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1 Introduction

The identi�cation of strings that are, by some measure, redundant or rare in the
context of larger sequences is an implicit goal of any data compression method. In
many other applications, such strings are routinely sought in order to unveil structure,
to infer minimal or compact descriptions, and for purposes of feature extraction and
classi�cation. In bio-sequence analysis, for instance, such unsusual strings have been
variously implicated in biological functions and mechanisms (refer, e.g., to [van-98],
[LMS-96], [S-97] and references therein). In this and other domains, tables for storing
the number of occurrences in a string of substrings of (or up to) a given length need
to be computed and stored. In Data Compression, tables of this nature �nd use
in, and in fact subtend, the development of context trees (cf., e.g., [Jes-98], [Yo-
98] and references therein). In the straightforward approach to searching for unusual
substrings, the words (up to a certain length) are enumeratedmore or less exhaustively
and individually checked in terms of observed and expected frequencies, variances,
and scores of discrepancy and signi�cance thereof. As is well known, clever methods
are available to compute and organize the counts of occurrences of all substrings of a
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given string. The corresponding tables take up the tree-like structure of a special kind
of digital search index or trie (see, e.g., [Mc-76], [Ap-85], [AP-96]). These trees have
found use in numerous applications [Ap-85], and represent a familiar tool in Data
Compression and Computational Molecular Biology (see, e.g., [Wa-95]). We assume
familiarity of the reader with these trees, their basic properties and uses.

Once the index itself is built, its entries can be annotated with the expected val-
ues and variances that may be associated with them under one or more probabilistic
models. One such process of annotation is addressed in [ABX-97], where we show
that assuming a random source emitting symbols from a known alphabet indepen-
dently and according to a given distribution, mean, variance and some of the adopted
measures of signi�cance can be assigned to all substrings of a string of n symbols in
optimal O(n2) time.

We show here that under several accepted measures of deviation from expected
frequency, the candidates over- or underrepresented words are restricted to the O(n)
words that end at internal nodes of a compact su�x tree, as opposed to the �(n2)
possible substrings. This surprising fact is a consequence of properties in the form that
if a word that ends in the middle of an arc is, say, overrepresented, then its extension
to the nearest node of the tree is even more so. Based on this, we design global
linear detectors of favored and unfavored words for our probabilistic framework, and
display the results of some preliminary that apply our constructions to the analysis
of genomic sequences.

2 Preliminaries

Given an alphabet �, we use �+ to denote the free semigroup generated by �, and
set �� = �+ [f�g, where � is the empty word. An element of �+ is called a string or
sequence or word, and is denoted by one of the letters s; u; v; w; x; y and z. The same
letters, upper case, are used to denote random strings. We write x = x1x2:::xn when
giving the symbols of x explicitly. The number of symbols that form a string w is
called the length of w and denoted by jwj. If x = vwy, then w is a substring of x and
the integer 1 + jvj is its (starting) position in x. Let X = X1X2 : : :Xn be a textstring
produced randomly by a source that emits symbols from alphabet � independently
and according to a given probabily distribution. We use x to denote an observation
of X. Let y = y1y2 : : : ym (m < (n + 1)=2) be an arbitrary but �xed pattern string
on �. For i 2 f1; 2; : : : ; n �m + 1g, de�ne Zijy to be 1 if y occurs in X starting at
position i and 0 otherwise. We are interested in the the expected value and variance
of Zjy, the total number of occurrences of y in X:

Zjy =
n�m+1X
i=1

Zijy:

It is immediate that E[Zjy] = (n�m+1)p̂, where, with pi denoting the probability
for any given k that Xk = yi, p̂ = �m

i=1pi.
For any symbol a in �, computing the expected value Zjya from p̂ and the prob-

ability of a is trivially done in constant time. Thus, the expected values associated



with all pre�xes of a string can be computed in linear time. Under the stated as-
sumption 1 that m � (n+1)=2, it is possible to express the variance in the following
form [ABX-97]:

V ar(Zjy) = (n�m+1)p̂(1�p̂)�p̂2(2n�3m+2)(m�1)+2p̂
smX
l=1

(n�m+1�dl)�
m
j=m�dl+1

pj

where the dl's are the periods of y that satisfy 1 � d1 < d2 < ::: < dsm � min(m �
1; n�m). Recall that a string z has a period w if z is a pre�x of wk for some integer k.
A string may have several periods. Sometimes the word \period" is also used to refer
to the length of a period. The shortest period (or period length) of a string z is called
the period of z. Clearly, a string is always a period of itself. This period is called the
trivial period. We say that a non-empty string w is a border of a string z if z starts
and ends with an occurrence of w. That is, z = uw and z = wv for some possibly
empty strings u and v. Clearly, a string is always a border of itself. This border is
called the trivial border. The notions of period and border are complementary.

