
Linear Global Detectors of Redundant

and Rare Substrings

(Extended Abstract)

Alberto Apostolico�

Purdue Univ. & Univ. of Padova

Mary Ellen Bocky

Purdue University

Stefano Lonardi z

Purdue Univ. & Univ. of Padova

1 Introduction

The identi�cation of strings that are, by some measure, redundant or rare in the
context of larger sequences is an implicit goal of any data compression method. In
many other applications, such strings are routinely sought in order to unveil structure,
to infer minimal or compact descriptions, and for purposes of feature extraction and
classi�cation. In bio-sequence analysis, for instance, such unsusual strings have been
variously implicated in biological functions and mechanisms (refer, e.g., to [van-98],
[LMS-96], [S-97] and references therein). In this and other domains, tables for storing
the number of occurrences in a string of substrings of (or up to) a given length need
to be computed and stored. In Data Compression, tables of this nature �nd use
in, and in fact subtend, the development of context trees (cf., e.g., [Jes-98], [Yo-
98] and references therein). In the straightforward approach to searching for unusual
substrings, the words (up to a certain length) are enumeratedmore or less exhaustively
and individually checked in terms of observed and expected frequencies, variances,
and scores of discrepancy and signi�cance thereof. As is well known, clever methods
are available to compute and organize the counts of occurrences of all substrings of a

�Department of Computer Sciences, Purdue University, Computer Sciences Building, West
Lafayette, IN 47907, USA and Dipartimento di Elettronica e Informatica, Universit�a di Padova,
Padova, Italy. axa@cs.purdue.edu. Work supported in part by NSF Grant CCR-9700276, by
NATO Grant CRG 900293, by British Engineering and Physical Sciences Research Council Grant
GR/L19362, and by the Italian Ministry of Research.

yDepartment of Statistics, Purdue University, Math. Sciences Building, West Lafayette, IN 47907,
USA. mbock@stat.purdue.edu.

zDepartment of Computer Sciences, Purdue University, Computer Sciences Building, West
Lafayette, IN 47907, USA. stelo@cs.purdue.edu.

given string. The corresponding tables take up the tree-like structure of a special kind
of digital search index or trie (see, e.g., [Mc-76], [Ap-85], [AP-96]). These trees have
found use in numerous applications [Ap-85], and represent a familiar tool in Data
Compression and Computational Molecular Biology (see, e.g., [Wa-95]). We assume
familiarity of the reader with these trees, their basic properties and uses.

Once the index itself is built, its entries can be annotated with the expected val-
ues and variances that may be associated with them under one or more probabilistic
models. One such process of annotation is addressed in [ABX-97], where we show
that assuming a random source emitting symbols from a known alphabet indepen-
dently and according to a given distribution, mean, variance and some of the adopted
measures of signi�cance can be assigned to all substrings of a string of n symbols in
optimal O(n2) time.

We show here that under several accepted measures of deviation from expected
frequency, the candidates over- or underrepresented words are restricted to the O(n)
words that end at internal nodes of a compact su�x tree, as opposed to the �(n2)
possible substrings. This surprising fact is a consequence of properties in the form that
if a word that ends in the middle of an arc is, say, overrepresented, then its extension
to the nearest node of the tree is even more so. Based on this, we design global
linear detectors of favored and unfavored words for our probabilistic framework, and
display the results of some preliminary that apply our constructions to the analysis
of genomic sequences.

2 Preliminaries

Given an alphabet �, we use �+ to denote the free semigroup generated by �, and
set �� = �+ [f�g, where � is the empty word. An element of �+ is called a string or
sequence or word, and is denoted by one of the letters s; u; v; w; x; y and z. The same
letters, upper case, are used to denote random strings. We write x = x1x2:::xn when
giving the symbols of x explicitly. The number of symbols that form a string w is
called the length of w and denoted by jwj. If x = vwy, then w is a substring of x and
the integer 1 + jvj is its (starting) position in x. Let X = X1X2 : : :Xn be a textstring
produced randomly by a source that emits symbols from alphabet � independently
and according to a given probabily distribution. We use x to denote an observation
of X. Let y = y1y2 : : : ym (m < (n + 1)=2) be an arbitrary but �xed pattern string
on �. For i 2 f1; 2; : : : ; n �m + 1g, de�ne Zijy to be 1 if y occurs in X starting at
position i and 0 otherwise. We are interested in the the expected value and variance
of Zjy, the total number of occurrences of y in X:

Zjy =
n�m+1X
i=1

Zijy:

It is immediate that E[Zjy] = (n�m+1)p̂, where, with pi denoting the probability
for any given k that Xk = yi, p̂ = �m

i=1pi.
For any symbol a in �, computing the expected value Zjya from p̂ and the prob-

ability of a is trivially done in constant time. Thus, the expected values associated

with all pre�xes of a string can be computed in linear time. Under the stated as-
sumption 1 that m � (n+1)=2, it is possible to express the variance in the following
form [ABX-97]:

