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ABSTRACT
Motivation: Expressed sequence tag (EST) databases have
grown exponentially in recent years and now represent the
largest collection of genetic sequences. An important applica-
tion of these databases is that they contain information useful
for the design of gene-specific oligonucleotides (or simply,
oligos) that can be used in PCR primer design, microarray
experiments and genomic library screening.
Results: In this paper, we study two complementary problems
concerning the selection of short oligos, e.g. 20–50 bases,
from a large database of tens of thousands of ESTs: (i) selec-
tion of oligos each of which appears (exactly) in one unigene
but does not appear (exactly or approximately) in any other
unigene and (ii) selection of oligos that appear (exactly or
approximately) in many unigenes. The first problem is called
the unique oligo problem and has applications in PCR primer
and microarray probe designs, and library screening for gene-
rich clones. The second is called the popular oligo problem
and is also useful in screening genomic libraries. We present
an efficient algorithm to identify all unique oligos in the uni-
genes and an efficient heuristic algorithm to enumerate the
most popular oligos. By taking into account the distribution
of the frequencies of the words in the unigene database, the
algorithms have been engineered carefully to achieve remark-
able running times on regular PCs. Each of the algorithms
takes only a couple of hours (on a 1.2 GHz CPU, 1 GB RAM
machine) to run on a dataset 28 Mb of barley unigenes from
the HarvEST database. We present simulation results on the
synthetic data and a preliminary analysis of the barley unigene
database.
Availability: Available on request from the authors.
Contact: stelo@cs.ucr.edu

1 INTRODUCTION
Expressed sequence tags (ESTs) are partial sequences of
expressed genes, usually 200–700 bases long, which are
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generated by sequencing from one or both ends of cDNAs. The
information in an EST allows researchers to infer functions
of the gene based on similarity to genes of known functions,
source of tissue and timing of expression, and genetic map
position. EST sequences have been widely accepted as a cost-
effective method to gather information about the majority of
expressed genes in a number of systems. They can be used
to accelerate various research activities, including map-based
cloning of genes that control traits, comparative genome ana-
lysis, protein identification and numerous methods that rely
on gene-specific oligonucleotides (or oligos, for short) such
as the DNA microarray technology.

Owing to their utility, speed with which they may be
obtained and the low cost associated with this technology,
many individual scientists and large genome sequencing
centers have been generating hundreds of thousands of ESTs
for public use. EST databases have been growing exponen-
tially since the first few hundreds of sequences obtained in
the early 1990s by Adamset al. (1991), and now they rep-
resent one of the largest collection of genetic sequences.
As of April 2004, the number of sequences deposited in
NCBI’s dbEST (Boguskiet al., 1993) has reached 20 million
sequences.

With the advent of whole genome sequencing, it may appear
that ESTs have lost some of their appeal. However, the
genomes of many organisms that are important to society,
including the majority of crop plants, have not been fully
sequenced yet, and the prospects for large-scale funding to
support the sequencing of any but a few in the immediate
future is slim to none. In addition, several of our most import-
ant crop plants have genomes that are of daunting sizes and
present special computational challenges because they are
comprised mostly of highly repetitive DNA. For example, the
Triticeae (wheat, barley and rye) genomes, each with a size of
about 5× 109 bp per haploid genome (this is about twice the
size of maize, 12 times the size of rice and 35 times the size of
theArabidopsis genomes), are too large to seriously consider
whole genome sequencing at the present time.

Of the many EST databases, we have been especially inter-
ested in the dataset of barley (Hordeum vulgare). Barley
is a premiere model forTriticeae plants due to its diploid
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genome and a rich legacy of mutant collections, germ-
plasm diversity, mapping populations (see http://www.css.
orst.edu/barley/nabgmp/nabgmp.htm) and the recent accu-
mulation of other genomics resources such as bac-
terial artificial chromosome (BAC) (Yuet al., 2000) and
cDNA libraries (Close et al., 2001; Michalek et al.,
2002). Nearly 400 000 publicly available ESTs derived
from barley cDNA libraries are present in dbEST. About
350 000 of these sequences have been quality-trimmed,
cleaned of vector and other contaminating sequences, pre-
clustered using the softwareTgicl (http://www.tigr.org/tdb/
tgi/software/) and clustered into final assemblies of ‘contigs’
(i.e. overlapping EST sequences) and ‘singletons’ (i.e. non-
overlapping EST sequences) using CAP3 (Huang and Madan,
1999). The collection of the singletons and consensus
sequences of the contigs, called unigenes, form our main data-
set. As of April 2004, the collection had 53 804 EST unigenes
of a total of 35 689 750 bases. This dataset can be obtained
from http://harvest.ucr.edu/ using theHarvEST viewer. Here-
after, we will use the term EST to denote a unigene obtained
from the assembly of one or more ESTs.

In this paper, we study two computational problems arising
in the selection of short oligos (e.g. 20–50 bases) from a large
EST database. One is to identify oligos that are unique to each
EST in the database. The other is to identify oligos that are
popular among the ESTs. More precisely, the unique oligo
problem asks for the set of all oligos each of which appears
(exactly) in one EST sequence but does not appear (exactly
or approximately) in any other EST sequence, whereas the
popular oligo problem asks for a list of oligos that appear
(exactly or approximately) in the largest number of ESTs1.

