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Abstract. Given a matrix X composed of symbols, a bicluster is a
submatrix of X obtained by removing some of the rows and some of the
columns of X in such a way that each row of what is left reads the same
string. In this paper, we are concerned with the problem of finding the
bicluster with the largest area in a large matrix X. The problem is first
proved to be NP-complete. We present a fast and efficient randomized
algorithm that discovers the largest bicluster by random projections. A
detailed probabilistic analysis of the algorithm and an asymptotic study
of the statistical significance of the solutions are given. We report results
of extensive simulations on synthetic data.

1 Introduction

Clustering refers to the problem of finding a partition of a set of input vectors,
such that the vectors in each subset (cluster) are “close” to one another (accord-
ing to some predefined distance). A common limitation to the large majority
of clustering algorithms is their inability to perform on high dimensional spaces
(see, e.g., [1,2]).

Recent research has focused on the problem of finding hidden sub-structures
in large matrices composed by thousands of high dimensional vectors (see, e.g.,
[3-10]). This problem is known as biclustering. In biclustering, one is interested
in determining the similarity in a subset of the dimensions (subset that has to
be determined as well). Although there exists several definitions of bicluster-
ing, it can be informally described as the problem of finding a partition of the
vectors and a subset of the dimensions such that the projections along those
directions of the vectors in each cluster are close to one another. The problem
requires to cluster the vectors and the dimensions simultaneously, thus the name
“biclustering”.

Biclustering has important applications in several areas, such as data mining,
machine learning, computational biology, and pattern recognition. Data arising
from text analysis, market-basket data analysis, web logs, etc., is usually ar-
ranged in a contingency table or co-occurrence table, such as, a word-document
table, a product-user table, a cpu-job table or a webpage-user table. Discovering
a large bicluster in a product-user matrix indicates, for example, which users
share the same preferences. Finding biclusters has therefore applications in rec-
ommender systems and collaborative filtering, identifying web communities, load
balancing, discovering association rules, among others.



In computational biology, this problem is associated with the analysis of gene
expression data obtained from microarray experiments. Gene expression data is
typically arranged in a table with rows corresponding to genes, and columns cor-
responding to patients, tissues, time points, etc. The classical approach to ana-
lyze microarray data is clustering. The process of clustering partitions genes into
mutually exclusive clusters under the assumption that genes that are involved in
the same genetic pathway behave similarly across all the testing conditions. The
assumption might be true when the testing conditions are associated with time
points. However, when the testing conditions are heterogeneous, such as patients
or tissues, the previous assumption is not appropriate anymore. One would ex-
pect that a group of genes would exhibit similar expression patterns only in a
subset of conditions, such as the subset of patients suffering from the same type
of disease. Under this circumstance, biclustering becomes the alternative to the
traditional clustering paradigm. The results of biclustering may enable one to
discover hidden structures in gene expression data in which many genetic path-
ways might be embedded. It might also allow one to uncover unknown genetic
pathways, or to assign functions to unknown genes in already known genetic
pathways.

Biclustering is indeed, not a new problem. In fact, it is also known under
several other names, namely “co-clustering”, “two-way clustering” and “direct
clustering”. The problem was first introduced in the seventies in a paper by
Hartigan [11]. Almost thirty years later, Cheng and Church [3] raised the interest
on this problem for applications in gene expression data analysis.

Several other researchers studied the problem recently. Wang et al. propose
the pCluster model that is capable of discovering shifting or scaling patterns
from raw data sets [4]. Tanay et al. [5] combine a graph-theoretic approach with
a statistical modeling of the data to discover biclusters in large gene expression
datasets. Ben-Dor et al. [6] introduce a new notion of a bicluster called order
preserving submatriz, which is a group of genes whose expression level induces a
linear ordering across a subset of the conditions. Murali and Kasif [12] (see also
[10]) propose the concept of zmotif, which is defined as a subset of genes whose
expression is simultaneously conserved for a subset of samples.