V ar(Zjy) = (n�m+1)p̂(1�p̂)�p̂2(2n�3m+2)(m�1)+2p̂
smX
l=1

(n�m+1�dl)�
m
j=m�dl+1

pj

where the dl's are the periods of y that satisfy 1 � d1 < d2 < ::: < dsm � min(m �
1; n�m). Recall that a string z has a period w if z is a pre�x of wk for some integer k.
A string may have several periods. Sometimes the word \period" is also used to refer
to the length of a period. The shortest period (or period length) of a string z is called
the period of z. Clearly, a string is always a period of itself. This period is called the
trivial period. We say that a non-empty string w is a border of a string z if z starts
and ends with an occurrence of w. That is, z = uw and z = wv for some possibly
empty strings u and v. Clearly, a string is always a border of itself. This border is
called the trivial border. The notions of period and border are complementary.

Fact 2.1 A string x of length k has period of length q, such that q < k, if and only
if it has a non-trivial border of length k � q.

Suppose that we wanted to compute the variance of Zjy for all substrings y of x in
accordance to the formula above. Applying the formula from scratch to each substring
would require time �(jxj3), since the number of possible distinct words appearing as
substrings of x may be quadratic in jxj. In [ABX-97], it is proved that our variance
can be computed for all pre�xes of a string y in overall time O(jyj), which brings the
overall cost for string x down to O(jxj2). The key to this is a recurrence that speeds
up computation of the term

B(m) =
smX
l=1

(n �m+ 1 � dl)�
m
j=m�dl+1

pj :

In this expression, B(m) refers to the pre�x y1y2:::ym of some string y, S(m) =
fbl;mg

sm
l=1 is the set of borders bord(m) is the longest border of y1y2:::ym. In other

words, the computation of B depends on the structure of all periods dl of y1y2:::ym
that are less than or equal to min(m � 1; n � m). By adaptation of the \failure
function" computations involved in classical string searching (see, e.g., [AG-97]), it
is possible to derive B(m) quickly from knowledge of bord(m) and of the previously
computed values B(1); B(2); :::; B(m� 1). Speci�cally, letting the border associated
with period dl at position m to be

bl;m = m� dl;

the following expression of B(m) holds [ABX-97]:

1We concentrate on this assumption for practical reasons and brevity only; the treatment of the
case m > (n+ 1)=2 is quite similar.

B(m) = (n�2m+1+bord(m))�m
j=bord(m)+1pj+2(bord(m)�m)

sbord(m)X
l=1

�m
j=bl;bord(m)+1

pj

+ (�m
j=bord(m)+1pj) B(bord(m));

where the fact that B(m) = 0 for bord(m) � 0 yields the initial conditions. Note that
each product of probabilities can be extracted in constant time from a precomputed
table containing the products of the probabilities of all consecutive pre�xes of x. From
knowledge of n;m; bord(m) and these pre�x probability products, the �rst term of
B(m) is computed in constant time. Except for (bord(m) �m), the second term is
essentially a sum of probability products taken over all distinct borders of y1y2:::ym.
Thus, given such a sum and B(bord(m)) at this point enables one to compute B(m)
whence also the variance, in constant time. Maintaining knowledge of the value of
such sums during the computation of longest borders is easy, since the value of the
sum

T (m) =

sbord(m)X
l=1

�m
j=bl;bord(m)+1

pj

obeys the recurrence:

T (m) = T (bord(m)) ��m
j=bord(m)+1pj +�m

j=bord(bord(m))+1pj ;

with T (m) = 0 for bord(bord(m)) � 0. In conclusion, the following holds.

Theorem 2.2 Under the independently distributed source model, the mean and vari-
ances of all pre�xes of a string can be computed in time and space linear in the length
of that string.

Application of this treatment to every su�x of a string yields the mean and
variance of all substrings in overall optimal quadratic time. The table of Figure 1
compares the costs of computing B(m) with both methods for Fibonacci words of
increasing lengths. Fibonacci words are de�ned by a recurrence in the form: Fi+1 =
FiFi�1 for i � 1, with F0 = b and F1 = a, and exhibit a rich repetitive structure.

The last column of the table compares, for lengths in a realistic range, the values of
the variance obtained with and without consideration of overlaps, that is, the absolute
error incurred when overlaps are neglected and the computation of the variance is
truncated after the term V̂ ar(Zjy) = (n �m + 1)p̂(1 � p̂). As it turns out, relative
errors are found to increase with the length of y, while absolute errors attain their
maxima for relatively short values of jyj.