A unique oligo can be thought of as a ‘signature’ that dis-
tinguishes an EST from all the others. Unique oligos are
particularly valuable as locus-specific PCR primers for place-
ment of ESTs at single positions on a genetic linkage map,
on microarrays for studies of the expression of specific genes
without signal interference from other genes, and to probe
genomic libraries (Hanet al., 2000) in search of specific genes.

Popular oligos can be used to screen efficiently large
genomic libraries. They could allow one to simultaneously
identify a large number of genomic clones that carry expressed
genes using a relatively small number of (popular) probes and
thus save considerable amounts of money. In particular for
the database under analysis, it has been shown previously by
a number of independent methods that the expressed genes in
Triticeae are concentrated in a small fraction of the total gen-
ome. In barley, this portion of the genome, often referred to as
the gene-space, has been estimated to be only 12% of the total
genome (Barakatet al., 1997). If this is indeed true, then 12%
of the clones in a typical BAC library would carry expressed
genes, and therefore also the vast majority of barley genes

1Note that, a popular oligo does not necessarily have to appear exactly in
any EST.

could be sequenced by focusing only on this 12% of the gen-
ome. An efficient method to reveal the small portion of BAC
clones derived from the gene-space has the potential for tre-
mendous cost savings in the context of obtaining the sequences
of the vast majority of barley genes. The most commonly used
barley BAC library has a 6.3-fold genome coverage, 17-filter
set with a total of 313 344 clones (Yuet al., 2000). This num-
ber of filters is inconvenient and costly to handle, and the
total number of BAC clones is intractable for whole genome
physical mapping or sequencing. However, a reduction in this
library to a gene-space of only 12% of the total would make
it fit into two filters that would comprise only∼600 Mb. This
is about the same size as the rice genome, which has been
recently sequenced. A solution for the popular oligo prob-
lem should make it possible to develop an effective greedy
approach to BAC library screening, enabling a very inexpens-
ive method of identifying a large portion of the BAC clones
from the gene-space. This would also likely accelerate pro-
gress in many crop plant and other systems that are not being
considered for whole genome sequencing.

1.1 Our contribution
In this paper, we present an efficient algorithm to identify all
unique oligos in the ESTs and an efficient heuristic algorithm
to enumerate the most popular oligos. Although the unique
and popular oligos problems are complementary in some
sense, the two algorithms are very different because unique
oligos are required to appear in the ESTs while the pop-
ular oligos are not. In particular, the heuristic algorithm for
popular oligos is much more involved than that for unique
oligos, although their (average) running times are similar. The
algorithms combine well-established algorithmic and data
structuring techniques such as hashing, approximate string
matching and clustering, and take advantage of the facts
that (i) the number of mismatches allowed in these prob-
lems is usually small and (ii) we usually require a pair of
approximately matched strings to share a long common sub-
string [called a common factor in Rahmann (2002)]. These
algorithms have been carefully engineered to achieve satis-
factory speeds on PCs, by taking into account the distribution
of the frequencies of the words in the input EST dataset. For
example, running each of the algorithms for the barley EST
dataset fromHarvEST takes only a couple of hours (on a
1.2 GHz AMD machine). This is a great improvement over
other brute-force methods, like the ones based on BLAST2.
Simulations results show that the number of missed positives
by the heuristic algorithm for popular oligos is very lim-
ited and can be controlled very effectively by adjusting the
parameters.

2For example, one can identify unique oligos by repeatedly running BLAST
for each EST sequence against the entire dataset. This was the strategy
previously employed by theHarvEST researchers.
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1.2 Previous related work
The problem of finding infrequent and frequent patterns in
sequences is a common task in pattern discovery. A quite large
family of pattern discovery algorithms has been proposed in
the literature and implemented in software tools. Without
pretending to be exhaustive, we mentionMeme (Bailey and
Elkan, 1995),Pratt (Jonassenet al., 1995; Jonassen, 1997),
Teiresias (Rigoutsos and Floratos, 1998),Consensus (Hertz
and Stormo, 1999),Gibbs Sampler (Lawrenceet al., 1993;
Neuwaldet al., 1995),Winnower (Pevzner and Sze, 2000;
Keich and Pevzner, 2002),Projection (Tompa and Buhler,
2001; Buhler and Tompa, 2002),Verbumculus (Apostolico
et al., 2003, 2004),Mitra (Eskin and Pevzner, 2002), among
others. Although these tools have been demonstrated to per-
form very well on small and medium size datasets, they cannot
handle large datasets such as the barley EST dataset that we are
interested in. In particular, some of these tools were designed
to attack the ‘challenge’ posed by Pevzner and Sze (2000),
which is in the order of a few kb. Among the more general
and efficient tools, we tried to runTeiresias on the 28 Mb
barley EST dataset on an 1.2 GHz Athlon CPU with 1 GB of
RAM, without being able to obtain any result (probably due
to lack of memory).

