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Abstract. In this paper we study the average behavior of the number
of distinct substrings in a text of size n over an alphabet of cardinality k.
This quantity is called the complezity indexr and it captures the “richness
of the language” used in a sequence. For example, sequences with low
complexity index contain a large number of repeated substrings and they
eventually become periodic (e.g., tandem repeats in a DNA sequence). In
order to identify unusually low- or high-complexity strings one needs to
determine how far are the complexities of the strings under study from
the average or maximum string complexity. While the maximum string
complexity was studied quite extensively in the past, to the best of our
knowledge there are no results concerning the average complexity. We
first prove that for a sequence generated by a mixing model (which in-
cludes Markov sources) the average complexity is asymptotically equal to
n? /2 which coincides with the maximum string complexity. However, for
memoryless source we establish a more precise result, namely the average
string complexity is n’/2—nlog; n+(1+(1—7)/ In k+¢x (log; n)+0o(1))n
where v =~ 0.577 and ¢ () is a periodic function with a small amplitude
for small alphabet size.

1 Introduction

In the last decades, several attempts have been made to capture mathematically
the concept of “complexity” of a sequence. The notion is connected with quite
deep mathematical properties, including the rather elusive concept of random-
ness of a string (see, e.g., [14, 19, 22]).

In this paper, we are interested in studying a measure of complexity of a se-
quence called the complexity index. The complexity index captures the “richness
of the language” used in a sequence. Formally, the complexity index c(z) of a
string z is equal to the number of distinct substrings in z (see e.g. [20]). The
measure is simple but quite intuitive. Sequences with low complexity index con-
tain a large number of repeated substrings and they eventually become periodic.
However, in order to classify low complexity sequences one needs to determine
average and maximum string complexity. In this paper we concentrate on the
average string complexity.

We assume that sequences are generated by some probabilistic source (e.g.,
Bernoulli, Markov, etc.). As a consequence, the number ¢(z) of distinct sub-
strings can be modeled by a random variable over a discrete domain. Given a



source emitting strings of size n over an alphabet of cardinality k, we call this
random variable Cj, ;. The main objective of this study is to give a detailed
characterization of the expectation of the random variable C, ;.

A related notion is that of the I-subword complexity or I-spectrum c(z) of a
string z, which is the number of distinct I-mers in z, for 1 <[ < |z|. We define
C,ll,,c to be the random variable associated with the number of distinct words
of size [ in a random string of size n over an alphabet of cardinality k. Clearly,
Cni = 27:1 Ci,k

The idea of using the complexity index or the I-spectrum to characterize se-
quence statistically has a long history of applications in several fields, such as
data compression, computational biology, data mining, computational linguis-
tics, among others.

In dictionary-based data compression, the average length of the pointer is
connected with the expected size of the dictionary which in turns depends on the
number of distinct subwords (see, e.g., [6]). Low-complexity strings contain more
repeated substrings and therefore one can expect them to be more compressible
than strings with high complexity index. For example, in [14] bounds between
subword complexity and Lempel-Ziv complexity are established.

In the analysis of biosequences, the problem of characterizing the “linguistic
complexity” of DNA or proteins is quite old. In the early days of computational
biology, it was almost routine to compute the number and/or the frequency of
occurrences of distinct I-mers and draw conclusions about the string under study
based on those counts (see [23,7,15,12,16], just to mention a few).

In these and several other application domains, the typical problem associ-
ated with the complexity index is to determining whether a particular sequence
z has a statistically significant complexity index. An example of a significance
score proposed in a recent paper by Troyanskaya et al. [31] in the context of the
analysis of prokaryotic genomes, is the following

s(z) = c(x) —max{Cp 1} = c(z) — Z min(k®,n — i+ 1).
i=1

Here, the authors compare the observed complexity c¢(z) with the maximum
possible complexity for a string of size n over an alphabet of cardinality k.
Note however, that the score disregards both the distribution of Cy , and the
probabilistic characteristics of the source.