As we were writing this document, we became aware of two other contribu-
tions to the subject, by Sheng et al. [8], and Mishra et al. [9], that use a ran-
domized approach similar with the work described here. Sheng et al. [8] propose
a randomized algorithm based on Gibbs sampling to discover large biclusters in
gene expression data. Their model of a bicluster is probabilistic, that is, each en-
try of the matrix is associated with a probability. Mishra et al. [9] are concerned
with the problem of finding e-bicliques which maximizes the number of edges®.
Given a bipartite graph (U, V, E), a subgraph (U’, V') is e-biclique if each vertex
in U’ is a neighbor of at least (1 — €) fraction of vertices in V'. The authors
give an efficient randomized algorithm that finds the largest e-biclique, but no
experimental results are reported.

3 the connection between bicliques and bicluster will be explained in detail in Section 2



As shown in papers [12] and [8], the problem of biclustering gene expression
data can be formulated on a discrete domain, by first discretizing the gene expres-
sion matrix into a matrix over a finite alphabet. The simplifying assumption is
that the set of states in which each gene operates is finite, such as up-regulated,
down-regulated or unchanged. Once the data is discretized into strings where
each symbol corresponds to a state, the biclustering problem reduces to the
problem of finding a subset of the rows and a subset of the columns such that
the submatrix induced has the property that each row reads the same string.
Such a submatrix would therefore correspond to a group of genes that exhibit
a coherent pattern of states over a subset of conditions. This is indeed the for-
mulation of the problem that we define in Section 2, which is first proved to
be NP-complete. In Section 3 we present a randomized algorithm which is effi-
cient and easy to understand and implement. Section 4 presents an asymptotic
analysis that allows one to determine the statistical significance of the solution.
Finally, in Section 5 we report simulation results on synthetic data.

2 Notations and problem definition

We use standard concepts and notation about strings. The set X' denotes a
nonempty alphabet of symbols and a string over X is an ordered sequence of
symbols from the alphabet. We use the variable a as a shorthand for the cardi-
nality of the set X, that is, a = | X|. Given a string z, the number of symbols in
x defines the length |z| of .

Similarly, we can define a two-dimensional n x m string (or matrix) X €
Xmxm over the alphabet X. The element (i, j) of X is denoted by X[; ;1. A row
selection of size k of X is defined as the subset of the rows R = {i1,42,...,i%},
where 1 < iy < n for all 1 < s < k. Similarly, a column selection of size | of X
is defined as a subset of the columns C = {j1,j2,.--,Ji}, where 1 < j; < m for
all1 <t <.

The submatrix X (g ¢y induced by the pair (R, C) is defined as the matrix

Xiiz,ja] Xlinsga) *** Xlin,ii]
e
Xlinji] Xlinssa] = Xlin,iu]

Given a selection of rows R, we say that a column j, 1 < j < m, is clean
with respect to R if the symbols in the j-th column of X restricted to the rows
R, are identical.

The problem addressed in this paper is defined as follows.

LARGEST BICLUSTER(f) problem

Instance: A matrix X € X™*™ over the alphabet X.

Question: Find a row selection R and a column selection C such that the rows of
X(r,c) are identical strings and the objective function f(X (g c)) is maximized.

Some examples of objective functions are the following.



- fi (X(gc)) = |R|+ |C]|
— f2 (X(r,c)) = |R| provided that |C| = |R]
- f3(X(r,c)) = |R||C|

The problem in general may have multiple solutions which optimize the ob-
jective function. The solutions may also “overlap”, that is, they may share some
elements of the original matrix.

The computational complexity of this family of problems depends on the
objective function f. In the literature, the problem has been studied mostly from
a graph-theoretical viewpoint which corresponds to the special case ¥ = {0,1}.
In fact, observe that a matrix X € {0,1}"*™ is the adjacency matrix of a
bipartite graph G = (V1, V2, E) with |V1| = n and |V2| = m. An edge (i,j) € E
connects node i € V; to node j € Vs if X; ; = 1. Thus, a submatrix of 1’s in X
corresponds to a subgraph of G which is completely connected. Such a subgraph
is called a biclique. Because of this relation, we use the terms “submatrix”,
“biclique”, and “bicluster” interchangeably.

