuristics. Once the bounds
are identified the dynamic window algorithm proceeds as
follows. Let s1, s2, ..., sk are the segment bounds for the
time series. If s and e are the start and the end position of
the dynamic sliding window, we begin by setting s = s1

and e = s2 (see Figure 12). At each time instant we move s
one point to the right and then adjust e to preserve the ratio
in which s divides the previous segment, i.e. if s divides
the segment (si, si+1) in ratio a

b , then we make e to be the
point that divides (si+1, si+2) as a

b too. Finally, all of the
subsequences though with a different length, we symbolize
using the same word length.

On the synthetic heartbeat dot plots we can see that the
dynamic sliding window keeps the similarity lines uninter-
cepted as opposed to the fixed sliding window. The fact that
the recurrent states are similar with a certain amount of time
warping is also indicated by the curvature of the similarity
lines.

The tide data set (Figure 13) we have segmented using

Figure 12. The dynamic window Pi augments and
shrinks according to the segment bounds.

Figure 13. Larger period of the recurrent states
leads to larger variability of the state sizes.
Left:Dynamic sliding window plot for the tide data
set. Extremum heuristics is used for the segmen-
tation. Right The corresponding fixed sliding win-
dow plot

even simpler heuristics. For a predefined threshold l we
mark as segment bounds the data points that are global max-
imums for intervals of length l. This approach could be
suitable again when the recurrent states start or finish with
distinct extremum values and when we would like to re-
strict the amount of allowed warping within certain bounds.
For datasets where the average size of the recurrent states is
comparatively small the dynamic sliding window technique
usually does not preserve a lot more information compared
to the fixed window one. However, if the average period
size is larger (e.g. the tide time series), then larger variances
in the state sizes are expected. For those cases the dynamic
window technique creates far more accurate and descriptive
plots.

5 Conclusion

We studied the problem of building dot plots for real
value time series data. We reduced this problem to the prob-
lem of discovering motifs in time series. Based on this ob-
servation, we developed an efficient dot plotting tool which
exploits the random projection algorithm to solve the ap-
proximate time series motif finding.

The usefulness of the tool was illustrated in several tasks,
mainly in anomaly detection and pattern recognition on a
number of data sets from different areas and with different
characteristics. The scalability and the updatability of the
algorithm allowed us to apply it for live monitoring of time
series data. Finally, we described a dynamic sliding win-
dow approach based on time series segmentation. In this
approach the window changes adaptively allowing us to cre-
ate more descriptive dot plots for recurrent time series data
when the size of the recurrent states varies significantly.
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