A more statistically-sound approach would entail the following steps. First,
select an appropriate model for the source that emitted z (Bernoulli, Markov,
etc.). Then, measure the statistical significance as a function of the discrepancy
between the observed complexity ¢(z) and the model-based expectation.

This approach of standardizing the value of an observation with respect to
the expectation and the standard deviation of the associated random variable is
common practice in Statistics. The underlying assumption is that the random
variable is normally distributed. The standardized z-score for the complexity



index would be
c(xz) — E(Ch)

#(z) = Var(C,, 1)

for a given string z. Although we do not know under which conditions C,, j, is
distributed normally, such a score is nonetheless more sound that other ad hoc
scores.

A similar situation takes place when describing the significance of other
events in texts, like the number of occurrences, periodicities, etc. Although the
normality of the corresponding random variables can be proved under specific
conditions, there is a consensus that standardized z-scores should be always
preferred over simpler scores (see, e.g., [25] and references therein).

Given an observation z of the source, we would like to compute the statistical
significance z(z) of its complexity index. As far as we know, however, the mo-
ments E(C), ;) and Var(C,, ;) have never been characterized before. The goal of
this paper is to study E(Cp k). The asymptotic analysis of the variance remains
an open problem.

In order to proceed, we need to introduce some standard concepts and no-
tation about strings. The set X' denotes a nonempty alphabet of symbols and a
string over X' is an ordered sequence of symbols from the alphabet. In the rest
of the paper, we assume that |X| = k. Given a string z, the number of symbols
in z defines the length |z| of z. Henceforth, we assume |z| = n.

The concatenation (or product) of two strings x and y is denoted by zy, and
corresponds to the operation of appending y to the last symbol of z. Let us
decompose a text x in uvw, i.e., £ = yvw where u,v and w are strings over X.
Strings u,v and w are called substrings, or words, of x.

We write z[;), 1 <4 < |z| to indicate the i-th symbol in z. We use z[; ;
shorthand for the substring z(;@[i1)... 2} where 1 < i < j < ||, with the
convention that z[; ;; = z[;. Substrings in the form zp; ; corresponds to the
prefizes of x, and substrings in the form z; ,, to the suffizes of .

Finally, we recall that the subword complerity function c!(z) of a string z
is defined as the number of distinct substrings of x of length [. The quantity
c(z) =Y, () is the complezity index of z. Observe first that c!(z) is upper
bounded by min(k!,n — I + 1) since there are precisely n — I + 1 words of length
1, of which at most k! can be distinct. Therefore

c(r) < Zmin(kl,n —1+1).
=1

Note that if we choose n < k, then min(k!,n—I+1)=n—I+1foralll1 <I<n.
Therefore when n < k, the bound simplifies to ¢(z) < n(n + 1)/2.

The value ¢(z) is strongly connected with the structure of the non-compact
suffix trie for z. A non-compact suffix trie of a string z is a digital search tree
built from all the suffixes of . The trie for a string of size n has n + 1 leaves,
numbered 1 to n + 1, where leaf n + 1 correspond to an extra unique symbol
$ € X, and each edge is labeled with a symbol in Y. No two edges outgoing from
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Fig. 1. The non-compact suffix trie T}, for z = abaababa. There are 24 internal non-root
nodes, therefore c(z) = 24.

a node can have the same label. The trie has the property that for any leaf i,
the concatenation of the labels on the path from the root the the leaf i spells
out exactly the suffix of x that starts at position 4, that is x[; ). The substrings
of x can be obtained by spelling out the words from the root to any internal
node of the tree. In other words, each internal node (except the root) is in one-
to-one correspondence with each distinct substring of z. As a consequence, the
complezity index c(x) can be obtained by counting the non-root internal nodes
in the non-compact suffiz trie for x. This would take, however, O(n?) time and
space. The non-compact suffix trie for abaababa is illustrated in Figure 1.