When the alphabet is binary and we are looking for the largest submatrix
composed only by 1’s 4, the LARGEST BICLUSTER reduces to well-known prob-
lems on bipartite graphs. More specifically, the LARGEST BICLUSTER problem
associated with objective function f; is known as the MAXIMUM VERTEX BI-
CLIQUE problem, and it can be solved in polynomial time because it is equivalent
to the maximum independent set in bipartite graphs which, in turn, can be solved
by a minimum cut algorithm (see, e.g., [13]). The same problem with objective
function fy over a binary alphabet is called BALANCED COMPLETE BIPARTITE
SUBGRAPH problem or BALANCED BICLIQUE problem and it is listed as GT24
among the NP-complete problems in Garey & Johnson’s book [14] (see also
[15]).

The LARGEST BICLUSTER problem with objective function f3 and X' = {0,1}
is called MAXIMUM EDGE BICLIQUE problem. The problem requires to find the
biclique which has the maximum number of edges. The problem is proved to
be NP-complete in [16] by reduction from 3SAT. The weighted version of this
problem is shown NP-complete by Dawande et al. [17].

In [13] Hochbaum studies a problem related to MAXIMUM EDGE BICLIQUE,
which is the problem of finding the number of edges that need to be deleted so
that the resulting graph is a biclique. Hochbaum describes a 2-approximation
algorithm based on LP-relaxation. According to Pasechnik [18] this approxima-
tion ratio does not hold for the original MAXIMUM EDGE BICLIQUE problem.
Pasechnik shows a semidefinite relaxation, and claims that his relaxation is in
general better than [13].

The following theorem establishes the hardness of the problem of finding the
largest area bicluster over a general alphabet. For lack of space the proof is
omitted.

4 In general, a solution of the largest bicluster can contain a column of zeros, as long
as they appear in all rows of the submatrix



Theorem 1. The decision problem associated with LARGEST BICLUSTER(f3) is
NP-complete.

By the same approach, LARGEST BICLUSTER(f2) can also be proved to be
NP-complete. In the rest of this paper we will concentrate our attention on
the problem of finding the largest-area bicluster. For practical reasons that will
become apparent in Section 3, the objective function that we are maximizing is

fs (X(r,c),7,€) = |R||C| provided that |R| > # and |C| > ¢

where 7 and ¢ are two input parameters.

3 Randomized search

Given that LARGEST BICLUSTER(f3) problem is NP-complete, it is unlikely
that a polynomial time algorithm could be found. In this paper, we present a
randomized algorithm which finds a maximal solution with probability 1 — €,
where 0 < e < 1.

Assume that we are given a large matrix X € X™*™ in which a submatrix
X(r+,c+) is implanted. Assume also that the submatrix X (g« ¢+ is maximal. To
simplify the notation, let 7* = |R*| and ¢* = |C*|.

The idea behind the algorithm comes from the following simple observation.
Observe that if we knew R*, then C* could be determined by selecting the clean
columns with respect to R*. If instead we knew C*, then R* could be obtained
by taking the maximal set of rows which read the same string. Unfortunately,
neither R* nor C* is known. Our approach is to “sample” the matrix by random
projections, with the expectation that at least some of the projections will over-
lap with the solution (R*,C*). Clearly, one can project either rows or columns.
In what follows we describe how to retrieve the solution by sampling columns.

The algorithm works as follows. Select a random subset S of size £ uniformly
from the set of columns {1,2,...,m}. Assume for the time being that SNC* # §.
If we knew SNC*, then (R*, C*) could be determined by the following three steps
(1) select the string(s) w that appear exactly r* times in the rows of X1.n snc
(2) set R* to be the set of rows in which w appears and (3) set C* to be the set
of clean columns corresponding to R*.