3 Linear Global Detectors of Unusual Words

We have seen that mean, variance and some related scores of signi�cance can be
computed for each of the O(n2) distinct substrings of a string of n symbols in optimal

i jFij Direct (secs) [ABX] (secs) maxyfkV ar(Zjy)� V̂ ar(Zjy)kg

8 55 0.02 0.02 9.3307557400
10 144 0.17 0.8 25.36759
12 377 1.62 0.51 67.3815
14 987 14.44 3.35 177.38
16 2584 132.5 23.43 465.6
18 6765 1150 163.2 1220

Figure 1: Number of seconds (averaged over 100 runs) for computing the table of
B(m) m = 1; 2; :::; jFij) for some initial Fibonacci words; the last column displays
errors resulting when V̂ ar is used to approximate V ar.

overall O(n2) time. In this section, we show that the values and scores stored only
at the O(n) leaves and branching internal nodes of the su�x tree Tx of x su�ce in
most cases. These are the only nodes in a compact su�x tree, and there are less than
2n = 2jxj such nodes. A string ending precisely at a leaf or branching node of Tx will
be said to have a locus in Tx. One key element in this construction is o�ered by the
following well known fact [Mc-76].

Fact 3.1 If w = av, a 2 �, has a locus in Tx, then so does v.

To exploit this fact, su�x links are maintained in the tree that lead from the
locus of each string av to the locus of its su�x v. Here we are interested in Fact 3.1
for a di�erent reason, namely, because the incremental computation of our variance
formulae along the su�x links of the tree rather than the original arcs will achieve the
claimed overall linear-time weighting of the entire tree. We begin by observing that
the frequency counter associated with the locus of a string in Tx reports its correct
frequency even when the string terminates in the middle of an arc. This important
\right-context" property is conveniently reformulated as follows.

Fact 3.2 Let the substrings of x be partitioned into equivalence classes C1; C2; :::; Ck,
so that the substrings in Ci (i = 1; 2; :::; k) occur precisely at the same positions in x.
Then k < 2n.

In the string abaababaabaababaababa, for instance, fab; abag forms one such C-
class and so does fabaa; abaab; abaabag. Fact 3.2 suggests that we might only need to
look amongO(n) substrings of x in order to �nd its most unusual words. The following
considerations show that under our probabilistic assumptions this statement can be
made even more precise. First, we have to choose among a number of measures
set up to assess the departure of observed from expected behavior and its statistical
signi�cance. (Refer, e.g., to [LMS-96, S-97] for a recent discussion and references.)
Some such measures are computationally easy, others quite imposing. Perhaps the
naivest possible measure is the di�erence: �w = fw � (n � jwj + 1)p̂; where p̂

is the product of symbol probabilities for w and Zjw takes the value fw. Let us say
that an over-represented (respectively, under-represented) word w in some class C is
�-signi�cant if no extension (respectively, pre�x) of w in C achieves at least the same
value of j�j.

Theorem 3.3 The only over-represented �-signi�cant words in x are the O(n) ones
that have a locus in Tx. The only under-represented �-signi�cant words are the ones
that represent one unit-symbol extensions of words that have a locus in Tx.

Proof: We prove �rst that no over-represented �-signi�cant word of x may end in
the middle of an arc of Tx. Speci�cally, any over-represented �-signi�cant word in x
has a proper locus in Tx. Assume for a contradiction that w is a �-signi�cant over-
represented word of x ending in the middle of an arc of Tx. Let z = wv be the shortest
extension of w with a de�ned locus in Tx, and let q̂ be the probability associated with
v. Then, �z = fz � (n � jzj + 1)p̂q̂ = fz � (n � jwj � jvj + 1)p̂q̂. But we have, by
construction, that fz = fw. Moreover, p̂q̂ < p̂, and (n� jwj � jvj+1) < (n� jwj+1).
Thus, �z > �w. For this speci�cation of �, it is easy to prove symmetrically that
the only candidates for �-signi�cant under-represented words are the words ending
precisely one symbol past a node of Tx. 2

We now consider more sophisticated "measures of surprise" by giving a new def-
inition of � of the more general form: �w = (fw � Ew)=Nw, where: (a) fw is the
frequency or count of the number of times that the word w appears in the text; (b)
Ew is the typical or average nonegative value for fw (and E is often chosen to be
the expected value of the count); (c) Nw is a nonnegative normalizing factor for the
di�erence. (The N is often chosen to be the standard deviation for the count.)

Once again it is assumed that � lies on a scale where positive and negative values
which are large in absolute value correspond to highly over- and under-represented
words, respectively, and thus are \surprising". We give three assumptions that insure
that the theorem above is also true for this new de�nition of �. Let w+ = wv be a
word which is an extension of the word w, where v is another nonempty symbol or
string. First we assume that the "typical" value E always satis�es: Ew+ � Ew. This
says that the typical or average count for the number of occurrences of an extended
word is not greater than that of the original word. (This is automatically true if E is
an expectation.)

The next assumption concerns under-represented words. Of course, if a word w or
its extension w+ never appears, then fw = fw+ = 0. We would want the corresponding
measure of surprise � to be stronger for a short word not appearing than for a longer
word not appearing, i.e. we would want the two negative � values to satisfy: �w � �w+.
Thus �w is larger in absolute value (and more surprising) than �w+ when neither word
appears. This is the rationale for the following assumption: Ew+=Nw+ � Ew=Nw, in
the case that both N 's are positive.