A faster solution to compute ¢(x) involves the use of the suffix tree T, of x.
The suffix tree can obtained by “path-compression” of the non-compact suffix
trie, that is, by deleting internal nodes with only one child and coalescing con-
secutive edges in a single edge labeled by the concatenation of the symbols. If
one deletes unary nodes only at the bottom of the non-compact suffix tries, the
resulting tree is called compact suffix trie. The compact suffix trie and the suffix
tree for abaababa are shown in Figure 2.

In practice, suffix trees can be build without the need of building the suffix
trie first. In fact, several O(nlog|X|) constructions are available. The algorithm
by McCreight [21] and the one by Chen and Seiferas [9] are variation of the
Weiner’s algorithm [34]. Note that these algorithms take only linear time for
finite alphabets. All these constructions are off-line because they process the
text right to left. An on-line algorithm by Ukkonen [32] achieves also linear time.
Recently, Farach [11] proposed an optimal construction for large alphabets.

The unary nodes which have been removed in the compaction process are
called implicit nodes. An edge labeled by a string of length m + 1 has m implicit
nodes. The complexity index ¢(z) of a text-string x can be computed on the
suffix tree by counting the number of implicit and explicit (non-root) nodes in
the tree. As a consequence, the ¢(z) can be computed in O(n) time and space.
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Fig. 2. The compact suffix trie (LEFT) and the suffix tree (RIGHT) for = abaababa.

The relation between non-compact suffix tries and suffix trees will be used later
in paper to obtain the leading term of the complexity for a general probabilistic
model.

Finally, we briefly describe some recent results regarding the maximum of
(). It is known that ¢!(z) is also strongly connected with the structure of the
suffix tree T,. De Luca [10] proved that

max{c(z):1<I<n}=n—-max{R,K}+1=n—max{L,H} +1

where K is the length of the shortest suffix of  that occurs only once, H is the
length of the shortest prefix of x that occurs only once, R — 1 is the height of
the deepest branching node in the suffix tree T, and L — 1 is the height of the
deepest branching node in the suffix tree T,r. De Luca also gave a closed form
for ¢(x)
IZ| R
oz) =1+ n+K)n-K+1) Zzig(j,i)

2 — «
7j=2 1i=0

where ¢(j,%) is the count of the words of length ¢ which are branching nodes of
the suffix tree with at least j children [10].
Shallit [26] derived a simpler bound for ¢(z) for binary alphabets (k = 2)

o) < LD ey 1
where d is the unique integer such that 2¢ +d — 1 < n < 2%! + d. More
importantly, he proved that the upper bound is attained for all n by using a
property of the de Bruijn graphs. An extension of this result to larger alphabets
was recently described in [13].

Kaésa [17] studied the probability distribution of random variable associated
with the complexity index for the family of words of length equal to the size of
the alphabet (n = k). He proved several facts about the random variable C x,



and he also conjectured a property of the smallest value of the complexity after
which all the frequencies are non-zero. The conjecture, proved later by Leve and
Seebold [18], states that if one chooses k = @ +2+43wherel >2and 0<1i <
then

k(k+1)

102 - 1)
2 2

P (Crr =1t) >0 for all ¢ such that +3l4+2+i(l+1)<t<

In this paper we mostly deal with the average string complexity. First, for a
general probabilistic model (e.g., Markov source) we prove that the average com-
plexity is asymptotically equal to n?/2 which coincides with the maximum string
complexity. We shall strengthen this result for unbiased memoryless sources. In
particular, we prove that

+1 1 1-
E(Chx) = (n N ) —nlog,n + (5 + TI] + ¢r(log, n))n+0(\/nlogn)

where v & 0.577 and ¢y (x) is a continuous function with period 1 and small
amplitude for small alphabet size (e.g., |#2(x)| < 2-10~7). To prove this result
we use the Stein—Chen method together with the Mellin transform approach.

