Vol. 20 no. 132004, pages 2101-2112
doi: 10.1093/bioinformatics/bth210

-

.,
1ot
| R

Efficient selection of unique and popular oligos
for large EST databases’

Jie Zheng', Timothy J. Close?, Tao Jiang' and Stefano Lonardi’*

" Department of Computer Science and Engineering and 2Department of Botany and

Plant Sciences, University of California, Riverside, CA 92521, USA

Received on September 29, 2003; revised on January 2, 2004; accepted on February 10, 2004

Advance Access publication April 1, 2004

ABSTRACT

Motivation: Expressed sequence tag (EST) databases have
grown exponentially in recent years and now represent the
largest collection of genetic sequences. An important applica-
tion of these databases is that they contain information useful
for the design of gene-specific oligonucleotides (or simply,
oligos) that can be used in PCR primer design, microarray
experiments and genomic library screening.

Results: In this paper, we study two complementary problems
concerning the selection of short oligos, e.g. 20-50 bases,
from a large database of tens of thousands of ESTSs: (i) selec-
tion of oligos each of which appears (exactly) in one unigene
but does not appear (exactly or approximately) in any other
unigene and (ii) selection of oligos that appear (exactly or
approximately) in many unigenes. The first problem is called
the unique oligo problem and has applications in PCR primer
and microarray probe designs, and library screening for gene-
rich clones. The second is called the popular oligo problem
and is also useful in screening genomic libraries. We present
an efficient algorithm to identify all unique oligos in the uni-
genes and an efficient heuristic algorithm to enumerate the
most popular oligos. By taking into account the distribution
of the frequencies of the words in the unigene database, the
algorithms have been engineered carefully to achieve remark-
able running times on regular PCs. Each of the algorithms
takes only a couple of hours (on a 1.2 GHz CPU, 1 GB RAM
machine) to run on a dataset 28 Mb of barley unigenes from
the HARVEST database. We present simulation results on the
synthetic data and a preliminary analysis of the barley unigene
database.

Availability: Available on request from the authors.

Contact: stelo@cs.ucr.edu

1 INTRODUCTION

generated by sequencing from one or both ends of cDNAs. The
information in an EST allows researchers to infer functions
of the gene based on similarity to genes of known functions,
source of tissue and timing of expression, and genetic map
position. EST sequences have been widely accepted as a cost-
effective method to gather information about the majority of
expressed genes in a number of systems. They can be used
to accelerate various research activities, including map-based
cloning of genes that control traits, comparative genome ana-
lysis, protein identification and numerous methods that rely
on gene-specific oligonucleotides (or oligos, for short) such
as the DNA microarray technology.

Owing to their utility, speed with which they may be
obtained and the low cost associated with this technology,
many individual scientists and large genome sequencing
centers have been generating hundreds of thousands of ESTs
for public use. EST databases have been growing exponen-
tially since the first few hundreds of sequences obtained in
the early 1990s by Adamat al. (1991), and now they rep-
resent one of the largest collection of genetic sequences.
As of April 2004, the number of sequences deposited in
NCBI's dbEST (Bogusket al., 1993) has reached 20 million
seguences.

With the advent of whole genome sequencing, it may appear
that ESTs have lost some of their appeal. However, the
genomes of many organisms that are important to society,
including the majority of crop plants, have not been fully
sequenced yet, and the prospects for large-scale funding to
support the sequencing of any but a few in the immediate
future is slim to none. In addition, several of our mostimport-
ant crop plants have genomes that are of daunting sizes and
present special computational challenges because they are
comprised mostly of highly repetitive DNA. For example, the
Triticeae (wheat, barley and rye) genomes, each with a size of

Expressed sequence tags (ESTs) are partial sequencesapout 5x 1.09 bp per haploid genome (this is about twice the
expressed genes, usually 200-700 bases long, which af#e of maize, 12 times the size of rice and 35 times the size of

*To whom correspondence should be addressed.

A preliminary version of this work was presented at ®gnposium on
Combinatorial Pattern Matching, Morelia, Mexico, and included in its
Proceedings, pp. 273-283, LNCS 2676, Springer (2003).

the Arabidopsis genomes), are too large to seriously consider
whole genome sequencing at the present time.

Of the many EST databases, we have been especially inter-
ested in the dataset of barletAd¢rdeum vulgare). Barley
is a premiere model fofriticeae plants due to its diploid
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genome and a rich legacy of mutant collections, germ-could be sequenced by focusing only on this 12% of the gen-
plasm diversity, mapping populations (see http://www.cssome. An efficient method to reveal the small portion of BAC
orst.edu/barley/nabgmp/nabgmp.htm) and the recent acceiones derived from the gene-space has the potential for tre-
mulation of other genomics resources such as bacmendous costsavingsinthe contextofobtainingthe sequences
terial artificial chromosome (BAC) (Ywet al., 2000) and of the vast majority of barley genes. The most commonly used
cDNA libraries (Closeet al., 2001; Michalek et al., barley BAC library has a 6.3-fold genome coverage, 17-filter
2002). Nearly 400000 publicly available ESTs derivedset with a total of 313 344 clones (i al., 2000). This num-
from barley cDNA libraries are present in dbEST. About ber of filters is inconvenient and costly to handle, and the
350000 of these sequences have been quality-trimmedotal number of BAC clones is intractable for whole genome
cleaned of vector and other contaminating sequences, prehysical mapping or sequencing. However, a reduction in this
clustered using the softwafésicL (http://www.tigr.org/tdb/  library to a gene-space of only 12% of the total would make
tgi/software/) and clustered into final assemblies of ‘contigs'it fit into two filters that would comprise onl600 Mb. This
(i.e. overlapping EST sequences) and ‘singletons’ (i.e. nonis about the same size as the rice genome, which has been
overlapping EST sequences) using CAP3 (Huang and Madanecently sequenced. A solution for the popular oligo prob-
1999). The collection of the singletons and consensusem should make it possible to develop an effective greedy
sequences of the contigs, called unigenes, form our main datapproach to BAC library screening, enabling a very inexpens-
set. As of April 2004, the collection had 53 804 EST unigenesve method of identifying a large portion of the BAC clones
of a total of 35689 750 bases. This dataset can be obtaindtbm the gene-space. This would also likely accelerate pro-
from http://harvest.ucr.edu/ using tHarvEST viewer. Here-  gress in many crop plant and other systems that are not being
after, we will use the term EST to denote a unigene obtainedonsidered for whole genome sequencing.
from the assembly of one or more ESTs.