The third assumption insures that for over-represented words (i.e. � positive), it
is more surprising to see a longer word over-represented than a shorter word. We
assume: Nw+ � Nw .

The import of all these assumptions is that whenever we have fw = fw+ , then
�w � �w+. This implies that we can con�ne attention to the nodes of a tree when we
search for extremely over-represented words since the largest positive values of � will
occur there rather than in the middle of an arc. Likewise it implies that the most
under-represented words occur at unit symbol extensions of the nodes.

Most of the widely used scores meet the above assumptions. For instance, consider
as a possible speci�cation of � the following �-score (cf. [LMS-96], [Wa-95]), in which
we are computing the variance neglecting all terms due to overlaps:

�w =
fw � (n� jwj+ 1)p̂q
(n� jwj+ 1)p̂(1� p̂)

The inferred choices of E and N automatically satisfy the �rst two assumptions
above. The concave product p̂(1� p̂) which appears in the denominator term Nw of
the above fraction is maximum for p̂ = 1=2, so that, under the realistic assumption
that p̂ � 1=2, the third assumption is satis�ed. Thus � increases with decreasing p̂
along an arc of Tx.

In conclusion, once one is restricted to the branching nodes of Tx or their one-
symbol extensions, all typical count values E (usually expectation) and their nor-
malizing factors N (usually standard deviation) and other measures discussed earlier
in this paper can be computed and assigned to these nodes and their one-symbol
extensions in overall linear time and space. The key to this is simply to perform
our incremental computations of, say, standard deviations along the su�x links of
the tree, instead of spelling out one by one the individual symbols found along each
original arc. The details are easy and are left to the reader. The following Theorem
summarizes our discussion.

Theorem 3.4 The set of all �-signi�cant subwords of a string x over a �nite alphabet
can be detected in linear time and space.

4 Software and Experiments

The algorithms and the data structures described above have been coded in C++
using the Standard Template Library (STL) collection of containers and generic func-
tions [MS-94]. Overall, the implementation consists of circa 2,500 lines of code. Be-
sides outputting information in more or less customary tabular forms, our programs
generate source �les capable of driving some graph drawing programs such as Dot
[GKNV-93] or DaVinci [FW-95] while allowing the user to dynamically set and
change visual parameters such as font size and color. The overall facility was dubbed
Verbumculus in an allusion to its visualization features. The program is, however,
a rather extensive analysis tool that collects the statistics of a given text �le in one or
more su�x trees, annotates the nodes of the tree with the expectations and variances,
etc.

Example visual outputs of Verbumculus are displayed in the colored �gures
which are found at the end of the paper. The whole word terminating at each node is

printed in correspondence with that node and with a font size that is proportional to
its score; under-represented words that appear in the string are printed in red italics,
black is reserved for over-represented words. To save space, words that never occur
in the string are not displayed at all, and the tree is pruned at the bottom. The �rst
�gure shows an application to the �rst 512 bps of the mitochondrial DNA of the yeast
under score �.

The last �gure is related to computations presented in [LMS-96] in the context of a
comparative analysis of various statistical measures of over- and under-representation
of words. It should be clari�ed that here we are only interested in the issue of
e�ective detection of words that are unusual according to some pre-determined score
or measure the intrinsic merits of which are not part of our concern. The histogram
of Figure 3 represents our own reproduction of computations and tables originally
presented in [LMS-96], and related to occurrence counts of few extremal 4- and 5-
mers in some genomes. Such occurrences are counted in a sliding window of length
approximately 0:5% of the genomes themselves. We use for a concrete example the
counts of to the occurrences of GAGGA in HSV1 (circa 150k bps). Peaks are clearly
visible in the table, thereby denouncing local departures from average in the behavior
of that word. One such peaks are found, e.g., in correspondence with some initial
window position in the chart. Note that in order to �nd, say, which 5-mers occur with
unusual frequencies (by whatever measure), one would have to �rst generate and count
individually each 5-mer in this way. Next, to obtain the same kind of information on
6-mers, 7-mers or 8-mers, the entire process would have to be repeated. Thus, every
word is processed separately, and the count of a speci�c word in a given window is
not directly comparable to the counts of other words, both of the same as well as
di�erent length, appearing in that window.

Figure 4 displays the tree (suitably pruned at the bottom) produced at the same
peak-window in the corresponding histograms. Not surprisingly, Verbumculus iso-
lates the word found in the corresponding table. However, in this and all other cases
tested, the program exposes as unusual a family of words related to the single one
used to generate the histogram, and sometimes other words as well. The words in
the family are typically longer than the one of the histogram, and each actually rep-
resents an equally, if not more surprising, context string. Finally, Verbumculus
�nds that the speci�c words of the histograms are, with their detected extensions,
over-represented with respect to the entire population of words of every length within
a same window, and not only with respect to their individual expected frequency.