The unique oligo problem has been studied in the con-
text of probe design (Li and Stormo, 2001; Rahmann, 2002;
Rouillard et al., 2002). The algorithms in (Li and Stormo,
2001; Rouillardet al., 2002) consider physical and struc-
tural properties of oligos and are very time-consuming. [The
algorithm in Rouillardet al. (2002) also uses BLAST]. A
very recent algorithm by Rahmann (2002) is, on the other
hand, purely combinatorial. It uses suffix arrays instead of
hash tables, and requires∼50 h for a dataset of 40 Mb on
a high-performance Compaq Alpha machine with 16 GB of
RAM. However, his definition of unique oligos is slightly
different from ours (to be given in the next section).

The rest of the paper is organized as follows. Section 2
defines the unique and popular oligo problems formally. The
algorithms are presented in Section 3. Experimental results
on the barley EST dataset and simulation results can be found
in Section 4. In Section 5, we draw some concluding remarks.

2 PRELIMINARIES
We denote the input dataset asX = {x1,x2, . . . ,xk}, where
the generic stringxi is an EST sequence over the alphabet
� = {A,C,G,T} and k is the cardinality of the set. Letni

denote the length of thei-th sequence, 1≤ i ≤ k. We set
n = ∑k

i=1 ni , which represents the total size of the input. A
string (or oligo) from� is called anl-mer if its length isl.

Given a stringx, we writex[i], 1 ≤ i ≤ |x|, to indicate
the i-th symbol inx. We usex[i,j ] as a shorthand for the
substringx[i],x[i+1], . . . ,x[j ] where 1≤ i ≤ j ≤ n, with
the convention thatx[i,i] = x[i]. Substrings in the formx[1,j ]
correspond to the prefixes ofx, and substrings in the formx[i,n]

to the suffixes ofx. A stringy occurs at positioni of another
stringx if y[1] = x[i], . . . ,y[m] = x[i+m−1], wherem = |y|.
For any substringy of x, we denote byfx(y) the number
of occurrences ofy in x. fX(y) denotes the total number of
occurrences ofy in x1, . . . ,xk.

The color-set ofy in the setX = {x1,x2, . . . ,xk} is a subset
col(y) = {i1, i2, . . . , il} of {1, 2,. . . ,k} such that ifij ∈ col(y)

theny occurs at least once inxij . We also say thaty has colors
i1, i2, . . . , il . The number of colors,l, ofy is denoted ascX(y).
ClearlyfX(y) ≥ cX(y).

Given two stringsx andy of the same length, we denote
by H(x,y) the Hamming distance betweenx andy, i.e. the
number of mismatches betweenx andy. If H(x,y) ≤ d, we
say thatx d-matchesy andx is ad-mutant ofy. The set of
all the strings thatd-matchx is called thed-neighborhood
of x. The notion of occurrences and colors can be extended to
d-occurrence andd-colors by allowing up tod mismatches.
If a stringy hasd-mutants atj distinct positions in a string
x, we say thaty hasj d-occurrences inx. If a stringy has at
least oned-occurrence in each ofj sequences inX, we say
thaty hasj d-colors inX.

In the context of DNA hybridization, most papers define
the specificity of anl-mer in terms of its mismatches to the
length-l substrings of target sequences, although some also
consider its physical and structural characteristics such as
melting temperature, free-energy, GC-content, and second-
ary structure (Li and Stormo, 2001; Rouillardet al., 2002). In
2002, Rahman took a more optimistic approach and used the
length of the longest common substring [called the longest
common factor (LCF)] as a measure of unspecificity. Given
the nature of our target applications, we will take a conservat-
ive approach in the definitions of unique and popular oligos.

Definition 2.1. Given the set X = {x1,x2, . . . ,xk} of ESTs
and integers l and d, a unique oligois an l-mer y such that
y occurs in one EST and the number of d-colors of y in X is
exactly one. In other words, y appears exactly in some EST
but does not appear approximately in any other EST.

Suppose that stringsx andy have the same length. For any
given constantsc,d, we say that stringx (c,d)-matches string
y if x andy can be partitioned into substrings asx = x1x2x3

and y = y1y2y3 with |xi | = |yi | such that (i)|x2| = c,
(ii) x2 = y2 and (iii) the stringx1x3 d-matches the string
y1y3. In the above partition, we callx2 a core in the(c,d)-
match betweenx andy. [Note that a(c,d)-match may have
many cores]. The notion ofd-occurrences andd-colors can
be easily extended to(c,d)-occurrences and(c,d)-colors.

Definition 2.2. Given the set X = {x1,x2, . . . ,xk} of ESTs
and integers l,d, c and T , a popular oligois an l-mer y such
that the number of (c,d)-colors of y in X is greater than or
equal to T . In other words, the l-mer y appears approximately
in at least T ESTs.
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The use of pooled oligo probes for BAC library screen-
ing (Han et al., 2000) generally have lengths from 24 to
40 bases. Given this range and based on discussion with
researchers from the Triticeae community, we considerl = 33
andd = 5 in the unique oligo problem. In the popular oligo
problem, we considerd = 1, 2, 3 andc = 20 andl = 36.