In this paper, we study two computational problems arisingl.1 Our contribution
in the selection of short oligos (e.g. 20-50 bases) from a larg this paper, we present an efficient algorithm to identify all
EST database. One is to identify oligos that are unique to eadlinique oligos in the ESTs and an efficient heuristic algorithm
EST in the database. The other is to identify oligos that argo enumerate the most popular oligos. Although the unique
popular among the ESTs. More precisely, the unique oligaand popular oligos problems are complementary in some
problem asks for the set of all oligos each of which appeargense, the two algorithms are very different because unique
(exactly) in one EST sequence but does not appear (exactiigos are required to appear in the ESTs while the pop-
or approximately) in any other EST sequence, whereas thglar oligos are not. In particular, the heuristic algorithm for
popular oligo problem asks for a list of oligos that appearpopular oligos is much more involved than that for unique
(exactly or approximately) in the largest number of ESTs  ¢ligos, although their (average) running times are similar. The

A unique oligo can be thought of as a ‘signature’ that dis-algorithms combine well-established algorithmic and data
tinguishes an EST from all the others. Unique oligos arestructuring techniques such as hashing, approximate string
particularly valuable as locus-specific PCR primers for placematching and clustering, and take advantage of the facts
ment of ESTs at single positions on a genetic linkage mapthat (i) the number of mismatches allowed in these prob-
on microarrays for studies of the expression of specific geneems is usually small and (ii) we usually require a pair of
without signal interference from other genes, and to probgpproximately matched strings to share a long common sub-
genomic libraries (Haetal., 2000) in search of specific genes. string [called a common factor in Rahmann (2002)]. These

Popular oligos can be used to screen efficiently largeaigorithms have been carefully engineered to achieve satis-
genomic libraries. They could allow one to simultaneouslyfactory speeds on PCs, by taking into account the distribution
identify alarge number of genomic clones that carry expressegf the frequencies of the words in the input EST dataset. For
genes using a relatively small number of (popular) probes andxample, running each of the algorithms for the barley EST
thus save considerable amounts of money. In particular fogataset fromHARVEST takes only a couple of hours (on a
the database under analysis, it has been shown previously hy? GHz AMD machine). This is a great improvement over
a number of independent methods that the expressed genesgther brute-force methods, like the ones based on BLAST
Triticeae are concentrated in a small fraction of the total gen-Simulations results show that the number of missed positives
ome. In barley, this portion of the genome, often referred to agy the heuristic algorithm for popular oligos is very lim-
the gene-space, has been estimated to be only 12% of the totédd and can be controlled very effectively by adjusting the
genome (Barakat al., 1997). If this is indeed true, then 12% parameters.
of the clones in a typical BAC library would carry expressed
genes, and therefore also the vast majority of barley genes

2For example, one can identify unique oligos by repeatedly running BLAST
INote that, a popular oligo does not necessarily have to appear exactly ifor each EST sequence against the entire dataset. This was the strategy
any EST. previously employed by thHARVEST researchers.
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1.2 Previousrelated work to the suffixes ofc. A string y occurs at position of another