The algorithm would work, but there are a few problems that are still un-
resolved. First, the set S N C* could be empty. The solution is to try differ-
ent random projections S, relying on the argument that the probability that
SNC* # 0 at least once will approach one with more and more projections. The
second problem is that we do not really know SNC*. But, certainly SNC* C S,
so our approach is to check all possible subsets U C S such that |U| > kmin,
where 1 < knin < k is a user-defined parameter. The final problem is that we
assumed that we knew r*, but we do not. The solution is to introduce a row
threshold parameter, called 7, that replaces r*.

As it turns out, we need another parameter to avoid producing solutions with
too few columns. The column threshold ¢ is used to discard submatrices whose
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Fig. 1. An illustration of a recovery of the embedded matrix by random projections.
C™ is the set of columns containing the embedded submatrix. S is a random selection
of columns. By following the steps described in the text, the correct solution can be
easily retrieved.

number of columns is smaller than é. The algorithm considers all the submatrices
which satisfy the user-defined row and column threshold as candidates. Among
all candidate submatrices, only the ones that maximize the total area are kept.
A sketch of the algorithm is shown in Figure 2. As noted in the introduction, a
very similar strategy was developed independently and concurrently by Mishra
et al. [9].

The algorithm depends on five key parameters, namely the projection size k,
the minimum subset size kmin, the row threshold 7, the column threshold ¢, and
the number of iterations ¢t. We discuss how to choose each of these in the rest of
the section.

Parameter Selection. The projection size k is determined by a probabilistic ar-
gument. It is well-known that in a random string of size m over an alphabet of
size a, the number of occurrences of substrings has two different probabilistic
regimes (1) Gaussian distributed for strings shorter than log, m and (2) Poisson
distributed for strings longer than log, m (see, e.g., [19]). Based on this observa-
tion, when kmin = k we argue that k = log, m is the optimal trade-off between
generating too many trivial solutions (k too small) and potentially missing the
solution (k too large). This value of k has been confirmed to be the optimal
choice in our simulations. When kp;, = 1, then k can be chosen significantly
larger, but this will adversely affect the running time. An experimental com-
parison between kyi, = k (i-e., no subsets), and ki, = 1 (i-e., all subsets) is
reported in Section 5.1.

The thresholds 7 and ¢ are associated with the uncertainty on the size of the
largest submatrix r*, ¢* for a particular input instance. There may be situations
in which the user has already a good idea about r*, ¢*. If however r* and ¢* are
completely unknown, then our target will be to find “statistically significant”
biclusters. In Section 4 we will present a theorem (Thorem 2) which gives the
expected number of columns of the largest submatrix in a random matrix, when



LARGEST_BICLUSTER-C(X, t, k, Kmin, 7, €)
INPUT: X is a n X m matrix over X
t is the number of iterations
k is the projection size
kmin is the size of the smallest subset of the projection
7,¢ are the “thresholds” on the number of rows and columns, resp.
1 repeat t times
2 select randomly a subset S of columns such that |S| =k
3 for all subsets U C S such that |U| > kmin do
4 D < all strings induced by X|;., ] that appear at least # times
5 for each string w in D
6 V < rows corresponding to w
7 Z < all “clean” columns corresponding to V
8 if |Z| > ¢ then save (V, Z)
9 return the (V, Z) that maximizes f

Fig. 2. A sketch of the algorithm that discovers large biclusters (sampling columns)

the number of rows is fixed. Based on this, we propose the following trial-and-
error strategy. Set 7 to some value between 1 and n, and use Theorem 2 to set
the value ¢. Run the algorithm. If the algorithm returns too many solutions, try
to increase 7 and update ¢ correspondingly. If there are no solutions, lower the
value of 7 and repeat. Observe that the number of choices for 7 is finite since

€ [1,n]. By using Theorem 2 to set the threshold ¢, we are trying to filter out
submatrices whose size is small enough that they could appear in totally random
matrices.

Because of the randomized nature of the approach, there is no guarantee
that the algorithm will find the solution after a given number of iterations. We
therefore need to choose ¢ so that the probability that the algorithm will recover
the solution in at least one of the ¢ trials is 1 —¢, where 0 < € < 1 is a user-defined
parameter.