3 METHODS
Our goal is to determine unique and popular oligos for a
given setX of EST sequences. Although the objectives of
the two problems seem complementary, our algorithms are
quite different. The algorithm for the popular oligo problem
turns out to be much more involved because popular oligos
are not necessarily contained in the ESTs. Nevertheless, both
algorithms share some common strategies such as the idea
of separating dissimilar strings as early as possible to reduce
the search space. To achieve this in the popular oligo prob-
lem, we first find cores (i.e.c-mers) that appear exactly in
at least two ESTs. Then we cluster all length-l substrings of
the ESTs by their cores of lengthc using a hash table, and
then, within each cluster, we cluster again thel-mers based
on Hamming distance between regions flanking the cores.
Candidate popular oligos are then enumerated from the small
groups resulted from the two clusterings, and their number of
colors are counted. For the unique oligo problem, the notion
of cores, however, does not exist. On the other hand, due to
the small number of mismatches allowed (relative tol), two l-
mers thatd-match each other must contain a pair of substrings
that 1-match each other. Such substrings are called seeds. We
can thus cluster the ESTs by their seeds using a dictionary. For
each cluster, we compare the ESTs in the cluster by counting
mismatches in the regions flanking the seeds. The details are
given below.

3.1 Unique oligos
Recall that the unique oligo problem is to identify length-l

substrings of the ESTs that have exactly oned-color in the
datasetX, for a given value ofd. Our strategy is first to
eliminate all thesel-mers that cannot be unique oligos. The
algorithm is based on the following observation. Assume that
x andy are twol-mers such thatH(x,y) ≤ d. Divide bothx

andy into t = �d/2� + 1 substrings. That isx = x1x2 · · · xt

andy = y1y2 · · · yt , where the length of each substring is
q = �l/t	, except possibly for the last one. In practice, one
can always choosel andd so thatl is a multiple of t and
hencex andy can be decomposed intot substrings of length
q, which we call seeds. It is easy to see that sinceH(x,y) ≤ d,
at least one of the seeds ofx has at most one mismatch with
the corresponding seed ofy.

Using this idea, we design an efficient two-phase algorithm.
In the first phase, we cluster all the possible seeds from the
ESTs into groups such that within each group, a seed has no
more than one mismatch with the other seeds. In the second

phase, we check whether extending the flanking regions of a
seed would result in ad-match with the corresponding exten-
sion of any other seed in the same group. If so, thel-mer given
by this extension is not a unique oligo.

Phase 1. (Hit) We file all q-mers (seeds) from the input
ESTs into a dictionary with 4q entries. (If 4q cannot fit in the
main memory, one could use a hash table of an appropriate
size.) Each entry of the table points to a list of locations where
theq-mer occurs in the EST sequences. Using the table we
can immediately locate identical seeds in the ESTs.

Phase 2. (Extension) We compare the corresponding
flanking regions of each pair of matching seeds to determine
whether they can be extended to a pair ofl-mers thatd-match
each other. Here, we also collect seeds that have exactly one
mismatch with each other as follows. For each table entry
corresponding to a seedy, we record a list of other seeds that
have exactly one mismatch withy, by looking up table entries
that correspond to all the 1-mutants ofy. This list is called a
mutant list ofy. We examine all the seeds in the mutant list,
and compare the flanking regions of theq-mers and that of
y in the same way as we did for identical seeds, except that
now the cutoff for the number of mismatches in the flanking
regions isd − 1.

The algorithm is summarized in Figure 1.

Time complexity. Suppose that the total number of bases in
X isn. The time complexity of phase one is simply�(qn+4q),
where the second term reflects the time needed to initialize
the hash table. The time complexity of phase two depends
on the distribution of the number of seeds filed into each
table entry. Simply speaking, if the distribution is more or
less uniform (which is the case in our experiment) and each
table entry containsr ≈ n/4q identical seeds, the number
of comparisons within the table entry isO(r2). The number
for comparisons for each mutant lists of size 3q is O(qr2).
Each comparison requires extension of the seeds and takes
2(l − q) time. Since there are 4q entries in the table, the over-
all time complexity isO[(l−q)qr24q ]. Given the exponential
dependency onq, one needs to make sure thatq is not too large
before using the algorithm. (Again, in our experiment on the
barley dataset,l = 33,d = 5 andq = 11.)

In practicing EST data analysis, we also need to consider
the reverse complementary strand of each EST, which implies
more stringency in the choice of unique oligos. The above
algorithm can be easily modified to take into account reverse
complementary EST strands without a significant increase in
complexity.

3.2 Popular oligos
Recall that the objective is to find alll-mers that have suf-
ficiently large number of(c,d)-colors in X. Since popular
oligos are not required to appear exactly in the EST sequences,
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Fig. 1. The algorithm for identifying unique oligos.

the algorithm based on exhaustive enumeration is computa-
tionally very expensive. In fact, one can easily show that the
problem is NP-hard in general.

The ‘exhaustive’ algorithm considers alll-mers occuring
in the ESTs and for eachl-mer, enumerates all its(c,d)-
mutants and count their number of(c,d)-colors. However, the
number of(c,d)-mutants of anl-mer over the DNA alpha-
bet is more than

(
l−c
d

)
3d . As a consequence, the exhaustive

method becomes computionally impractical due to its memory
requirement as soon as the input size reaches the order of
hundreds of thousands of bases (like the barley dataset)3.

3Whend = 3 andc = 20,
(
l−c
d

)
3d = (13

3

)
33 = 7722 for the barley dataset.