The problem of finding infrequent and frequent patterns inStringx if yi = X[ily -+ o0 Yim] = X[i+m—1]» wherem = |y|.
sequences is acommon task in pattern discovery. A quite largfe®r any substring’ of x, we denote byf.(y) the number
family of pattern discovery algorithms has been proposed iff occurrences of in x. fx(y) denotes the total number of
the literature and implemented in software tools. WithoutOCCUITENCes of in xa, ..., xk. _
pretending to be exhaustive, we mentidiemE (Bailey and The color-set of in the setX = {x1, x2, ..., x;} is a subset
Elkan, 1995)PrATT (Jonasseet al., 1995; Jonassen, 1997), €0l(y) = {i1,iz, ..., i} of{1,2,... , k} suchthatif; e col(y)
TEIRESIAS (Rigoutsos and Floratos, 1998)pnsensus (Hertz  theny occurs atleast once i, . We also say that has colors
and Stormo, 1999)31BBS SAMPLER (Lawrenceet al., 1993;  i1.i2,...,i;. The numberof colors, of y is denoted asx (y).
Neuwaldet al., 1995), WINNOWER (Pevzner and Sze, 2000; Clearly fx(y) > ex(y).
Keich and Pevzner, 2002§roJECTION (Tompa and Buhler,  Given two stringsy and y of the same length, we denote
2001; Buhler and Tompa, 200ErRBUMCULUS (Apostolico By H (x, y) the Hamming distance betwegrandy, i.e. the
etal., 2003, 2004)MiTrA (Eskin and Pevzner, 2002), among Number of mismatches betweerandy. If H(x,y) < d, we
others. Although these tools have been demonstrated to pety thatx d-matchesy andx is ad-mutant ofy. The set of
form very well on small and medium size datasets, they cannddll the strings that/-match. is called thed-neighborhood
handle large datasets such as the barley EST dataset that we 8f¢ - The notion of occurrences and colors can be extended to
interested in. In particular, some of these tools were designegroccurrence and-colors by allowing up tal mismatches.
to attack the ‘challenge’ posed by Pevzner and Sze (2000}f @ stringy hasd-mutants atj distinct positions in a string
which is in the order of a few kb. Among the more general*: We say thay has; d-occurrences in. If a stringy has at
and efficient tools, we tried to ruEEIRESIAS on the 28 Mb  |é@st onel-occurrence in each of sequences iX, we say
barley EST dataset on an 1.2 GHz Athlon CPU with 1 GB ofthaty hasj d-colorsinx. _
RAM, without being able to obtain any result (probably due N the context of DNA hybridization, most papers define
to lack of memory). the specificity of arl-mer in terms of its mismatches to the
The unique oligo problem has been studied in the conlength{ substrings of target sequences, although some also
text of probe design (Li and Stormo, 2001; Rahmann, Zoozg:onsider its physical and structural characteristics such as
Rouillard et al., 2002). The algorithms in (Li and Stormo, Melting temperature, free-energy, GC-content, and second-
2001; Rouillardet al., 2002) consider physical and struc- &Y Structure (Li and Stormo, 2001; Rouillagtel., 2002). In
tural properties of oligos and are very time-consuming. [The?002, Rahman took a more optimistic approach and used the
algorithm in Rouillardet al. (2002) also uses BLAST]. A length of the longest common substring [called the longest
very recent algorithm by Rahmann (2002) is, on the othefommon factor (LCF)] as a measure of unspecificity. Given
hand, purely combinatorial. It uses suffix arrays instead ofhe nature of our target applications, we will take a conservat-
hash tables, and requiress0 h for a dataset of 40 Mb on ive approach in the definitions of unique and popular oligos.
a high-performance Compaq Alpha machine with 16 GB of )
RAM. However, his definition of unique oligos is slightly ~ DEFINITION 2.1 Giventheset X = {x1,x2,...,x} of ESTs
different from ours (to be given in the next section). and integers / and d, a unique oligois an /-mer y such that
The rest of the paper is organized as follows. Section 2’ 0ccursin one EST and the number of d-colors of y in X is
defines the unique and popular oligo problems formally. Theactly one. In other words, y appears exactly in some EST
algorithms are presented in Section 3. Experimental result@ut does not appear approximately in any other EST.
on the barley EST dataset and simulation results can be found

in Section 4. In Section 5, we draw some concluding remarks. SUppose that stringsandy have the same length. For any
given constants, d, we say that string (c, d)-matches string

y if x andy can be partitioned into substringsas= x1xzx3
2 PRELIMINARIES andy = yiyays with |xi| = |y;| such that ()lxal = c,
We denote the input dataset #s= {x1,x2,...,x;}, where (i) x2 = y> and (iii) the stringx1xs d-matches the string
the generic string; is an EST sequence over the alphabety;ys. In the above partition, we call, a core in the(c, d)-
¥ = {A,C,G,T} andk is the cardinality of the set. Let; match between andy. [Note that a(c, d)-match may have
denote the length of theth sequence, k i < k. We set many cores]. The notion af-occurrences and-colors can
n= Zf.‘zl n;, which represents the total size of the input. A be easily extended i@, d)-occurrences angt, d)-colors.
string (or oligo) fromX is called arni-mer if its length ig.

Given a stringx, we writex;;, 1 < i < |x|, to indicate DEFINITION 2.2 Giventheset X = {x1,x2,...,x;} Of ESTs
the i-th symbol inx. We usex; ;) as a shorthand for the andintegersi,d,c and T, a popular oligois an /-mer y such
substringxg;y, Xji+1), - - ., X{j) Where 1< i < j < n, with  that the number of (c,d)-colors of y in X is greater than or
the convention thaty; ;; = x;. Substrings in the formyy j; equal to T'. In other words, thel-mer y appearsapproximately
correspond to the prefixes.ofand substrings in the formy; ) inatleast T ESTs.
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The use of pooled oligo probes for BAC library screen-phase, we check whether extending the flanking regions of a
ing (Han et al., 2000) generally have lengths from 24 to seed would result in &-match with the corresponding exten-
40 bases. Given this range and based on discussion wigion of any other seed in the same group. If so/theer given
researchers from the Triticeae community, we congideB3 by this extension is not a unique oligo.
andd = 5 in the unique oligo problem. In the popular oligo

problem, we considef = 1,2, 3 and: = 20 and = 36. Phase 1. (Hit) We file all g-mers (seeds) from the input
ESTs into a dictionary with4entries. (If 4 cannot fit in the
3 METHODS main memory, one could use a hash table of an appropriate