2 Main Results

As a warm-up exercise, we studied the closed forms for E (C, ;) and Var (Cy, 1)
for short strings (e.g., n < 5) for a symmetric memoryless source. Some facts
about P(Cy, ; = t) are immediate. For example

P (Cn,k < TL) =0
P(Cphr=n)= B
n(n+1)

P (Cn,k > 2

):0whenn§k

P (Cn,k > Zmin(ki,n —i+ 1)) =0 whenn >k
i=1

Following the lines by Késa [17], we were able to obtain closed form for the
cases shown in Table 1 assuming a symmetric Bernoulli model for the source.
Given the discrete distribution of Cj, ; one can easily compute the expectation
and the variance of Cf, .

Corollary 1. The expectation and the variance of the random variable Cy, 1, for
2 < n < 5 over any alphabet of size k, under a symmetric Bernoulli source is

Cox) =3 - (1/k)
Csk) =6 — (3/k)
Cax) = 10— (6/k) + (1/k*) — (1/F?)
k) = 15— (10/k) + (4/K%) = (6/k) + (2/k*)

)



n — 2 3 4 5
P(Cpp=2 1/k 0 0 0
P(C, 1 =3) [1—1/k 1/k2 0 0

P(Cpp =4 0 0 1/k3 0

P(C, =5 0 3(k — 1)/k2 1/k%

P(Cp =6 0 (k—1)(k —2)/k2 0 0
P(Cpp=1 0 0 3(k — 1)/k3 0

P(Cp =8 0 0 4k — 1)/k3 0
P(Cpp=9 0 0 6(k — 1)(k — 2)/k3 3(k — 1)/k%

P (C, 5 =10 0 0 (k — 1)(k — 2)(k — 3)/k3 0

P (C, 5 =11 0 0 0 10(k — 1)/k%
P(Cp g =12 0 0 0 2(k — 1)(3k — 5)/k%

P (Cp g =13 0 0 0 19(k — 1)(k — 2)/k%
P(Cpp =14 0 0 0 10(k — 1)(k — 2)(k — 3)/k*
P (Cpp =15 0 0 0 (k — 1)(k — 2)(k — 3)(k — 4)/k%
P(C, 5 216 0 0 0 0

Table 1. The probability distribution of C, ; for 2 < n < 5 over any alphabet
of size k, under a symmetric Bernoulli source

and
Var (Co ;) = (k — 1)/k?
Var (C3 1) = 3(k — 1) /k?
Var (Cy 1) = (k — 1)(6k* — 5k® + 12k — k + 1) /k®
Var (Cs ;) = 2(k — 1)(5k5 — 10k® + 33k* — 28k> + 16k* — 10k + 2)/k®

As it turns out, obtaining a closed form for E (Cp ) and Var (Cy ;) for any
n, k is a very challenging problem. In practical applications, moreover, having the
closed form only for small values of n would be of limited interest. It is certainly
more valuable to study the behavior of the moments of Cj, ;, asymptotically, that
is, when n is very large.

The main result of our study is a characterization of E (Cy, ) for large n.
In our first result we show that for quite general sources the average complex-
ity asymptotically coincides with the maximal string complexity. We consider
mixing sources in which the probability of two events A and B defined on two
substrings separated by g symbols is bounded as follows: (1 —1(g))P(A)P(B) <
P(AB) < (1+9(9))P(A)P(B) where the mixing coefficient ¢)(g) — 0 as g — o
(cf. [28] for a detailed definition).

Theorem 1. Let Cy , be the complezity index of a string of length n generated
by a strongly mizing stationary source. Then, for large n,

EC, , = (" ; 1) — O(nlogn).
Hence Cy . =n?/2+ Op(nlogn), i.e. (n?/2 — Cp)/nlogn is bounded in prob-
ability.