Hence, the straightforward algorithm would have to count the number of
colors for about 7722· 28× 106 = 217× 109 l-mers.
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Fig. 2. An overview of the algorithm for selecting popular oligos. For convenience of illustration, the length of the oligos is assumed to be
l = 36, and the length of the cores is assumed to bec = 20.

We can reduce the search space using the same idea as in
the algorithm for unique oligos, except here that the role of
seeds is played by cores. Observe that, if a (popular) oligo has
(c,d)-occurrences in many ESTs, many of these ESTs must
contain length-l substrings that share common cores. Based
on this observation, we propose a heuristic strategy that first
clusters thel-mers in the EST sequences into groups by their
cores, and then enumerates candidatel-mers by comparing
the members of each cluster in a hierarchical way.

An outline of the algorithm is illustrated in Figure 2.
Here, we determine the popularity of the cores (i.e. length-c

substrings) from the ESTs in the first step. For each popular

core, we consider extension of the cores intol-mers by includ-
ing flanking regions and cluster them using a well-known
hierarchical clustering method, called unweighted pair group
method with arithmetic mean (UPGMA) (Swofford, 2002).
We recall that UPGMA builds the tree bottom-up in a greedy
fashion by merging groups (or subtrees) of data points that
have the smallest average distance. Based on the clustering
tree, we compute the common oligos shared by thel-mers by
performing set intersection. These common oligos shared by
many l-mers become candidate popular oligos. Finally, we
count the number of colors of these candidates, and output
the oligos with at leastT colors. A more detailed description
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is given below. A complete example of the algorithm on a toy
dataset is also given in the section 3.2.1.

Phase 1. We compute the number of colors for allc-mers
in the ESTs to determine whether they could be candidate
cores for popularl-mers, using a hash table. According to our
definition, a popular oligo should have a popular core. We
therefore set a thresholdTc on the minimum number of colors
of each popular core, depending onT , c, l andX. All cores
that have a number of colors belowTc are filtered out, and
considered ‘unpopular’. However, since anl-mer can(c,d)-
match anotherl-mer with any of itsl−d+1 cores, it is possible
that we might miss some popular oligos that critically depend
on unpopular cores. The parameterTc represents a tradeoff
between precision and efficiency. We will show in Section 4
the effect of changingTc on the output. We will see that in
practice we might miss only a negligible number of popular
oligos.

Phase 2. Here we collect the substrings flanking the pop-
ular cores. For each popular core, we constructl−c+1 sets of
substrings, one for each possible extension of the core into an
l-mer. Each set contains substrings of lengthl −c constructed
by concatenating the left and right flanking regions.

Phase 3. For each set of flanking substrings, we would
like to identify all (l − c)-mers that haved-occurrences
in many of these substrings. In order to achieve this effi-
ciently, we first cluster the substrings according to their mutual
Hamming distance using the well-known hierarchical cluster-
ing method UPGMA. In the process of building the clustering
tree, whenever the Hamming distance between a pair of
leaves in the tree is zero we compress the distance matrix
by combining the identical strings into one entry. This sig-
nificantly reduces the running time not only because the tree
becomes smaller, but also because the number of common
d-mutants of two differentl-mers is much less than that of two
identical ones. As we can see later, a significant proportion
of the running time is spent on the intersection of the sets of
d-mutants. Compressing the distance matrices avoids inter-
secting identical sets ofd-mutants, which is expensive and
also useless. We then create a set ofd-mutants for each sub-
string represented at the leaves and traverse the tree bottom-up.
At each internal nodeu, we compute the intersection of the two
sets attached to the children, using a hash table based on the
hash function described in (Wesselink, 2002). This intersec-
tion represents all the(l − c)-mers that haved-occurrences
in all the leaves (substrings) under the nodeu. As soon as
the intersetion of some internal node, sayu, becomes empty,
we cut the tree atu. Each subtree represents a cluster, and
the set of(l − c)-mers attached to the root are the elements
of the cluster. The size of the cluster is therefore equal to
the number of leaves in the tree. Because small clusters are
unlikely to contain popular oligos, we discard all trees whose
size is smaller thanCmin. At the end of this process, we
obtain a collection of sets of(l − c)-mers, each of which,

together with the popular core, represents a candidate popular
oligo.

Phase 4. Given the candidate popular oligos, we need
to count their number of(c,d)-colors. Before counting, we
radix-sort the candidates and remove duplicates. More pre-
cisely, due to the possibly very large number of candidates
and duplicates (as in the barley case), we sort the candidates
in several stages as follows. For each core, we radix-sort all
the candidates derived from the core and remove duplicates.
Then, we merge the sorted list into the sorted list contain-
ing all the candidates from those cores that have already been
processed.

Time complexity. Phase 1 costsO(cn) time. In phase 2,
if the number of popular cores selected in the first step isp

and the average number of occurrences of the cores isr, this
phase costsO[nr(l − c)]. For phase 3, the time for building a
UPGMA tree, including the computation of the distance mat-
rix, is O[(l − c)r2], wherer stands for the number of strings
to be clustered. Since a (binary) UPGMA tree withr leaves
has 2r −1 nodes, the time for traversing (and pruning) the tree
is O

[
r
(
l−c
d

)
3d

]
, where

(
l−c
d

)
3d is the number ofd-mutants at

each leaf. Finally for phase 4, if the total number of candid-
ates ism, counting the colors for the candidates, excluding
the time for radix-sort, costs timeO[rm(l − c)].
3.2.1 An example of the popular oligo algorithm We show
a small example to illustrate each step of the algorithm. Again,
let l denote the length of oligos,c the length of cores,d the
maximum number of mismatches between two oligos andTc

the threshold on the minimum number of colors of popular
cores. In this toy example,l = 8,c = 5,d = 1,Tc = 3.
The input comprises four artificial EST sequences as shown
in Figure 3.EST1 andEST3 are highly similar, which rep-
resents the similarity between some of the EST sequences in
real data.