References

[Ap-85] Apostolico, A., The Myriad Virtues of Su�x Trees, Combinatorial Algorithms on Words,
(A. Apostolico and Z. Galil, eds.), Springer-Verlag Nato ASI Series F, Vol. 12, 85{96 (1985).
[ABX-97] Apostolico, A., M.E. Bock and X. Xuyan, Annotated Statistical Indices for Sequence
Analysis, (invited paper) Proceedings of Compression and Complexity of SEQUENCES 97 (B. Car-
pentieri, A. De Santis, U. Vaccaro and J. Storer, eds.) IEEE Computer Society Press, pp. 215{229
(1998).
[AG-97] Apostolico, A. and Z. Galil (eds.), Pattern Matching Algorithms, Oxford University Press
(1997).

TTG

TTGG

TTGT
TTGA

TATACT

ATGTTA

GT

GA

GG

GC

TC

TT

TG

TA

CG

CT

CA

CC

AC

AT

AA

AG

GTC

GTT

GTA

GTG

TTGGTT

TTGGGT

TATAGG

ATGTGA

GTCGAC
GTCAAT

TAG TAGT
TAGATA

TAGGTT

ATGGT ATGGTT

ATGGTG

TAGTA

TAGTTT

TTGTAA

TTGTTT

TAGTAC
TAGTAG

GTTG
GTTT

GTTC

GTTA

ATGAA ATGAAT

ATGAAG

GTTGT

GTTGGG
GTTGAT

GTTGTA
GTTGTT

TTGACT
TTGATA

TTGAAT

ATA

ATAC

ATAT

ATAA

ATAG

ATACGA
ATACT

ATACAT

CGA

CGT

CGCAAG

TTA

TTAA

TTACGT
TTAT

TTAGT

CGACTC
CGATGT

ATACTT

ATACTA

GTTTGA
GTTTAT

GTTTTA

TTAAA
TTAAT

TTAAAA
TTAAAT

CGTCAA

CGTGAG

ATATT
ATATA

ATATGA

ATATCT

GTTCGT
GTTCCT

TTAATA
TTAATT
TTAATC

ATATTA
ATATTT

ATATTG

CTC

CTT
CTA

CTG

GTTACG
GTTAAA

GTTATC

CTCAT

CTCTTG
CTCATC

CTCATT

ATATAA

ATATAT

TTATC
TTATT

TTATA

TTATCA
TTATCT

GTAAAA

GTAT

GTACGC
GTAGAT

CTTGGT
CTTTAT

GTATGG
GTATCT

TTATTA

TTATTT

ATAAT
ATAAA

ATAAG

ATAATG

ATAATA
ATAATT

CTAA
CTAT

TTATAT

TTATAC

TTATAG

TTATAA

CTAAG
CTAAAA

CTAAT

CTAAGA
CTAAGT

GTGA

GTGTAT

ATAAAA

ATAAAT

GTGAGT
GTGAAT

TTAGTA

TTAGTT

CTAATT

CTAATC

ATAAGC
ATAAGA

GAC

GAA

GAGTTG
GAT

GACT

GACCAT

TGG

TGT

TGA

TGCTGA

CTATCT
CTATTG
CTATAT

ATAGTA

ATAGGT

GACTCA
GACTGT

TGGT

TGGGTT
TGGTT

TGGTGT TGGTTG
TGGTTC

AAA
AAG

AAT

AACCCA

CTGTTC

CTGCTG
CTGA

AAAA
AAAGCT

AAAT

GAAG

GAAT
GAAATA

AAAAGC
AAAAT

AAAAA

GAAGG
GAAGTT

GAAGGG
GAAGGA

CTGAAG
CTGATA

AAAATG

AAAATA

AAAATT

TGTA
TGTT

TGTGAA

TGTAAA

TGTATC

CAT

CAA

CAGT

GAATCA
GAATAC

CATCAT
CATT

CATA

CATGGT

AAAAAT

AAAAAA

TGTTCG
TGTTAC

TGTTTT

CATTTC
CATTAT

AAATGT

AAATA
AAATTA

AAATCT

GATGTG
GATAA

CATAAT

CATAGT
CATATT

TGACTG
TGAGTT

TGAA

TGATAA

AAATAC
AAATAT

AAATAA

GATAAT
GATAAG

TGAAT

TGAAG

GGT

GGGTT
GGA

TGAATC
TGAATA

CAATTA

CAAATT

CAAGGA

CAACCC

GGTT
GGTGTA

GGTTGT
GGTTT
GGTTAA

GGTTCC

AAGCTA
AAGA

AAGG

AAGTTG

TGAAGG
TGAAGT

GGTTTG
GGTTTT

AAGAAG
AAGATA

CAGTAT
CAGTTA

AAGGGT
AAGGA

TAA

TAC

TAT

CCT

CCAT

CCCATG

TAAA

TAAG

TAAT

CCTCTT
CCTATC

AAGGAA

AAGGAC

GGGTTT
GGGTTA

TAAAA

TAAAT

TAAAAG

TAAAAT

TAAAAA

CCATAA

CCATGG

GGAAAT

GGACCA

AATT
AATG

AATA

AATC

AATTA

AATTT

TAAATA
TAAATC

AATTAA

AATTAT

GCT

GCAAGG

ACT

ACG

ACC

ACATAT

GCTAAG
GCTGAA

ACTCAT
ACTGTT

ACTTTA

ACTAA

TAAGA

TAAGCT
TAAGTT

AATTTT
AATTTA

TAAGAA

TAAGAT

TCG

TCA

TCCT

TCT

ACTAAA

ACTAAT

AATGTT

AATGAA

TCGACT
TCGTCA

TAATGA

TAATA
TAATT

TAATCT

ACGTGA
ACGATG
ACGCAA

AATAC
AATAT

AATAA

TCAT
TCAA

TCAGT

AATACG
AATACT

AATACA

TCATCA
TCATT

TCATAG

TAATAA
TAATAT

TAATAC

TCATTT

TCATTA

ACCATA

ACCCAT

AATATT
AATATA

AATATG

AATATC

TAATTA
TAATTT

TCAATT

TCAAAT

TCAACC

ATC

ATT

ATG

ATCA

ATCT