Fact 2.1 A string x of length k has period of length q, such that q < k, if and only
if it has a non-trivial border of length k � q.

Suppose that we wanted to compute the variance of Zjy for all substrings y of x in
accordance to the formula above. Applying the formula from scratch to each substring
would require time �(jxj3), since the number of possible distinct words appearing as
substrings of x may be quadratic in jxj. In [ABX-97], it is proved that our variance
can be computed for all pre�xes of a string y in overall time O(jyj), which brings the
overall cost for string x down to O(jxj2). The key to this is a recurrence that speeds
up computation of the term

B(m) =
smX
l=1

(n �m+ 1 � dl)�
m
j=m�dl+1

pj :

In this expression, B(m) refers to the pre�x y1y2:::ym of some string y, S(m) =
fbl;mg

sm
l=1 is the set of borders bord(m) is the longest border of y1y2:::ym. In other

words, the computation of B depends on the structure of all periods dl of y1y2:::ym
that are less than or equal to min(m � 1; n � m). By adaptation of the \failure
function" computations involved in classical string searching (see, e.g., [AG-97]), it
is possible to derive B(m) quickly from knowledge of bord(m) and of the previously
computed values B(1); B(2); :::; B(m� 1). Speci�cally, letting the border associated
with period dl at position m to be

bl;m = m� dl;

the following expression of B(m) holds [ABX-97]:

1We concentrate on this assumption for practical reasons and brevity only; the treatment of the
case m > (n+ 1)=2 is quite similar.



B(m) = (n�2m+1+bord(m))�m
j=bord(m)+1pj+2(bord(m)�m)

sbord(m)X
l=1

�m
j=bl;bord(m)+1

pj

+ (�m
j=bord(m)+1pj) B(bord(m));

where the fact that B(m) = 0 for bord(m) � 0 yields the initial conditions. Note that
each product of probabilities can be extracted in constant time from a precomputed
table containing the products of the probabilities of all consecutive pre�xes of x. From
knowledge of n;m; bord(m) and these pre�x probability products, the �rst term of
B(m) is computed in constant time. Except for (bord(m) �m), the second term is
essentially a sum of probability products taken over all distinct borders of y1y2:::ym.
Thus, given such a sum and B(bord(m)) at this point enables one to compute B(m)
whence also the variance, in constant time. Maintaining knowledge of the value of
such sums during the computation of longest borders is easy, since the value of the
sum

T (m) =

sbord(m)X
l=1

�m
j=bl;bord(m)+1

pj

obeys the recurrence:

T (m) = T (bord(m)) ��m
j=bord(m)+1pj +�m

j=bord(bord(m))+1pj ;

with T (m) = 0 for bord(bord(m)) � 0. In conclusion, the following holds.

Theorem 2.2 Under the independently distributed source model, the mean and vari-
ances of all pre�xes of a string can be computed in time and space linear in the length
of that string.

Application of this treatment to every su�x of a string yields the mean and
variance of all substrings in overall optimal quadratic time. The table of Figure 1
compares the costs of computing B(m) with both methods for Fibonacci words of
increasing lengths. Fibonacci words are de�ned by a recurrence in the form: Fi+1 =
FiFi�1 for i � 1, with F0 = b and F1 = a, and exhibit a rich repetitive structure.

The last column of the table compares, for lengths in a realistic range, the values of
the variance obtained with and without consideration of overlaps, that is, the absolute
error incurred when overlaps are neglected and the computation of the variance is
truncated after the term V̂ ar(Zjy) = (n �m + 1)p̂(1 � p̂). As it turns out, relative
errors are found to increase with the length of y, while absolute errors attain their
maxima for relatively short values of jyj.

3 Linear Global Detectors of Unusual Words

We have seen that mean, variance and some related scores of signi�cance can be
computed for each of the O(n2) distinct substrings of a string of n symbols in optimal



i jFij Direct (secs) [ABX] (secs) maxyfkV ar(Zjy)� V̂ ar(Zjy)kg

8 55 0.02 0.02 9.3307557400
10 144 0.17 0.8 25.36759
12 377 1.62 0.51 67.3815
14 987 14.44 3.35 177.38
16 2584 132.5 23.43 465.6
18 6765 1150 163.2 1220

Figure 1: Number of seconds (averaged over 100 runs) for computing the table of
B(m) m = 1; 2; :::; jFij) for some initial Fibonacci words; the last column displays
errors resulting when V̂ ar is used to approximate V ar.

overall O(n2) time. In this section, we show that the values and scores stored only
at the O(n) leaves and branching internal nodes of the su�x tree Tx of x su�ce in
most cases. These are the only nodes in a compact su�x tree, and there are less than
2n = 2jxj such nodes. A string ending precisely at a leaf or branching node of Tx will
be said to have a locus in Tx. One key element in this construction is o�ered by the
following well known fact [Mc-76].