Proof. We start with a simple observation. For a given sequence z of size n, build
a non-compact suffix trie and a compact suffix trie. Recall that in a compact



trie we collapse all unary links at the bottom of the suffix trie. In other words,
in a compact suffix trie a path from the root to an external node (containing
a suffix) is the minimal prefix of any two suffixes that distinguishes them. Also
recall that the string complexity of x is the number of non-root internal nodes
in the non-compact trie. We shall argue below that the most contribution to the
string complexity comes from the nodes that are in the non-compact trie but
not in the compact trie. The upper bound follows immediately from

To find a matching lower bound, we consider the compact and non-compact
suffix tries. We know that a typical depth and height in a compact suffix trie is
O(logn). More precisely let H,, be the height of a compact suffix tree. It was
shown in [27] that (at least for ¢(g) satisfying ° -, ¥?(g9) < o) Hp/Inn —
2/hy a.s., where h; is the Renyi’s entropy (cf. [28, p. 157]). More precisely, the
proof shows (for any 1¥(g) — 0) that for any € > 0

P (Hn < %(1 +e) logn) — 1= O(log n/n%). (1)

We claim that the main contribution to Cy, ; comes from strings that are in the
non-compact trie but not in the compact trie. In fact, the i-th suffix string has
n — ¢ internal nodes of which at least n — ¢ — H,, are not in the compact trie.
These nodes all correspond to unique substrings of x, and thus

n
Cop > (n—i—H,)=3n(n+1)—nH,.
i=1

By (1), for a suitable constant B and large n, P (H,, > Blogn) <n~! and thus
E(%n(n +1) - Cn,k) < nEH, < n(Blogn + nP (H, > Blogn)) = O(nlogn),

which completes the proof.

However, from theoretical point of view the most interesting case is when the
string is generated by an unbiased source (such a source should have the largest
complexity). In this case, we are able to characterize very precisely the average
complexity.

Theorem 2. Let Cy, 1, be the complexity index of a string generated by an un-
biased memoryless source. Then the average l-subword complexity is

E(CL,) =K1 —e™7) 4 0(1) + O(nik™). )

Furthermore, for large n the average complezity index becomes

+1 1 1-
E(Cpnk) = (n ) ) —nlog,n+ (5 + TIJ + ¢r(log, n))n+0(\/nlogn)



where v = 0.577 is Euler’s constant and

__ L 1 279N omija
O(2) =~ 7 F( 1 lnk)e
J#0

is a continuous function with period 1. |¢(x)| is very small for small k: |¢2(z)| <
21077, |¢3(z)] <5-107°, |pa(z)| < 3-107*

Interestingly enough, the term O(n) of the average complexity contains a
fluctuating term ¢ (z). (Note that ¢2(logyn) equals —Py(n) in [28, p. 359].)
The formula

|IT(=1 = iy)| = |I'(=iy)/ (=1 = iy)| = (y(1 +y*) sinh(my) /) 3)

[28, p. 42] shows that the coefficients in ¢y, are small and decrease geometrically.
Numerical evaluations give the bounds for k = 2, 3,4 stated in the theorem and
also, for example, |@y(z)| < 0.01 for k < 12 and |¢x(z)| < 0.1 for k < 200. Even
for very large k, this term is not very large; we have, still using (3) (we omit
the details), |¢(z)| < 0.5 for k& < 10°, and |¢y(z)| < Inln(k)/7 for all k. The
fluctuating phenomenon is quite common in asymptotics of discrete problems.

—1/2

3 Proof of Theorem 2

In this section we prove Theorem 2, however, to simplify our notation we restrict
ourselves to the binary case k = 2. Extension to k > 2 is straightforward.