size.) Each entry of the table points to a list of locations where
Our goal is to determine unique and popular oligos for ahe ;-mer occurs in the EST sequences. Using the table we
given setX of EST sequences. Although the objectives of ;5 immediately locate identical seeds in the ESTSs.
thg two_ problems seem pomplementary, our a_lgorithms aré ppase 2. (Extension) We compare the corresponding
quite different. The algorithm for the popular oligo problem fjanking regions of each pair of matching seeds to determine
turns out to be much more involved because popular oligoghether they can be extended to a pail-ofers thati-match
are not necessarily contained in the ESTs. Nevertheless, boglych other. Here, we also collect seeds that have exactly one
algorithms share some common strategies such as the idggsmatch with each other as follows. For each table entry
of separating dissimilar strings as early as possible t0 reduc&rresponding to a sead we record a list of other seeds that
the search space. To achieve this in the popular 0ligo prolyj5ye exactly one mismatch with by looking up table entries
lem, we first find cores (i.ec-mers) that appear exactly in  that correspond to all the 1-mutantsofThis list is called a
at least two ESTs. Then we cluster all lengtsubstrings of  yytant list ofy. We examine all the seeds in the mutant list,
the ESTs by their cores of lengthusing a hash table, and gnqg compare the flanking regions of theners and that of
then, within each cluster, we cluster again thaers based y in the same way as we did for identical seeds, except that

on Hamming distance between regions flanking the coresyo the cutoff for the number of mismatches in the flanking
Candidate popular oligos are then enumerated from the smalgions is7 — 1.

groups resulted from the two clusterings, and their number of ¢ algorithm is summarized in Figure 1.
colors are counted. For the unique oligo problem, the notion

of cores, however, does not exist. On the other hand, due tOTlmecompIexity. Suppose that the total number of bases in

the small number of mismatches alloweq (relat.iveldwol— _ Xisn. Thetime complexity of phase one is simpiygn-+47),
mers thati-match each other must contain apalrofsubstr|ng§Nhere the second term reflects the time needed to initialize
that 1-match each other. Such substrings are called seeds. W& hash table. The time complexity of phase two depends
can thus cluster the ESTS bytheirsegds using a dictionary. F%rn the distribution of the number of seeds filed into each
ea_\ch cluster,_we compare the E.STS in the cluster by counting, o entry. Simply speaking, if the distribution is more or
mlsmatches in the regions flanking the seeds. The details a[€ss uniform (which is the case in our experiment) and each
given below. table entry contains ~ n/4¢ identical seeds, the number

of comparisons within the table entry @&(r?). The number

) ) _ _ _ for comparisons for each mutant lists of sizgi8 O(qr?).
Recall that the unique oligo problem is to identify length- Each comparison requires extension of the seeds and takes
substrings of the ESTs that have exactly akeolor in the  5; _ ;) time. Since there are/ntries in the table, the over-
datasetX, for a given value ofd. Our strategy is first to  5)1time complexity isO[(I —q)qr247]. Given the exponential
eliminate all thesé-mers that cannot be unique oligos. The dependency og, one needs to make sure thas not too large
algorithm is based on the following observation. Assume thaggfgre using the algorithm. (Again, in our experiment on the

x and_y are twol-mers such thaﬁ(x, y) =d. Divide bothx barley dataset,= 33,d = 5 andg = 11.)

andy intos = |d/2] + 1 substrings. Thatis = x1x2---x: |n practicing EST data analysis, we also need to consider
andy = yiyz---y,, where the length of each substring is the reverse complementary strand of each EST, which implies
q = [l/1], except possibly for the last one. In practice, onémore stringency in the choice of unique oligos. The above
can always chooseandd so that/ is a multiple ofr and  gigorithm can be easily modified to take into account reverse

hencex andy can be decomposed intsubstrings of length  complementary EST strands without a significant increase in
g, whichwe call seeds. Itis easyto see that sifi¢e, y) < d, complexity.

at least one of the seeds.ohas at most one mismatch with
the corresponding seed of ]

Using this idea, we design an efficient two-phase algorithm3-2 Popular oligos
In the first phase, we cluster all the possible seeds from thRecall that the objective is to find aimers that have suf-
ESTs into groups such that within each group, a seed has rfciently large number ofc, d)-colors in X. Since popular
more than one mismatch with the other seeds. In the secoraligos are not required to appear exactly inthe EST sequences,

3.1 Uniqueoaligos
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UNIQUE-OLIGO-SELECTION(X, I, m)
Input: EST sequences X = {x1,22,..., 2k}
l: length of the oligos to be reported
d: maximum number of mismatches for non-unique oligos
Output: Mark each unique l-mers in X
1 t,q < d/2)+1,[l/t]
2 table — HIT(X,q)
3 EXTENSION(X,t,q, table,d)

COMPARE(table[i][j]. tableli][k], d)

1 g1 « the ¢g-mer located at tableli][j]

2 go «— the ¢g-mer located at table[i|[k]

3 for each pair of I-mers that contain ¢; and ¢, as seeds respectively do

4 c—Hiq, q)

5 if ¢ < d then

6 mark the two [-mers as “non-unique”
HiT(X, q)

1 fori— 1to49do

2 initialize table[i]

3 index[i] < 0

4 fori«— 1ltokdo

5 for j—1lton;—¢+1do

6 key — MAP(w; 5. j+q-1))

7 table|keylindex|key]] — (i,7)
8 index[key] « index[key] + 1
9 return table

EXTENSION(X, £, ¢, table,m)
1 fori«— 1to4%do
2 List mut «— mutant list of tablel]

3 len « # of records in table]i]

4 for j — 1 to len do

5 for k — j+ 1 to len do

6 COMPARE(tablelé]|j], tableli][k], m)

7 for h — 1 to # of records in mut do

8 mutlen < # of records in table[rut[h]]

9 for k «— 1 to mutlen do

10 CoMPARE(table[i][j], table[mut[h]][k], m)

Map(string S)
1 map S into an integer X with function f:{4,C,G,T} — {0,1,2,3}
2 return X