Let a(n,m,k,7*,c*,a) be the probability of missing the solution in one of
the trials assuming that r* and ¢* are known and that knin = 1. There are two
disjoint cases in which the algorithm can miss (R*,C*). The first is when the
random projection S misses completely C*, i.e., SNC* = (). The second is when
SNC* = U # 0 but the string w chosen by the algorithm among the rows
X1:0,u7 also appears in another row that does not belong to the set R* of the
real solution. In this case, the algorithm will select a set of rows larger than R*
and thus miss the solution. Hence, we have

k
a(n,m,k,r*,c*,a) =Pr{SNC* =0} + ZPr{|Sﬂ C*|=1i and |R| > r*}

i=1



€ la=2k=8la=4,k=4ja=8,k=3la=16,k=2|a =32,k =2
0.005| 18794 1342 306 179 99
0.05 10626 759 173 101 56
0.1 8168 583 133 78 43
0.2 5709 408 93 54 30
0.3 4271 305 70 41 23
04 3250 232 53 31 17
0.5 2459 176 40 23 13
0.6 1812 129 29 17 10
0.7 1265 90 21 12 7
0.8 792 57 13 8 4
0.9 374 27 6 4 2

Table 1. The estimated number of iterations for a matrix 256 x 256 with a submatrix
64 x 64, for different choices of €, alphabet size a, and projection size k (sampling
columns)

k

=Pr{SNC* =0} + > Pr{|R| > r* given |[SNC*| =i}Pr{|SNC*| =1}
i=1

Let Y be the random variable associated with the size of the set S N C*,

that is, Y = |S N C*|. Since we are sampling without replacement, ¥ follows the
hyper-geometric distribution.

prt =01 = (" 7)) wma e =0 = (T)(30)/ ()

In order to compute the probability of missing the solution given |S N C*| =1,
we have to estimate how likely a string w belonging to some of the rows of X[;.,, 1]
is more frequent than r*. Assuming the symbols in the matrix X are generated
by a symmetric Bernoulli i.i.d. model, the probability that w will never appear

n—r*

in the other n —r* rows is (1— %) and therefore

1 n—r*
Pr{|R| > r* given [SNC*| =i} =1 - (1 - 5>

Combining all together, the probability of missing the solution in one itera-
tion is given by

(M) + L (1= (= 5" () )
(%)
Now suppose we want the probability of missing the solution to be smaller

than a given €, 0 < € < 1. We can obtain the number of iterations ¢ by solving
the inequality (a(n,m, k,r*,c*, a))t < ¢, which gives

a(n’m’ k’ r*7c*’a) =

loge
t>
=~ loga(n,m,k,r*,c*,a)

(1)



This bound on the number of iterations has been verified by our experimental
results (compare Table 1 with our experimental results shown in Figure 3). For
example, by setting a = 4, k = 4, ¢ = 0.7, equation (1) gives t = 90 itera-
tions whereas the experimental results show that with 90 iterations we obtain a
performance of € = 0.689.

The worst case time complexity of LARGEST_BICLUSTER_C is bounded by
0 (t Z?zkm;n (;“) (kn + nm)) If kmin = 1, then the time complexity becomes
O (t2%(kn 4+ nm)). Although the complexity is exponential in k, choosing k to
be O(log, m) makes the algorithm run in O (tm!/1°82%(kn + nm)) time.

The probability of missing the solution changes significantly when we set
kmin = k. In this case, we are not checking any of the subsets of S, but we
simply rely on the fact that eventually one of the random projections S will
end up completely contained in C*, in which case we have a chance to find the
solution.