Phase 1. A total of 7 cores out of 148 possible cores are
selected as popular cores. Each entry of the hash table points
to a list of positions of the occurrences of the core in the
input ESTs.

Phase 2. We collect the flanking regions for the seven
cores. Figure 4 shows the four sets of flanking regions for
AAGGC. Each string in the set is obtained by concatenating
the left and the right flanking regions. Note that the fourth set
has one fewer element than the other three sets. The reason is
that the coreAAGGC occurs at the right boundary ofEST0,
and therefore has a shorter flanking region.

Phase 3. We cluster the flanking regions using UPGMA
(Fig. 5). In Figure 6, we show the clusters for set 2 of the core
AAGGC. Observe that the Hamming distance between entries
2 and 4 is zero and therefore distance matrix is compressed by
combining the identical strings into one entry. We then need
to enumerate all the 1-mutants of the strings denoted by the
leaves of the trees, i.e.AAA,TGG andGGC. Because leaf 1 and
leaf 3 share the same parent, we apply intersection on their
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AAAAGGCAGCTTATAATCTCCATATCGCTG

GTGAAGGAGGTAGATACTCGTATACGATCACTGCCTA

>EST3

GGCCCGTGCGC

TCCGACTACTGCACCCCGAGCGGATCACACAATGGAA

>EST2

AGGCAGCTTATAATCTCCACTGCT

GTGAAGGAGGTAGATCAAATAGAGCCTGCCCTAAAA

>EST1

GGCGA

TGGAGTCCTCGGACACGATCACATCGACAATGTGAA

>EST0

33GAAGG

TGAAG

0

ATCAC

AAGGC

GTGAA

GATCA

ACTGC

32

0

0

17

340

0 31

0 16

1 54

1

1 1

2

2 23

1 35

1 0

1 12

2 7

2 34

13

3 26

2 35

3 0

2 22

3 29

23

3 40

3 25

Fig. 3. The example dataset (l = 8,c = 5,d = 1,Tc = 3). The table of popular cores.

GTG GAAAGGC 1. GTG 1. TGG
2. AAA2. AAA

3. TGG
4. AAA

3. GGC
4. AAA

set 1 set 2

1. GGA

3. GCC
4. AAG 

2. AAG 1. AGC

3. AGC
2. CCG

AAA AAGGC AGC
AAGGCTGG CCG
AAGGC AGCAAA

flanking region

core

set 3 set 4

Fig. 4. Collecting flanking regions for the core. There are four sets
of flanking regions forAAGGC.

3
2
3
0

0
3
0
3

3
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3
2

0
3
0
3

AAA
GGC
AAA
TGG

4
3

1
2

1 2 3 4

make tree

compressionAfter

Before compression

1 3 (2, 4)
3

1

2

2 4 1 3

1

2

3make tree

GGC

1 (2, 4)3

3
0
3

3
2

0 2
3
0

AAA
TGG1

(2, 4)
3

Fig. 5. UPGMA tree construction for set 2 of the coreAAGGC.

sets of 1-mutants and get the setI1 = {GGG, TGC}. Then,
we apply intersection betweenI1 andI3, whereI3 represents
the set of the 1-mutants of leafAAA. Since the resulting inter-
sectionI2 is empty, we prune the tree atI2 and separately
output the strings inI1 andI3 as flanking regions of candidate
popular oligos. Note that, we output the 1-mutants ofI3 even
if it is represented only by one node, because it is actually
the intersection of two occurrences ofAAA, and therefore,
all elements ofI3 have at least twod-matches in the EST
sequences.

3.2.2 Post processing of popular oligos As it turns out, the
set of oligo candidates generated by the algorithm described
above cannot be used directly because in practice it produces
too many candidates, most of which are very similar to one
another. To give an example, when the thresholdTc on the
color of the cores is five, the number of candidates gener-
ated from the Barley EST database is about 527 million (see
Fig. 8). Post processing is therefore necessary to reduce the
number of oligos. We call this final cleaning phase, oligo
compression.

The first step in the cleaning phase is to remove oligos that
may be unsuitable for hybridization. If the GC-content of an
oligo is outside a given range, say 45–55%, the hybridization
probably would not take place. For the same reason, oligos
containing repeats such as poly-(A)s, poly-(T)s, etc., should
not be considered suitable. Oligos with unsuitable GC-content
or containing simple repeats are, in fact, eliminated before
compression.