Fig. 1. The algorithm for identifying unique oligos.

the algorithm based on exhaustive enumeration is computanethod becomes computionally impractical due to its memory
tionally very expensive. In fact, one can easily show that theequirement as soon as the input size reaches the order of
problem is NP-hard in general. hundreds of thousands of bases (like the barley dafaset)

The ‘exhaustive’ algorithm considers @lmers occuring
in the ESTs and for eachmer, enumerates all it&, d)-
mutants and count their number(of d)-colors. However, the 3Whend = 3 andc = 20, ()3 = ()3 = 7722 for the barley dataset.
number of(c, d)-mutants of an-mer over the DNA alpha-  pence, the straightforward algorithm would have to count the number of
bet is more thar(’;c)3d . As a consequence, the exhaustivecolors for about 772228 x 10° = 217 x 10° [-mers.
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Fig. 2. An overview of the algorithm for selecting popular oligos. For convenience of illustration, the length of the oligos is assumed to be
[ = 36, and the length of the cores is assumed to e20.

We can reduce the search space using the same idea asciore, we consider extension of the cores intoers by includ-
the algorithm for unique oligos, except here that the role ofing flanking regions and cluster them using a well-known
seeds is played by cores. Observe that, if a (popular) oligo hdsierarchical clustering method, called unweighted pair group
(c,d)-occurrences in many ESTs, many of these ESTs mushethod with arithmetic mean (UPGMA) (Swofford, 2002).
contain length- substrings that share common cores. BasedVe recall that UPGMA builds the tree bottom-up in a greedy
on this observation, we propose a heuristic strategy that firdashion by merging groups (or subtrees) of data points that
clusters thé-mers in the EST sequences into groups by theithave the smallest average distance. Based on the clustering
cores, and then enumerates candidateers by comparing tree, we compute the common oligos shared by timers by
the members of each cluster in a hierarchical way. performing set intersection. These common oligos shared by
An outline of the algorithm is illustrated in Figure 2. manyl/-mers become candidate popular oligos. Finally, we
Here, we determine the popularity of the cores (i.e. lergth- count the number of colors of these candidates, and output
substrings) from the ESTSs in the first step. For each populathe oligos with at least' colors. A more detailed description
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is given below. A complete example of the algorithm on a toytogether with the popular core, represents a candidate popular
dataset is also given in the section 3.2.1. oligo.
Phase 4. Given the candidate popular oligos, we need
Phasel. We compute the number of colors for almers  to count their number ofc, d)-colors. Before counting, we
in the ESTs to determine whether they could be candidateadix-sort the candidates and remove duplicates. More pre-
cores for populai-mers, using a hash table. According to our cisely, due to the possibly very large number of candidates
definition, a popular oligo should have a popular core. Weand duplicates (as in the barley case), we sort the candidates
therefore set a threshofyy on the minimum number of colors in several stages as follows. For each core, we radix-sort all
of each popular core, depending &nc,/ and X. All cores  the candidates derived from the core and remove duplicates.
that have a number of colors beldly are filtered out, and Then, we merge the sorted list into the sorted list contain-
considered ‘unpopular’. However, since amer can(c, d)- ing all the candidates from those cores that have already been
match anothermer with any of itg —d+1 cores, itis possible processed.
that we might miss some popular oligos that critically depend Time complexity. Phase 1 cost®(cn) time. In phase 2,
on unpopular cores. The parameférrepresents a tradeoff if the number of popular cores selected in the first step is
between precision and efficiency. We will show in Section 4and the average number of occurrences of the coredliss
the effect of changing,. on the output. We will see that in phase cost®[nr(I — ¢)]. For phase 3, the time for building a
practice we might miss only a negligible number of popularUPGMA tree, including the computation of the distance mat-
oligos. rix, is O[(I — ¢)r?], wherer stands for the number of strings
Phase2. Here we collect the substrings flanking the pop-to be clustered. Since a (binary) UPGMA tree witleaves
ular cores. For each popular core, we consttuet+1 setsof  has 2 —1 nodes, the time for traversing (and pruning) the tree
substrings, one for each possible extension of the core into @s O r (l;C)Bd], where(l;")Sd is the number off-mutants at
[-mer. Each set contains substrings of lerigthe constructed each leaf. Finally for phase 4, if the total number of candid-
by concatenating the left and right flanking regions. ates ism, counting the colors for the candidates, excluding
Phase 3. For each set of flanking substrings, we would the time for radix-sort, costs tim@[rm(l — ¢)].

like to identify all (I — c¢)-mers that havel-occurrences 321 Anexampleof the popular oligoalgorithm We show

in many of these substrings. In order to achieve this effi- : . .
. . . . . small example to illustrate each step of the algorithm. Again,
ciently, we first cluster the substrings according to their mutuar

i X . . : et/ denote the length of oligos, the length of coresd the
Hamming distance using the well-known hierarchical cluster- =" : i
. - .~ maximum number of mismatches between two oligos &nd
ing method UPGMA. In the process of building the clustering o
. . . e threshold on the minimum number of colors of popular
tree, whenever the Hamming distance between a pair o

. . . cores. In this toy exampld, = 8,¢c = 5,d = 1,7, = 3.
leaves in the tree is zero we compress the distance matr ) 4 e
- . . . : . . The input comprises four artificial EST sequences as shown
by combining the identical strings into one entry. This sig-