Since we avoid checking the O(2*) subsets of S, the number of iterations ¢ to
achieve the same level of performance of the case kmin = 1 must be significantly
larger. Indeed, by a similar argument as we did for kmin = 1, the probability of
missing the solution when ki, = k can be estimated by the following formula

a(n,m,k,r*,c*,a) =Pr{|SNC*| <k} +Pr{|SNC*| =k and |R| > r*}
=1-Pr{|SNC*| =k} +Pr{|SNC*| =k and |R| > r*}

S (D) (0= ) 1)
= (-2 ()

As mentioned above, we also have the option to project the rows instead of
the columns, which would result in a slightly different algorithm that we called
LARGEST_BICLUSTER_R. The details and the analysis of this algorithm will be
reported in the journal version of this manuscript.

Both strategies were implemented and tested extensively. Results are re-
ported in Section 5.

4 Statistical analysis

We now analyze the statistical significance of finding a large submatrix of size
r X ¢ hidden into a random n x m matrix over an alphabet of cardinality a.
More specifically, we randomly generate a matrix X € X™*™ using a memoryless
source with parameters {p1, . .., p, } where p; is the probability of the i-th symbol
in X¥. Given X, the goal is to characterize asymptotically the size of the largest
submatrix in X.



rows|columns observed [columns predicted

1 256 256

2 160 165.6771209
3 100 103.9626215
4 67 67.24371945
5 45 44.84053788
6 31 30.70906224
7 23 21.48364693
8 16 15.26873716

Table 2. The statistics of large submatrices in a random {0, 1}-matrix of size 256 x 256.
The second column reports the number of columns of the submatrices observed in a
random matrix, whereas the third reports the prediction based on Theorem 2

For convenience of notation, let us call P, = p] +p5+...+p} the probability
of observing a clean column over 7 rows, and let us define H(z) = —zlnz — (1 —
z)In(1 — z).

The first result characterizes the random variable associated with the number
of columns of the largest bicluster, when we fix the number of rows. Both proofs
are omitted due to lack of space.

Theorem 2. Let Cy m r,o be the random variable associated with the number of
columns of the submatriz with the largest area in a matriz X € X™*™ generated
from o memoryless source, once the number of rows r is fixed. Then

Cnm,ra <mP, + \/ZPT(l — P.)mF(n,r) = Cmax
with high probability and as n — oo, where

_ [rlogn ifr=o(n)
F(n,r) = {nH(a) ifr=an where 0 < a <1

When 7 = o(n) the error term is O(1/log®n) for some d > 1 that may
depend on a, whereas the error becomes O(1/4/n) when r = an. The prediction
on random matrices is indeed quite accurate as reported in Table 2. We claim
that the upper bound is actually an equality, that is, asymptotically and with
high probability C,, 1,7, = Cmax-

The practical implications of Theorem 2 are twofold. First, the expected
number of columns can be used to set the column threshold parameter ¢ >
max{Cmax, 1 }. That allows the algorithm to avoid considering statistically non-
significant submatrices. Second, observe that when logn = o(m), then the dom-
inant term of Cmax is the average, say E[C], of the number of clean columns,
that is, E[C] = mP,. This implies Cmax/E[C] < 1 + 0o(1) for logn = o(m), and
therefore with high probability any algorithm is asymptotically optimal. Clearly,
this is not true for r = an. Finally, in passing we add that when we restrict the



search to largest squared matrix (see objective function fo above), then its side
is asymptotically equal to 2log (n/(2logn)) /log P1.

The second result characterizes the random variable associated with the area
of the solution. For convenience of notation, given a memoryless source with
parameters {p1,...,p,.} we define prayx = mazi<i<api-

Theorem 3. Let Ay, 1., be the random variable associated with the area of the
largest submatriz in a matriz X € XY™™ m < n, generated from a memoryless
source. Then, with high probability for any € > 0 and as n — oo

Anma < (L+e€)re
where r =n/2 and ¢ = 2In2/Inppq,.

The intuition behind Theorem 3 is that on random matrices one should
expect the largest submatrix to be “skinny”, that is, a few columns and lots of
rows, or vice versa. For example, we expect the largest submatrix in a random
{0, 1}-matrix of size 256 x 256 to be size 2 x 160 (see Table 2).