TACG

TACT

TACATA

ATCAT

ATCAGT
ATCAA

AATAAT
AATAAA

AATAAG

TACGTG
TACGAT

TACGCA

ATCATT

ATCATA

TCAGTA
TCAGTT

AATCA

AATCT

TCCTCT
TCCTAT

TACTTT

TACTAA

ATCAAA

ATCAAC

AATCAG
AATCAA

TCTTGG
TCTG

TCTCAT
TCTA

ATCTG
ATCTCA
ATCTA

AATCTC
AATCTG

AATCTA

TATG
TATC

TATT
TATA

ATCTGC
ATCTGA

TCTGCT
TCTGAT

TATGGT
TATGAA

TATCT
TATCA

ATCTAT
ATCTAA

AGCTAA

AGA
AGG

AGT

TCTAT
TCTAAT

TATCTG

TATCTA

TCTATT

TCTATA

AGAAGG
AGATAA

ATTT
ATTA

ATTGA

TATCAA

TATCAT

TATCAG

ATTTCC

ATTTA
ATTTTA

AGGGTT
AGGA

AGGTTT

TTT
TTC

ATTTAA
ATTTAT

TTTCCT
TTTGAC

TTTA
TTTTA

AGGAAA

AGGACC

TATTA
TATTGA

TATTT

TATTAT
TATTAG
TATTAA

TTTAAT

TTTAT

ATTAA

ATTAT
ATTAGT

ATTAAA

ATTAAT

AGTT

AGTA

TTTATT
TTTATA

TTTATC

AGTTG
AGTTTA

AGTTAT

AGTTGG
AGTTGA
AGTTGT

TATTTA

TATTTT

ATTATC
ATTATT

ATTATA

TTTTAA
TTTTAT

TATAA

TATAT
TATAAT

TATAAA

TTCCT

TTCGTC

ATTGAT

ATTGAA

AGTATG

AGTACG
AGTAGA

TTCCTC
TTCCTA

TATATT
TATATA

ATGT

Figure 2: Verbumculus + Dot on the �rst 512 bps of the mitochondrial DNA of

the yeast S. cerevisiae, under score �w = (fw� (n�jwj+1)p̂)=
q
(n� jwj+ 1)p̂(1 � p̂)

[AP-96] Apostolico, A. and F.P. Preparata, Data Structures and Algorithms for the String Statistics
Problem, Algorithmica, 15, 481{494 (1996).
[AS-92] Apostolico, A. and W. Szpankowski, Self-Alignments in Words and Their Applications,
Journal of Algorithms, 13, 446{467 (1992).
[BBT-86] Brendel, V., J.S. Beckman and E.N. Trifonov, Linguistics of Nucleotide Sequences: Mor-
phology and Comparison of Vocabularies, Journal of Biomolecular Structure and Dynamics, 4, 1,
11{21 (1986).
[FW-95] Frohlich, M., and M. Werner, Demonstration of the Interactive Graph Visualization System
Davinci, In Proceedings of DIMACS Workshop on Graph Drawing `94, Princeton (USA) 1994, LNCS
No. 894 (1995), R. Tamassia and I. Tollis, Eds., Springer Verlag.
[GKNV-93] Gansner, E. R., Koutso�os, E., North, S., and Vo, K.-P., A Technique for Drawing
Directed Graphs. IEEE Trans. Software Eng. 19, 3, 214{230 (1993). .
[van-98] van Helden, J., Andr�e, B., and Collado-Vides, J., Extracting Regulatory Sites from the
Upstream Region of Yeast Genes by Computational Analysis of Oligonucleotide Frequencies. J.
Mol.Biol., 281, 827{842 (1998).
[Jes-98] Jesper Larson, N., Context Trees of Block Sorting Compression, Proceedings of DCC Data
Compression Conference, pages 202{211. IEEE Computer Society Press (1998).
[LMS-96] Leung, M.Y., G.M. Marsh and T.P. Speed, Over and Underrepresentation of Short DNA
Words in Herpesvirus Genomes, Journal of Computational Biology 3, 3, 345 { 360 (1996).
[Mc-76] McCreight, E.M., A Space Economical Su�x Tree Construction Algorithm, Jour. of the
ACM, 25, 262{272 (1976).
[MS-94] Musser, D. R., and A. A. Stepanov, Algorithm-orientedGeneric Libraries, Software{Practice
and Experience 24, 7, 623{642 (1984).
[S-97] Schbath, S., An E�cient Statistic to Detect Over- and Under-represented Words, J. Comp.
Biol. 4, 2, 189{192 (1997).
[Wa-95] Waterman, M.S., Introduction to Computational Biology, Chapman & Hall (1995).
[Yo-98] Yokoo, H., Context Tables: A Tool for Describing Text Compression Algorithms, Proceedings
of DCC Data Compression Conference, pages 299{308. IEEE Computer Society Press (1998).