7 L in Figure 3.EST1 andEST3 are highly similar, which rep-
nificantly reduces the running time not only because the tree o .
resents the similarity between some of the EST sequences in
becomes smaller, but also because the number of common ' yta
d-mutants of two different-mers is much less than that of two '
identical ones. As we can see later, a significant proportion Phase1. A total of 7 cores out of 148 possible cores are
of the running time is spent on the intersection of the sets oelected as popular cores. Each entry of the hash table points
d-mutants. Compressing the distance matrices avoids intete a list of positions of the occurrences of the core in the
secting identical sets af-mutants, which is expensive and input ESTSs.
also useless. We then create a sef-ofiutants for each sub-  Phase 2. We collect the flanking regions for the seven
string represented atthe leaves and traverse the tree bottom-upres. Figure 4 shows the four sets of flanking regions for
Ateachinternal node, we compute the intersection of thetwo AAGGC. Each string in the set is obtained by concatenating
sets attached to the children, using a hash table based on tthe left and the right flanking regions. Note that the fourth set
hash function described in (Wesselink, 2002). This intersechas one fewer element than the other three sets. The reason is
tion represents all th@ — ¢)-mers that have-occurrences that the coreAAGGC occurs at the right boundary &STO,
in all the leaves (substrings) under the nodeAs soon as and therefore has a shorter flanking region.
the intersetion of some internal node, saypecomes empty, Phase 3. We cluster the flanking regions using UPGMA
we cut the tree ai. Each subtree represents a cluster, andFig. 5). In Figure 6, we show the clusters for set 2 of the core
the set of(l — c¢)-mers attached to the root are the elementsAAGGC. Observe that the Hamming distance between entries
of the cluster. The size of the cluster is therefore equal t&® and 4 is zero and therefore distance matrix is compressed by
the number of leaves in the tree. Because small clusters asmmbining the identical strings into one entry. We then need
unlikely to contain popular oligos, we discard all trees whoseo enumerate all the 1-mutants of the strings denoted by the
size is smaller tharC,. At the end of this process, we leaves of the trees, i.8AA, TGGandGGC. Because leaf 1 and
obtain a collection of sets af — ¢)-mers, each of which, leaf 3 share the same parent, we apply intersection on their
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>ESTO

TGGAGTCCTCGGACACGATCACATCGACAATGTGAA

GGCGA
>EST1

GTGAAGGAGGTAGATCAAATAGAGCCTGCCCTAAAA
AGGCAGCTTATAATCTCCACTGCT

>EST2

TCCGACTACTGCACCCCGAGCGGATCACACAATGGAA

GGCCCGTGCGC
>EST3

GTGAAGGAGGTAGATACTCGTATACGATCACTGCCTA
AAAAGGCAGCTTATAATCTCCATATCGCTG

GAAGG | —= 0 (33> 1|2 = 2|34 —={3 |2

TGAAG | —= 0|32 111 = 3|1

ATCAC = 0 [17—={ 2 |23—= 3 |26

AAGGC = 0 |34 —= 1 |35|—= 2 |35 —= 3 |40

GTGAA |~/ 0|31 110 —= 3|0

GATCA |—={ 0 |16= 1 |12—= 2 |22—= 3 |25

ACTGC = 1 |B4—= 2|7 —= 3|29

Fig. 3. The example dataset£ 8,c = 5,d = 1,7, = 3). The table of popular cores.

[ R S o RS g | S S|
GTGAAGGC GA 1. GTG 1. TGG
AAA AAGGC AGC |2. AAA 2. AAA
TGGAAGGC CCG |3.TGG 3. GGC
AAA AAGGC AGC (4. AAA 4. AAA

set 1 set 2
A LR ] = N J
core
7] 1. AGC
; ; 2.CCG
flanking region 3 AGC
set 3 set 4

sets of 1-mutants and get the get= {GG5 TCC}. Then,

we apply intersection betwedn and /3, wherels represents
the set of the 1-mutants of leARA. Since the resulting inter-
sectionl, is empty, we prune the tree & and separately
output the strings i; and/3 as flanking regions of candidate
popular oligos. Note that, we output the 1-mutantgsafven

if it is represented only by one node, because it is actually
the intersection of two occurrences AAA, and therefore,

all elements ofl3 have at least twae/-matches in the EST
sequences.

3.2.2 Post processing of popular oligos  As itturns out, the
set of oligo candidates generated by the algorithm described
above cannot be used directly because in practice it produces

Fig. 4. Collecting flanking regions for the core. There are four setstoo many candidates, most of which are very similar to one

of flanking regions foAAGGC.

1234

1TGG| 0323
2AAA 13030
3GGC| 2303
4 AAA 13030

make tree | /1 I3

Before compression

12, 4)3

176G [0 3
(2,4)AAA | 3 0 3
3GGC| 2 3 0

12
make tree I
el B R ¢
1 3 (2, 4)

After compression

Fig. 5. UPGMA tree construction for set 2 of the cokGGC.

another. To give an example, when the threshglan the
color of the cores is five, the number of candidates gener-
ated from the Barley EST database is about 527 million (see
Fig. 8). Post processing is therefore necessary to reduce the
number of oligos. We call this final cleaning phase, oligo
compression.

The first step in the cleaning phase is to remove oligos that
may be unsuitable for hybridization. If the GC-content of an
oligo is outside a given range, say 45-55%, the hybridization
probably would not take place. For the same reason, oligos
containing repeats such as poly-(A)s, poly-(T)s, etc., should
not be considered suitable. Oligos with unsuitable GC-content
or containing simple repeats are, in fact, eliminated before
compression.