Recall that C’AQ is the number of distinct substrings of length / in our random
binary string of size n, and let

A =E(CL,).
Thus Cpo =Y 1., Cl 5 and E(Ch2) = >, As. Define
G=A+l—1-2(1—e ) (4)
—A—(+1-D+2(e™ —14+n27"). (5)
Then

n

E(Cpp) = iAl = z<(n +1=0D+6 - ol (e_nz—l 14 n2_l))
=1

=1
n+1 ol —n2t -1 -
=", )22 —14+n27) +) 4. (6)
=1 1=1
Below we will use several times the estimates (for x > 0) 0 < 1—e~* < min(1, z)
and 0 < e7? — 1 + z < min(z, 22). In particular,
0<2(1— 67"2_1) < min(2', n), (7)
0<2(e ™ —1+n27%) <n?2l. (8)



We begin by estimating §;. First (for short strings, i.e., for small [), we use
1<Cl, <2 and thus 0 < 4; < 2 and, using (4) and (7),

& =0(2h). 9)

For long substrings, i.e., for large I’s, there is another simple estimate. Clearly,
0 < Cl o <n—1+1. Observe that

E(n—14+1-CL,) <E(|{(i,4) :i < jand 2,111 = j,j41-1) }|)

- (" _; * 1) 2=l < p22-!

i.e.
0<n—I1+1-—A4 <n?27%

Hence, using (5) and (8),
& =0(n*27"h). (10)

Note that (9) and (10) easily yield ', & = O(n), which by (6) yields
E(Cp,2) up to O(n). In order to obtain our more precise result, we need a better
estimate of §; when 2! ~ n.

Let = be a sequence generated by an i.i.d. source (i.e., p(0) = p(1) = 1/2)
and let us define

P(TL, l) = P(x[l’l] 7é w[j,j-‘rl—l] fOI‘ J = 2, e, — l =+ ].)

By counting each repeated substring in x only the last time it occurs, it is easily
seen (by shift invariance) that

n

A=) P(m,l) (11)
m=l
Now fix [ and m, and let us define I; = 1[z[1 ;) = @[ j4—1)] for j = 2,...,m—I+1.

Then
E(l;) =P(l; =1) =Plap,y = o5 j4-1] = 27 for every j > 2.
In the next lemma we establish that I; and I are uncorrelated when ¢,j > I.

Lemma 1. If i,j > I+ 1 and i # j then E(I;I;) = P(xpy = 2 ip-1 =
Tljgri-y) = 277

Proof. Assume i < j. Scan the three substring left to right. Each bit in z[; ;4,1
is either a fresh random bit or coincides with an earlier bit in z[; j;;_1}. In any
case, it fixes one new bit each in z[; ;; and z[; j;_1], so the probability of success
in this step is 272.



Observe that, if j > [+1, to condition on I; is the same as to change every bit
in z[; j41—1) to the corresponding bit in z, ;), leaving all other bits untouched. Let
z() be the resulting string, and let J;; = l[xff?l] = $Eg’)i+lil]]. Clearly, J;; = I;
if |i — j| > 1. Note also that Lemma 1 yields, when i # j and 4,j > [,

E(I;1;)

EI) 2

E(Jij) =E(i|I; =1) =

Let us now set, for fixed integers [ and m > 2,

m—I+1

W= > I

j=I+1

Let dry (X,Y) be the total variation distance between random variables X and
Y. Then, with Po()\) being the Poisson distribution with mean A, by the Stein—
Chen method (cf. [5, page 24]) we find, with A = EW = (m — 21 + 1)2°

dry (W,Po((m — 21 + 1)27%)) < w S EINE|L+ Y (I — Ji)
J i#]
< %ZE(IJ')(E(IJ) + > (B +E(Jij)))
J o< |i—j|<i

m—I{—1

1 —21
<3 Z 20-2-2
Jj=l+1

= 4127
In particular,

P(W = 0) — e~ (m=24027" | < gy (W, Po((m — 21 + 1)270)) = 0(127Y). (12)

Moreover, by the first moment method

l
P (2 I; # o) <(I-1DEI;) = (1 -1)27" (13)