5 Implementation and Experiments

We implemented column- and row-sampling algorithms in C++ and tested the
programs on a desktop PC with a 1.2GHz Athlon CPU and 1GB of RAM, under
Linux. Although the algorithms do not require sophisticated data structures,
in order to carry out step 4 in the algorithm of Figure 2, one needs a data
structure to store the strings and their frequencies. Since k£ and a are usually
not very large, our experience shows that a simple hash table (of size a*) is a
good choice. If a¥ becomes too large, a trie would be a better data structure.
If one uses the hash table, it is important to keep track of the non-zero entries
in another balanced data structure. That would avoid the algorithm to spend
O(a*) to search for the frequently occurring strings. Observe also that row-
sampling algorithm does not require any hash table, or any other data structure.
However, our experiments show that in order to get the same level of performance
of the column sampling, the row sampling strategy needs a significantly larger
projection k which adversely affects the running time.

Another issue is whether one should keep track of the projections generated
so far to avoid generating duplicates. We studied this matter experimentally, and
found that it is worthwhile to keep track of the projections in some balanced
data structure only when k is small. If k is large, the overhead required to keep
the data structure updated is much higher than the time wasted in processing
the same projection multiple times.

5.1 Simulations

In order to evaluate the performance of the algorithms, we designed several sim-
ulation experiments. In these experiments we randomly generated one thousand
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Fig.3. Comparing the performance of the randomized algorithm
LARGEST_BICLUSTER_C when kmin = k versus kmin = 1, for different choices of
the alphabet size a. The projection size is k = log, m

256 x 256 matrices of symbols drawn from an symmetric i.i.d. distribution over
an alphabet of cardinality a = 2,4, 8,16,32. Then, in each matrix we embedded
a random 64 x 64 submatrix at random columns and random rows. We ran the
algorithms for a few tens of iterations (¢t = 5, ...,100), and for each choice of ¢ we
measured the number of successes out of the 1,000 distinct instances. Figure 3
summarizes the performance of LARGEST_BICLUSTER_C, for several choices of
alphabet size a and projection size k, and minimum subset size kmin. Figure 4
summarizes the performance of LARGEST_BICLUSTER_R under the same condi-
tions.

In order to make a fair comparison between kmin = k¥ and kmin = 1, the
number of iterations for the case kmin = k& was multiplied by 2k _ 1. Note that
by doing so, we are assuming that one projection for kmin = 1 takes about the
same time as one projection for kmin = k, which is not necessarily very accurate.
Under this assumption, however, kmin = k outperforms ki, = 1 (see Figure 3).
This not necessarily true in the row sampling strategy (see Figure 4).

By comparing the performance of row sampling against column sampling,
one can observe that if one uses the same set of parameters, column sampling
always outperforms row sampling.

Unfortunately, we were unable to compare the performance of our random-
ized approach to other biclustering algorithms (e.g. [3,4,6,5,12,8]), because
their notion of bicluster is generally different from ours.
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Fig.4. Comparing the performance of the randomized  algorithm
LARGEST_BICLUSTER_R for different choices of the alphabet size a and projec-
tion size k

6 Conclusions

In this paper we have introduced the LARGEST BICLUSTER problem. This prob-
lem has a variety of applications ranging from computational biology to data
mining. As far as we know, the pattern matching community has not looked yet
at this problem from a combinatorial perspective. Unfortunately, the problem is
generally NP complete.

Here we presented a rather simple algorithm based on random projections. Its
performance with respect to the number of projection was carefully analyzed.
We have also presented a probabilistic analysis of the LARGEST BICLUSTER
problem, which allows one to determine the statistical significance of a solution.

Our approach performs remarkably well on synthetic data. On large alpha-
bets, thirty or so iterations are enough to give a performance close to 100%.
With respect to other biclustering algorithms (see e.g., [3,12,8]), our algorithm
simultaneously discovers multiple solutions which satisfy the user-defined pa-
rameters without masking or changing the original data. In addition to this, the
algorithm will never report solutions which are completely contained in other
solutions.
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