In order to explain the oligo compression phase, let us intro-
duce a couple of useful concepts. If an oliggd)-occurs
at least once in an EST sequence, we say that oligo covers
the EST. In general, each oligo covers a set of ESTs, and each
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1-mutants of AAA:  1-mutants of TGG: 1-mutants of GGC:

CAA AGG AGC

GAA CGG CGC

TAA GGG TGC

ACA TAG GAC

AGA TCG GCC Candidates (from core AAGGC):
ATA TTG GTC

AAC TGA GGA AAAAGGCA TGAAGGCC
AAG TGC GGG AGAAGGCA GAAAGGCA
AAT TGT GGT GGAAGGCG AAAAGGCC

CAAAGGCA TAAAGGCA
ATAAGGCA AAAAGGCG

I = emtpy I, ACAAGGCA  AAAAGGCT

Is
I cut tree J
L @
1 3 (2,4)

cluster2

cluster1

Fig. 6. Clustering set 2 of the cor®AGGC.

EST is covered by a set of oligos. Recall that the numbecandidates is likely to be non-empty. The greedy algorithm
of ESTs covered by an oligo corresponds to thel/)-colors  has a ratio bound aH (Cmax), whereCmax is the maximum
of that oligo. For a sef of oligos, the coverage ratio is the number of colors, andf (d) denotes th@-th harmonic num-
ratio between the number of ESTs covered by the oligds in ber (see Cormegt al., 1990). The method is simple and space
and the size of the sét Intuitively, the coverage ratio is the efficient since it can compress oligos on-line and avoid storing
average number af, d)-colors per oligo. hundreds of million of candidates in main memory.
The objective of oligo compression is to maximize the
coverage ratio, i.e. to select a set of popular oli§dom the
large pool of candidates, such that the number of covered ES‘IAS RESULTS
is not changed, but the number of selected popular oligos i¥/e have implemented both algorithms in-& and tested
minimized. More specifically, while we were trying to reduce the programs on a desktop PC with a 1.2 GHz AMD Athlon
the size ofS, we made sure that the number of covered ESTSPU and 1 GB RAM, under Linux. The current version of
would not decrease. It turns out that the general problem dte program is available from the authors upon request. The
oligo compression is a variant of the Set Covering problemgode can be compiled using the GNJ#+ compiler under
which is known to be NP-complete (see, Garey and Johnsoseveral platforms. The compilgr-+ can be freely obtained
1979). at http://gcc.gnu.org/. We are currently designing a web server
Since the general problem is NP-complete, it is unlikelyto make the program more user-friendly.
that there exists a poly-time algorithm that finds the optimal ] )
solution. As a workaround, we use a greedy strategy thag-1 Simulations
in general, will find a suboptimal solution. The algorithm is To evaluate the performance of our heuristics for selecting
articulated in two steps. popular oligos, we first ran a few simulations as follows. We
In the first step, for each covered EST we select a set ofienerated a set of artificial ESTs by creating first a sét of
oligos with high colors, as follows. When a candidate oligorandom sequences and then injecting a controlled number of
w is generated, we obtain the set of ESTs coveredblfor  approximate occurrences of a given set of oligos. The initial
each covered ESTSs, we decide whether oligshould be dis-  set of oligos, denoted b¥, .. ., I;, was also generated ran-
carded or kept as the top candidate. At the end of this stelomly overX. Each oligo/; was assigned a predetermined
we get a pool of ESTs each of which is covered by severahumber of colors;. We decided that the distribution of the
oligos. In the second step, we use the greedy approximatioshould be Gaussian, i.e. we defin€d= cmae™ /2/v/27,
algorithm for the Set Covering problem (see, e.g. Cormemwhere cmax is a fixed constant that determines the max-
etal., 1990). First, we select an oligo with the highest numbetimum number of colors. As discussed above, the positions
of colors, and remove all ESTs covered by this oligo fromin between the oligos were filled with random symbols over
the EST pool. Then, we update the colors of all other oligosthe DNA alphabet.
We repeat the latter step until the EST pool becomes empty. We then ran our program for popular oligos on the artificial
Note that updating the colors iteratively is critical because thé&ESTs dataset and output a set of candidate ol@gs. ., O,
intersection of the sets of covered ESTs for the initial pool ofwith their respective colorSy, . . ., C;. The outputoligos were
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Chstribation of unkpee oligos ineach EST
0000

T
"dsl_percant dat” ——

)
S 25000 |
# of occurrences | # of seeds é
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1-9 3063288 H
10-19 708745 L
20-29 120698 £
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Fig. 7. Left: distribution of frequencies of seeds in barley ESTs. Right: Distribution of unique oligos. The horizontal axis stands for the
percentage of unique oligos over all 33mers in an EST, and the vertical axis stands for the number of ESTs whose unique oligos are at a certai
percentage of all its 33mers.