In order to explain the oligo compression phase, let us intro-
duce a couple of useful concepts. If an oligo(c,d)-occurs
at least once in an EST sequence, we say that oligo covers
the EST. In general, each oligo covers a set of ESTs, and each
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CGG
GGG

TAG
TCG
TTG
TGA
TGC

TGT

AGG AGC
CGC
TGC

GAC
GCC
GTC
GGA
GGG

GGT

emtpy2

1 3 (2, 4)

1

3

= 1

1 3

cluster 1

(2, 4)

3

cluster2

cut tree

Candidates (from core AAGGC):

AAAAGGCA
AGAAGGCA
GGAAGGCG
CAAAGGCA
ATAAGGCA

TGAAGGCC
GAAAGGCA
AAAAGGCC
TAAAGGCA
AAAAGGCG

ACAAGGCA AAAAGGCT

TAA

ATA

CAA
GAA

ACA
AGA

AAC

AAT
AAG

1-mutants of TGG: 1-mutants of GGC:1-mutants of AAA:

Fig. 6. Clustering set 2 of the coreAAGGC.

EST is covered by a set of oligos. Recall that the number
of ESTs covered by an oligo corresponds to the(c,d)-colors
of that oligo. For a setS of oligos, the coverage ratio is the
ratio between the number of ESTs covered by the oligos inS

and the size of the setS. Intuitively, the coverage ratio is the
average number of(c,d)-colors per oligo.

The objective of oligo compression is to maximize the
coverage ratio, i.e. to select a set of popular oligosS from the
large pool of candidates, such that the number of covered ESTs
is not changed, but the number of selected popular oligos is
minimized. More specifically, while we were trying to reduce
the size ofS, we made sure that the number of covered ESTs
would not decrease. It turns out that the general problem of
oligo compression is a variant of the Set Covering problem,
which is known to be NP-complete (see, Garey and Johnson,
1979).

Since the general problem is NP-complete, it is unlikely
that there exists a poly-time algorithm that finds the optimal
solution. As a workaround, we use a greedy strategy that,
in general, will find a suboptimal solution. The algorithm is
articulated in two steps.

In the first step, for each covered EST we select a set of
oligos with high colors, as follows. When a candidate oligo
w is generated, we obtain the set of ESTs covered byw. For
each covered ESTs, we decide whether oligow should be dis-
carded or kept as the top candidate. At the end of this step,
we get a pool of ESTs each of which is covered by several
oligos. In the second step, we use the greedy approximation
algorithm for the Set Covering problem (see, e.g. Cormen
et al., 1990). First, we select an oligo with the highest number
of colors, and remove all ESTs covered by this oligo from
the EST pool. Then, we update the colors of all other oligos.
We repeat the latter step until the EST pool becomes empty.
Note that updating the colors iteratively is critical because the
intersection of the sets of covered ESTs for the initial pool of

candidates is likely to be non-empty. The greedy algorithm
has a ratio bound asH(Cmax), whereCmax is the maximum
number of colors, andH(d) denotes thed-th harmonic num-
ber (see Cormenet al., 1990). The method is simple and space
efficient since it can compress oligos on-line and avoid storing
hundreds of million of candidates in main memory.

4 RESULTS
We have implemented both algorithms in C++ and tested
the programs on a desktop PC with a 1.2 GHz AMD Athlon
CPU and 1 GB RAM, under Linux. The current version of
the program is available from the authors upon request. The
code can be compiled using the GNUg++ compiler under
several platforms. The compilerg++ can be freely obtained
at http://gcc.gnu.org/. We are currently designing a web server
to make the program more user-friendly.

4.1 Simulations
To evaluate the performance of our heuristics for selecting
popular oligos, we first ran a few simulations as follows. We
generated a set of artificial ESTs by creating first a set ofk

random sequences and then injecting a controlled number of
approximate occurrences of a given set of oligos. The initial
set of oligos, denoted byI1, . . . , Is , was also generated ran-
domly over�. Each oligoIi was assigned a predetermined
number of colorsCi . We decided that the distribution of theCi

should be Gaussian, i.e. we definedCi = cmaxe−i2/2/
√

2π ,
where cmax is a fixed constant that determines the max-
imum number of colors. As discussed above, the positions
in between the oligos were filled with random symbols over
the DNA alphabet.

We then ran our program for popular oligos on the artificial
ESTs dataset and output a set of candidate oligosO1, . . . ,Ot

with their respective colorsC′
1, . . . ,C′

t . The output oligos were
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Fig. 7. Left: distribution of frequencies of seeds in barley ESTs. Right: Distribution of unique oligos. The horizontal axis stands for the
percentage of unique oligos over all 33mers in an EST, and the vertical axis stands for the number of ESTs whose unique oligos are at a certain
percentage of all its 33mers.

Table 1. The average relative errors between the number of colors in the input
and the number of colors in output for a simulated experiment (n = 1 440 000,
k = 2000,c = 20,cmax = 100,s = 100,l = 36)

d = 2 d = 3

Tc = 10 0.0155 0.0500
Tc = 15 0.0003 0.0033
Tc = 20 0.0048 0.0005
Tc = 25 0.0008 0.0023
Tc = 30 0.0005 0.0028

sorted by colors, i.e.C′
i ≥ C′

j , if i < j . Since the output
contained redundant candidates that came from the mutations
of the original popular oligos, we removed those candidates
that were ad-mutant of another oligo with an higher number
of colors. More precisely, ifOi was ad-mutant ofOj , and
1 ≤ i < j ≤ t , thenOj was discarded.