Fact 3.1 If w = av, a 2 �, has a locus in Tx, then so does v.

To exploit this fact, su�x links are maintained in the tree that lead from the
locus of each string av to the locus of its su�x v. Here we are interested in Fact 3.1
for a di�erent reason, namely, because the incremental computation of our variance
formulae along the su�x links of the tree rather than the original arcs will achieve the
claimed overall linear-time weighting of the entire tree. We begin by observing that
the frequency counter associated with the locus of a string in Tx reports its correct
frequency even when the string terminates in the middle of an arc. This important
\right-context" property is conveniently reformulated as follows.

Fact 3.2 Let the substrings of x be partitioned into equivalence classes C1; C2; :::; Ck,
so that the substrings in Ci (i = 1; 2; :::; k) occur precisely at the same positions in x.
Then k < 2n.

In the string abaababaabaababaababa, for instance, fab; abag forms one such C-
class and so does fabaa; abaab; abaabag. Fact 3.2 suggests that we might only need to
look amongO(n) substrings of x in order to �nd its most unusual words. The following
considerations show that under our probabilistic assumptions this statement can be
made even more precise. First, we have to choose among a number of measures
set up to assess the departure of observed from expected behavior and its statistical
signi�cance. (Refer, e.g., to [LMS-96, S-97] for a recent discussion and references.)
Some such measures are computationally easy, others quite imposing. Perhaps the
naivest possible measure is the di�erence: �w = fw � (n � jwj + 1)p̂; where p̂



is the product of symbol probabilities for w and Zjw takes the value fw. Let us say
that an over-represented (respectively, under-represented) word w in some class C is
�-signi�cant if no extension (respectively, pre�x) of w in C achieves at least the same
value of j�j.

Theorem 3.3 The only over-represented �-signi�cant words in x are the O(n) ones
that have a locus in Tx. The only under-represented �-signi�cant words are the ones
that represent one unit-symbol extensions of words that have a locus in Tx.

Proof: We prove �rst that no over-represented �-signi�cant word of x may end in
the middle of an arc of Tx. Speci�cally, any over-represented �-signi�cant word in x
has a proper locus in Tx. Assume for a contradiction that w is a �-signi�cant over-
represented word of x ending in the middle of an arc of Tx. Let z = wv be the shortest
extension of w with a de�ned locus in Tx, and let q̂ be the probability associated with
v. Then, �z = fz � (n � jzj + 1)p̂q̂ = fz � (n � jwj � jvj + 1)p̂q̂. But we have, by
construction, that fz = fw. Moreover, p̂q̂ < p̂, and (n� jwj � jvj+1) < (n� jwj+1).
Thus, �z > �w. For this speci�cation of �, it is easy to prove symmetrically that
the only candidates for �-signi�cant under-represented words are the words ending
precisely one symbol past a node of Tx. 2

We now consider more sophisticated "measures of surprise" by giving a new def-
inition of � of the more general form: �w = (fw � Ew)=Nw, where: (a) fw is the
frequency or count of the number of times that the word w appears in the text; (b)
Ew is the typical or average nonegative value for fw ( and E is often chosen to be
the expected value of the count); (c) Nw is a nonnegative normalizing factor for the
di�erence. (The N is often chosen to be the standard deviation for the count.)

Once again it is assumed that � lies on a scale where positive and negative values
which are large in absolute value correspond to highly over- and under-represented
words, respectively, and thus are \surprising". We give three assumptions that insure
that the theorem above is also true for this new de�nition of �. Let w+ = wv be a
word which is an extension of the word w, where v is another nonempty symbol or
string. First we assume that the "typical" value E always satis�es: Ew+ � Ew. This
says that the typical or average count for the number of occurrences of an extended
word is not greater than that of the original word. (This is automatically true if E is
an expectation.)

The next assumption concerns under-represented words. Of course, if a word w or
its extension w+ never appears, then fw = fw+ = 0. We would want the corresponding
measure of surprise � to be stronger for a short word not appearing than for a longer
word not appearing, i.e. we would want the two negative � values to satisfy: �w � �w+.
Thus �w is larger in absolute value (and more surprising) than �w+ when neither word
appears. This is the rationale for the following assumption: Ew+=Nw+ � Ew=Nw, in
the case that both N 's are positive.

The third assumption insures that for over-represented words (i.e. � positive), it
is more surprising to see a longer word over-represented than a shorter word. We
assume: Nw+ � Nw .



The import of all these assumptions is that whenever we have fw = fw+ , then
�w � �w+. This implies that we can con�ne attention to the nodes of a tree when we
search for extremely over-represented words since the largest positive values of � will
occur there rather than in the middle of an arc. Likewise it implies that the most
under-represented words occur at unit symbol extensions of the nodes.