Tablel. The average relative errors between the number of colors in the inputhis analysis, we fixed the Iength of the core tocbe- 20,
and the number of colors in output for a simulated experimegt (L 440 000, whereas the maximum number of mismatcHesutside the
k = 2000,c = 20, = 100,s = 100,/ = 36 .
¢ Emax g ) core and the thresholfl. were varied. The results show that
the average relative error is below 2%. We also compared

d=2 d=3 the list of input oligos with the list of output oligos and we
found that sometimes the program misses one or two oligos
7. =10 0.0155 0.0500  out of 100. However, the number of colors of these missed
; = ;g 8'8822 g'gggg oligos is always near the threshdld We never miss an oligo
T. — 25 0.0008 00023 Whose number of color is abo + 10.
T.=30 0.0005 0.0028

4.2 Experimental results

The main dataset is a collection barley ESTs flHARVEST
sorted by colors, i.eC; > C’, if i < j. Since the output containingk = 46 145 EST sequences with a totalof=
contained redundant candidates that came from the mutatior28 475017 bases. Before performing the searches, we first
of the original popular oligos, we removed those candidatesleaned the dataset by removing Poly(T) and Poly(A) repeats.
that were ai-mutant of another oligo with an higher number As mentioned above, our first task was to search for unique
of colors. More precisely, iD; was ad-mutant ofO;, and  oligos of length/ = 33 with a minimum number of mis-
1<i < j <t thenO; was discarded. matches! = 5. Based on these parameters, each oligo was

Finally, we compared the paif, C) with (O, C’). Themore divided into three seeds of lengjh= 11. Hence, our diction-
similar (0, C’) is to (I, C), the better is the heuristic of our ary table had # ~ 4 million entries. The efficiency of our
algorithm. Recall that and O were sorted by decreasing algorithm critically depends on the statistical distribution of
number of colors. We compared the entriesfinC) with the  the seeds in the dictionary. The statistics of the seeds in our
ones in(0, C’), position by position. For each £ i < u, experiment (before the extension phase) is shown in table in
whereu = min(s,7), we computed the average difference the left-hand side of Figure 7. Clearly, most seeds occur less
betweenC andC’ asE = (1/u) ) ;_,(IC; — C/|)/(C)). than 20 times in the ESTs and this is the main reason why our
If we assume thaf and O contain the same set of oligos, algorithm was able to solve the dataset efficiently. The final
the smaller isk, the more similar ig1,C) to (0,C’). To distribution of unique oligos is shown in the right-hand side
validate this assumption, we also searched the list of oligosf Figure 7. Note that, there are many ESTs (slightly more
I in O, to determine whether we missed completely somehan half of the entire dataset) whose length-33 substrings
oligos. are almost unique oligos. In particular, there are 13430 ESTs

Table 1 shows the value @ for four runs of the program whose length-33 substrings are all unique oligos and there are
on a dataset of = 1440000 bases comprising by= 2000 2159 ESTs that contain no unique oligos. The whole com-
sequences each of size 720. We generated a set0l00  putation to& 2 h and 26 min and used about 200 MB of
oligos with a maximum number of coloksnax = 100. In memory.
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Fig. 8. Results of running the algorithm on the Barley dataset. Shown are the number of candidates generated by the algorithm (in millions),
the number of ESTs covered, the final number of popular oligos, the coverage ratio and the time taken by the algorithm (for different choices
of T,.).

Table 2. Distribution of the number of colors of the cores colors increases. On the other hand, cores with low colors
are unlikely to contribute to popular oligos. Therefore, it is
important to filter them out to increase the efficiency.

Colors Number of cores ) ) ) . )
The running time of this program varies with the parameters

1 22593412 d and T, as shqwn in Figu_re 8. The memory used in_ the

2-10 2128677 program was mainly for storing the candidate popular oligos.
11-20 5148 Figure 8 also shows the number of candidates generated by
21-30 1131 the algorithm (in millions), the number of ESTs covered, the
ﬂ:gg gig final number of popular oligos and the coverage ratio, for
51-60 242 different choices of the thresholfi.. The post-processing,
61-70 77 especially the oligo compression phase, reduces the number of
71-80 34 candidates from hundreds of millions to less than a thousand,
81-90 29 while the number of covered ESTs was kept unchanged. By
131:132 ig selecting the appropriate threshdld one can obtain a set of

oligos with good coverage ratio in a few hours using a standard

The left column is the range of the number of colors. The right column is the number mdeSktOp PC.
cores with a certain number of color.

Our second task was to search for popular oligos wite  CONCLUSIONS
length/ = 36 and core lengte = 20. We considered We have proposed two algorithms to find unique and popular
different choices for the maximum number of mismatchesoligos in large EST databases. The size of our dataset, in the
d outside the core and the threshdld on the minimum  order of tens of millions of bases, was the real challenge due to
number of colors for the popular cores. The threst@ig,  the limitation in the size of main memory in common 32-bits
on the size of the clusters was set equal to the value ddrchitectures. Our algorithms were able to produce a solution
thresholdT. in a reasonable amount of time on a regular PC with a modest

The distribution of the number of colors of the cores isamount of memory. As far as we know, no other existing tools
shown in Table 2. From the table, we can see that the numare capable of handling such a dataset with limited resources.
ber of cores decreases almost exponentially as the number 8fmulations show that the number of missed oligos by the
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heuristic algorithm for popular oligos is negligible and can chromosome 16q by two-dimensional overgo hybridization.
be controlled very effectively by adjusting the parameters. Genome Res., 104, 714-721. o
Although the algorithms were initially designed to addressHertz,G.Z. and Stormo,G.D. (1999) Identifying DNA and pro-
the challenges from the barley EST dataset, the methods cantein patterns with statistically significant alignments of multiple

: e T Bioinformatics, 15, 563-577.
be easily adapted to solve similar problems concerning infre- S€duence ’ _
quentand frequent oligos on other large datasets. The softwaf'ang.X. and Madan,A. (1999) CAP3: a DNA sequence assembly

ilb | din th blic d inin th fut program.Genome Res,, 9, 868-877.
wiil be released in the public domain in the near future. Jonassen,l. (1997) Efficient discovery of conserved patterns using a

pattern graphComput. Appl. Biosci., 13, 509-522.
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