Finally, we compared the pair(I ,C)with (O,C′). The more
similar (O,C′) is to (I ,C), the better is the heuristic of our
algorithm. Recall thatI and O were sorted by decreasing
number of colors. We compared the entries in(I ,C) with the
ones in(O,C′), position by position. For each 1≤ i ≤ u,
whereu = min(s, t), we computed the average difference
betweenC and C′ as E = (1/u)

∑u
i=1(|Ci − C′

i |)/(C′
i ).

If we assume thatI andO contain the same set of oligos,
the smaller isE, the more similar is(I ,C) to (O,C′). To
validate this assumption, we also searched the list of oligos
I in O, to determine whether we missed completely some
oligos.

Table 1 shows the value ofE for four runs of the program
on a dataset ofn = 1 440 000 bases comprising byk = 2000
sequences each of size 720. We generated a set ofs = 100
oligos with a maximum number of colorscmax = 100. In

this analysis, we fixed the length of the core to bec = 20,
whereas the maximum number of mismatchesd outside the
core and the thresholdTc were varied. The results show that
the average relative error is below 2%. We also compared
the list of input oligos with the list of output oligos and we
found that sometimes the program misses one or two oligos
out of 100. However, the number of colors of these missed
oligos is always near the thresholdTc. We never miss an oligo
whose number of color is aboveTc + 10.

4.2 Experimental results
The main dataset is a collection barley ESTs fromHarvEST

containingk = 46 145 EST sequences with a total ofn =
28 475 017 bases. Before performing the searches, we first
cleaned the dataset by removing Poly(T) and Poly(A) repeats.

As mentioned above, our first task was to search for unique
oligos of lengthl = 33 with a minimum number of mis-
matchesd = 5. Based on these parameters, each oligo was
divided into three seeds of lengthq = 11. Hence, our diction-
ary table had 411 ≈ 4 million entries. The efficiency of our
algorithm critically depends on the statistical distribution of
the seeds in the dictionary. The statistics of the seeds in our
experiment (before the extension phase) is shown in table in
the left-hand side of Figure 7. Clearly, most seeds occur less
than 20 times in the ESTs and this is the main reason why our
algorithm was able to solve the dataset efficiently. The final
distribution of unique oligos is shown in the right-hand side
of Figure 7. Note that, there are many ESTs (slightly more
than half of the entire dataset) whose length-33 substrings
are almost unique oligos. In particular, there are 13 430 ESTs
whose length-33 substrings are all unique oligos and there are
2159 ESTs that contain no unique oligos. The whole com-
putation took 2 h and 26 min and used about 200 MB of
memory.
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Fig. 8. Results of running the algorithm on the Barley dataset. Shown are the number of candidates generated by the algorithm (in millions),
the number of ESTs covered, the final number of popular oligos, the coverage ratio and the time taken by the algorithm (for different choices
of Tc).

Table 2. Distribution of the number of colors of the cores

Colors Number of cores

1 22 523 412
2–10 21 28 677

11–20 5148
21–30 1131
31–40 492
41–50 346
51–60 242
61–70 77
71–80 34
81–90 29
91–100 43

101–176 19

The left column is the range of the number of colors. The right column is the number of
cores with a certain number of color.

Our second task was to search for popular oligos with
length l = 36 and core lengthc = 20. We considered
different choices for the maximum number of mismatches
d outside the core and the thresholdTc on the minimum
number of colors for the popular cores. The thresholdCmin

on the size of the clusters was set equal to the value of
thresholdTc.

The distribution of the number of colors of the cores is
shown in Table 2. From the table, we can see that the num-
ber of cores decreases almost exponentially as the number of

colors increases. On the other hand, cores with low colors
are unlikely to contribute to popular oligos. Therefore, it is
important to filter them out to increase the efficiency.

The running time of this program varies with the parameters
d and Tc, as shown in Figure 8. The memory used in the
program was mainly for storing the candidate popular oligos.
Figure 8 also shows the number of candidates generated by
the algorithm (in millions), the number of ESTs covered, the
final number of popular oligos and the coverage ratio, for
different choices of the thresholdTc. The post-processing,
especially the oligo compression phase, reduces the number of
candidates from hundreds of millions to less than a thousand,
while the number of covered ESTs was kept unchanged. By
selecting the appropriate thresholdTc, one can obtain a set of
oligos with good coverage ratio in a few hours using a standard
desktop PC.

5 CONCLUSIONS
We have proposed two algorithms to find unique and popular
oligos in large EST databases. The size of our dataset, in the
order of tens of millions of bases, was the real challenge due to
the limitation in the size of main memory in common 32-bits
architectures. Our algorithms were able to produce a solution
in a reasonable amount of time on a regular PC with a modest
amount of memory. As far as we know, no other existing tools
are capable of handling such a dataset with limited resources.
Simulations show that the number of missed oligos by the
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heuristic algorithm for popular oligos is negligible and can
be controlled very effectively by adjusting the parameters.
Although the algorithms were initially designed to address
the challenges from the barley EST dataset, the methods can
be easily adapted to solve similar problems concerning infre-
quent and frequent oligos on other large datasets. The software
will be released in the public domain in the near future.
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