Most of the widely used scores meet the above assumptions. For instance, consider
as a possible speci�cation of � the following �-score (cf. [LMS-96], [Wa-95]), in which
we are computing the variance neglecting all terms due to overlaps:

�w =
fw � (n� jwj+ 1)p̂q
(n� jwj+ 1)p̂(1� p̂)

The inferred choices of E and N automatically satisfy the �rst two assumptions
above. The concave product p̂(1� p̂) which appears in the denominator term Nw of
the above fraction is maximum for p̂ = 1=2, so that, under the realistic assumption
that p̂ � 1=2, the third assumption is satis�ed. Thus � increases with decreasing p̂
along an arc of Tx.

In conclusion, once one is restricted to the branching nodes of Tx or their one-
symbol extensions, all typical count values E (usually expectation) and their nor-
malizing factors N (usually standard deviation) and other measures discussed earlier
in this paper can be computed and assigned to these nodes and their one-symbol
extensions in overall linear time and space. The key to this is simply to perform
our incremental computations of, say, standard deviations along the su�x links of
the tree, instead of spelling out one by one the individual symbols found along each
original arc. The details are easy and are left to the reader. The following Theorem
summarizes our discussion.

Theorem 3.4 The set of all �-signi�cant subwords of a string x over a �nite alphabet
can be detected in linear time and space.

4 Software and Experiments

The algorithms and the data structures described above have been coded in C++
using the Standard Template Library (STL) collection of containers and generic func-
tions [MS-94]. Overall, the implementation consists of circa 2,500 lines of code. Be-
sides outputting information in more or less customary tabular forms, our programs
generate source �les capable of driving some graph drawing programs such as Dot
[GKNV-93] or DaVinci [FW-95] while allowing the user to dynamically set and
change visual parameters such as font size and color. The overall facility was dubbed
Verbumculus in an allusion to its visualization features. The program is, however,
a rather extensive analysis tool that collects the statistics of a given text �le in one or
more su�x trees, annotates the nodes of the tree with the expectations and variances,
etc.

Example visual outputs of Verbumculus are displayed in the colored �gures
which are found at the end of the paper. The whole word terminating at each node is



printed in correspondence with that node and with a font size that is proportional to
its score; under-represented words that appear in the string are printed in red italics,
black is reserved for over-represented words. To save space, words that never occur
in the string are not displayed at all, and the tree is pruned at the bottom. The �rst
�gure shows an application to the �rst 512 bps of the mitochondrial DNA of the yeast
under score �.

The last �gure is related to computations presented in [LMS-96] in the context of a
comparative analysis of various statistical measures of over- and under-representation
of words. It should be clari�ed that here we are only interested in the issue of
e�ective detection of words that are unusual according to some pre-determined score
or measure the intrinsic merits of which are not part of our concern. The histogram
of Figure 3 represents our own reproduction of computations and tables originally
presented in [LMS-96], and related to occurrence counts of few extremal 4- and 5-
mers in some genomes. Such occurrences are counted in a sliding window of length
approximately 0:5% of the genomes themselves. We use for a concrete example the
counts of to the occurrences of GAGGA in HSV1 (circa 150k bps). Peaks are clearly
visible in the table, thereby denouncing local departures from average in the behavior
of that word. One such peaks are found, e.g., in correspondence with some initial
window position in the chart. Note that in order to �nd, say, which 5-mers occur with
unusual frequencies (by whatever measure), one would have to �rst generate and count
individually each 5-mer in this way. Next, to obtain the same kind of information on
6-mers, 7-mers or 8-mers, the entire process would have to be repeated. Thus, every
word is processed separately, and the count of a speci�c word in a given window is
not directly comparable to the counts of other words, both of the same as well as
di�erent length, appearing in that window.

Figure 4 displays the tree (suitably pruned at the bottom) produced at the same
peak-window in the corresponding histograms. Not surprisingly, Verbumculus iso-
lates the word found in the corresponding table. However, in this and all other cases
tested, the program exposes as unusual a family of words related to the single one
used to generate the histogram, and sometimes other words as well. The words in
the family are typically longer than the one of the histogram, and each actually rep-
resents an equally, if not more surprising, context string. Finally, Verbumculus
�nds that the speci�c words of the histograms are, with their detected extensions,
over-represented with respect to the entire population of words of every length within
a same window, and not only with respect to their individual expected frequency.
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Figure 2: Verbumculus + Dot on the �rst 512 bps of the mitochondrial DNA of

the yeast S. cerevisiae, under score �w = (fw� (n�jwj+1)p̂)=
q
(n� jwj+ 1)p̂(1 � p̂)
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Figure 4: Verbumculus + Dot on window 0 (�rst 800 bps) of HSV1, under score

�w = (fw � (n� jwj+1)p̂)=
q
(n � jwj+ 1)p̂(1 � p̂) (frequencies of individual symbols

are computed over the whole genome)