0

5

10

15

20

0 50 100 150 200
window position (800 bps)

GAGGA counts in HSV1 - 152261 bps

’hsv1.gagga’

Figure 3: GAGGA count in a sliding window of size 800 bps of the wh ole HSV1
genome

gcccac

ggtggg

ccaa
ccaaaa

ccaac

caca cacacc

cacatg
cacagt

tag tagcga

tagaca

ag

aa

ac

at

gc

gg

gt

ga

cc

cg

ca

ct

tc

tg

tt

ta

agc

agg

aga

agt

gcccaa

ggtaac

agcc

agcg
agcact

gccg
gccgc

gccga
gccgtc

gccgg

gga ggag
ggaacc

ggacag

ccaacc

ccaact

agccc

agccgg

gccgcg
gccgcc

ggagcg
ggagga

tac tactcg
taccac

agcccg
agcccc

cacccc

ccac ccaccc

ccacg

cactac

gccgaa

gccgag

cacg cacgc

cacggg

cacgtt

ccacgg

ccacgc

ccacgt

cacgca

cacgct
cacgcc

agcgg
agcgag

agcgcg

gtc

gtg
gtt

gtaacc

agcggg
agcggc

agcggt

gtcc

gtcgcg

gtca

gtctcc

gccggt

gccgga

gccggc

gtccg

gtccca
gtccgg

gtccgc

gtccga

ccat ccatgg
ccatcg

cat catg

catcgc

gcca gccag

gccatc

cct

cctt

cctc

cctgtc

catgct
catggc

gccaga
gccagt

ccttta
ccttct

aggc

aggagc
aggtaa

aggcgg
aggcaa

aggccc

gtcaaa
gtcagg

cctctg
cctcca

ctt

cta

ctc

ctg

gcct

gcctct
gcctgt
gccttc

ctttaa
cttg

cttctt

gtgcgc

gtgg

cttgcc

cttgtt

cgg

cgc

cgt

cga

agac

agaggc

gcg

gcgg

gcgc

gcgt
gcgagt

gtggg

gtggc

cggg

cggc
cggt

cgga

agacgc

agacta
agacag

gcggg
gcggc

gcggt

gtgggg

gtgggc

cgggc

cgggg
cgggag

gcgggc

gcgggg
gcggga

cgggcc

cgggcg

cgggca

ctagcg
ctac

gtggcg

gtggct

ctactc
ctacca

agttag
agtcc

agtggc

gcggcg

gcggcc

cggggc
cggggg

gttaga
gttc

ctcg

ctct

ctcca

agtccc
agtccg

ctcgcc

ctcgga

gcggtc
gcggtg

gttcgc
gttccc

cggcg
cggcc

cggcac

cggcgg
cggcgt

cggcgc

ctctg

ctctac

ctctct

aaa

aag
aac

gcgcg
gcgcaa

gcgcc

ctctgc

ctctgt

aaaa
aaag

aaac

gcgcgc
gcgcgg

gag

gac
gaa
gatgac

aaaaa
aaaagg

aaaac

gagc

gagg
gagact

gagt

aaaaaa
aaaaag

gagcg
gagccg

cggcca

cggccc

cggccg

gagcgg
gagcgc

gcgccg
gcgccc

gcgcca

ctccat
ctccac

aaaacg

aaaaca

gaggag
gaggcc

cggtc

cggtgg

ctgc

ctgtc
ctggcc

gcgtg

gcgtcc

cggtcc

cggtca

ctgcac

ctgctg
ctgcgc

aaaggc
aaagcg

gcgtgc

gcgtgg

gagtta
gagtcc

aaacgg

aaacac

aaactc

cggaac

cggaca

ctgtca

ctgtct

gca gcaa
gcagcc

gcac

gacg
gact

gacag

gcaaaa
gcaagc

gacgcc

gacga

cgcg

cgca
cgcc

cgct

aaggcg

aagc

cgcgg

cgcgc
cgcgtc

tcc

tcg

tct

tca

gacgac
gacgat

cgcggg
cgcggc

cgcggt

tccg

tcca

tccc

aagcgg

aagcac

tccggg

tccgcg

tccgac

gcacta
gcacgc

gcaca

gactag
gactgg

aacggg

aacaca
aactc

aacc

cgcgcg
cgcgca

cgcgcc

gcacat
gcacag