Observe that

Then by (13) and (12)

P(m,l) = P(W = 0)+0(127}) = e~(m=24127" L 9(12=1) = ¢=(m=02"" L 9(127).
(14)



We have assumed m > 2l. However, by the first moment method directly, the
same estimate holds for [ < m < 2! too.
We thus have, by (11) and (14) and summing a geometric series,

1 _ g—(n+1-027"

A= ZlP(m,l) = O(ni27h).
Since
1 — g—(n+1-027" 1 — g—(nt1-027"
1_e2" 271+ 0(27)
= (2 + 0(1))(1 — e~ (mH1=027")
= 2/(1 — e~ (1-027y 4 O(n27!)
=21 =e" )+ 0®) + O(n27h),
we find

A =2(1—e™ )+ 0() + O(ni2™)
which proves (2). Thus by (4)
& =0() +0mi27"). (15)

Using (9) for 1 <1 < log, vVnlnn, (15) for log, Vnlnn < I < 2log, n, and
(10) for 2log, n < I < n, we obtain

> 6 =0(nlogn)'/?. (16)
=1

We turn to the first sum in (6). Let, for z > 0,

F@) = e’ —1+zlz< 1].

x
Then |f(z)| <z for 0 < z < 1 and |f(z)| < 1/z for z > 1. Hence,

n
Z 2! (e_"z_l —1+n27"
=1

NE

nY  (f(n27h) + 12" <nj)

~

1

f(n27Y +n|log, n|

M=

n

-~

M T

f(n27) +0(1) + n|logy n|

n
!

ny

where, with (z) = x — |z], the fractional part of z,

o

n) + nlogy, n + O(1),

—~

ba@)= Y f@2) ~flogy), @ >0.

I=—o0



(The series converges by the estimates above.) It is easily verified that ¢ is
bounded, continuous (also at powers of 2), and periodic in log, z, i.e., ¥(2x) =
¥ (z). Hence 9(2Y) has period 1 and may be expanded in a Fourier series

Z cyeQW‘iVy (18)

v=—0o0

where

1
o= [ e
0

/01 e‘m"y( _i (v h - y) dy

(19)
— Z / —27rwyf 92y— l) dy / e—27riuyydy
I=—o0
o . 1 .
:/ e—27rzuyf(2y) dy—/ e—27rwyydy‘
—o00 0

Further, changing variables back to (0, 00),

/_O;e—m"yf(zy) dy = ﬁ/g a:_2”"/1“2f(x)d§ = S MIf(e); ~2iv/In2),
(20)

where M[f = [,° 2* ! f(z) dz is the Mellin transform of f at the point s
(in our case s = —2ml// In2. (See [28, Chapter 9] for definition and basic prop-
erties.) Since |f(z)| < min(z,z7!), the Mellin transform M|[f(z); 2] is analytic
in the strip —1 < Rz < 1. In the smaller strip 0 < Rz < 1 we have, by [28, Table
9.1],

M[f(z); 2] = M(e% - 1;z) + M(1[z < 1]; 2)
=M(e ™ —1z2-1) + M(1[z < 1];2) (21)
=I'(z—-1)+ %

By analyticity, this extends to the strip —1 < Rz < 1. In particular, taking the

limit as z — 0,

rl4+z)—-14+2 _
ra =y-1.

lim === —(I"(W)+1) =~

(22)

Moreover, elementary integration yields

! ; —1/2mi 0
/ e—27rwyy dy — / my, v 7£ ) (23)
0 1/2, v =0.



By (19)-(23),

c,,:lif(—l—%), v#0,

v—1
= —-1/2.
In2 /

Co

The theorem now follows, with ¢(z) = —(¥(2%) — ¢), from (6), (16), (17) and
(18).

The numerical bounds for k£ < 4 are obtained from (3); for small k, ;" |cy |

is dominated by |¢1| which is very small.
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