tccatg
tccacg

gacagg

gacagc

aactct
aactcg

gct gcttgc
gctc

gctgc

tccca
tcccga

gaaaac
gaaccc

cgcaaa
cgcaca

tcccaa
tcccag

aaccgc

aacctc
aacccg

gctctc
gctcca

cgccg

cgcct
cgcca

cgccc

gctgct
gctgcg

ccc

ccg

cca

cgccga

cgccgc
cgccgt

cgccgg

tcgc

tcggaa

acg

aca

acc
act

cccg

cccc
ccca

cccttt

tcgcg

tcgcct
tcgctg

acgc
acgggc

acgttc
acga

cccgg

cccgc
cccgag

tcgcgc

tcgcgg

acgcc

acgcac

acgctc

ggg

ggc
ggt

cccggg

cccggc

acgccg

acgccc

gggc

gggg

gggag
gggtcg

gggcc

gggcg
gggcag

cgcctc

cgcctt

gggccc

gggccg

cccgcg

cccgcc

cgccat
cgccag

tctg

tctacc
tctc

tcttgt

gggcgc
gggcgg

gggcgt

tctgca

tctgtc

ccccc
ccccg
ccccaa

acgac
acgatg

cccccc
cccccg

ccccca

cgcccc
cgcccg

cgccca

acgacg
acgact

tctctg
tctcca

ggggg

ggggc
ggggag

ggggtc

gggggg

gggggc
ggggga

gggggt

ccccgc
ccccgg

cgctct
cgctgc

acac

acag

acatgc

acacac
acaccc

tcaaac
tcagga

cgtg
cgtcc

cgttcc

cccaa
cccacg

cccagg

cgtgcg

cgtggg

acaggc

acagtc
acagcc

ggggcg
ggggcc

cccaaa
cccaac

tgc

tgg
tgt

tgacga

tgcgc

tgcacg

tgct
tgcctg

cgtccc
cgtccg

tgcgcg

tgcgcc

accc
accacc
accgca

acctcc

gggagc

gggagg

acccc

acccgc

ccgg
ccgc

ccga
ccgtcc

cgaaaa

cgag
cgac

cgatga

tgcttg
tgctgc

accccc

accccg

ccggg
ccggc

ccggtg

ccggac

ccgggc

ccgggg

cgagac

cgagt
cgagcc

ggcc

ggcg
ggca

ggctcc

ggccc

ggccg
ggccag

cgagtt
cgagtc

tggg
tggc

ggcccc
ggccct

ggcccg
ggccca

ccggca

ccggcc

ccggcg

tggggg

tgggcc

acta
actc
actggc

cgacga
cgactg

tggcgg

tggcc

tggctc

actagc

actact

ggccgc

ggccga

ggccgg

tggccc

tggccg

ccgcg

ccgcc
ccgcac

actcg

actcta

ccgcgg
ccgcgt

caa

cag
cac

actcgc
actcgg

caaa
caagca

caac

caaaa
caaact

tgtc

tgttcg

ggcgc
ggcgg

ggcgtg

ccgccg
ccgcca

ccgccc
ccgcct

caaaaa
caaaac

tgtcaa
tgtctc

ggcgcg
ggcgcc

atg

atcgcg

atgctt
atggcc

atgacg

ggcggg
ggcggc

ggcggt

caaccg

caactc

tttaaa
tta

ttg

ttc

ccgaaa
ccgag

ccgacg

ttaaag
ttagac

ccgaga

ccgagt
ccgagc

caga

cagccc

cagg
cagt

gcc

ggcagc
ggcaag

ggcacg

cagacg
cagagg

gccc

ttgcct

ttgttc

gcccg

gcccc

gccctt
gccca

gcccgg

gcccgc
gcccga

caggca

caggta
caggag

ttcttg
ttcgct

ttcccg

ggtc
ggtgg

ccag

ggtccg

ggtcgc

ggtcag

ccaga

ccaggt
ccagtg

gccccc
gccccg

ccagac
ccagag

cagtcc
cagtgg

taa

taaagc

taacct

ggtggc

Figure 4: Verbumculus + Dot on window 0 (�rst 800 bps) of HSV1, under score

�w = (fw � (n� jwj+1)p̂)=
q
(n � jwj+ 1)p̂(1 � p̂) (frequencies of individual symbols

are computed over the whole genome)

