
A compression-boosting transform for

two-dimensional data?

Qiaofeng Yang1, Stefano Lonardi1, and Avraham Melkman2

1 Dept. of Computer Science & Engineering
University of California
Riverside, CA 92521

2 Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel 84105

Abstract. We introduce a novel invertible transform for two-dimensional
data which has the objective of reordering the matrix so it will improve
its (lossless) compression at later stages. The transform requires to solve
a computationally hard problem for which a randomized algorithm is
used. The inverse transform is fast and can be implemented in linear
time in the size of the matrix. Preliminary experimental results show
that the reordering improves the compressibility of digital images.

1 Introduction

Every day massive quantities of two-dimensional data are produced, stored and
transmitted. Digital images are the most prominent type of data in this cat-
egory. However, matrices over finite alphabets are used to represent all sorts
of information, like graphs, database tables, geometric objects, etc. From the
compression standpoint, two-dimensional data has to be treated differently than
one-dimensional data. In order to obtain good compression of 2D data, one has
to exploit the dependencies (or equivalently, expose the redundancies) both be-
tween the rows and the columns of the matrix.

Lossless compression algorithms are typically composed by a pipeline of in-
dependent stages, usually ending with a statistical encoder. For example, the
celebrated bzip2 employs a pipeline composed by the Burrows-Wheeler trans-
form (BWT), a move-to-front encoder, and finally an Huffman compressor. Each
step somewhat reorder the data so that redundancies get exposed and removed
by the subsequent stages. The objective of the BWT is exactly that of elucidating
the dependencies between adjacent symbols in the original text string.

In this paper we propose an invertible transform for two-dimensional data
over an alphabet Σ. For simplicity, we assume Σ = {0, 1}. The extension to larger

? This project was supported in part by NSF CAREER IIS-0447773, and NSF DBI-
0321756. AM was supported in part by the Paul Ivanier Center for Robotics Research
and Production Management. A one-page abstract about this work appeared in the
Proceedings of Data Compression Conference, Snowbird, Utah, 2005.

alphabets is immediate and is not pursued here. The goal of the transform is to
“boost” the compression achieved by later stages. The transform is described by
a simple recursive algorithm, which can be outlined as follows.

Given the matrix to be transformed, first search for the largest columnwise-

constant (resp., rowwise-constant) submatrix, that is, a submatrix identified by
a subset of rows and the columns (which are not necessarily contiguous) whose
columns (resp., rows) are constant (i.e., either all 0 or 1). Reorder the rows and
the columns such that the columnwise-constant (or rowwise-constant) submatrix
is moved to the left-upper corner of the matrix. Recursively apply the transform
on the rest of the matrix. Stop the recursion when the partition produces a
matrix which is smaller than a predetermined threshold (see Figure 3 for an
illustration of this process).

The intriguing question is whether this somewhat simple matrix transfor-
mation helps compression. Arguments can be made in favor or against. On one
hand, each columnwise-constant (or rowwise-constant) submatrix can be rep-
resented compactly in a canonical form (first all the 0-columns, then all the
1-columns) by the list of its rows and columns. If a matrix can be decomposed
into a small number of large constant submatrices, one would expect an im-
provement in compressibility. On the other hand, while the transform groups
together portions of the matrix which are similar, the reordering can also break
the local dependencies that exist in the original matrix between adjacent rows
and columns. Breaking these dependencies could increase the entropy and have
a negative impact on the compressibility.

The contribution of this paper is twofold. First, we present a novel invertible
transform for 2D data. The design of the transform went through a series of
refinements, and here we present the result of such process (Section 5). We
also studied the computational cost of the transform, which turns out to be
unbalanced. The inverse transform is extremely fast and simple, whereas the
direct transform is very expensive. Our compression-boosting phase is therefore
suitable to applications in which the data is compressed once and decompressed
many times, like large repositories of digital images where images are stored and
rarely modified.

The computational cost of the forward transform depends on the complexity
of finding the largest columnwise-constant/rowwise-constant submatrix. In [1] we
studied theoretically the general version of this problem. Although the problem
turns out to be NP-hard, a relatively simple randomized algorithm that has good
performance in practice was introduced in [1]. For completeness of presentation,
we will briefly outline the algorithm in Section 4. The interested reader can refer
to the original paper for more details.

Second, we study empirically the effects of the transform on the compressibil-
ity of two-dimensional data by comparing the performance of gzip and bzip2

before and after the application of the transform on synthetic data and digital
images. The preliminary results in Section 6 show that the transform boosts
compression.

In closing, we want to point out that since our transform simply changes
the representation of the data and it does not deal with the encoding problem
(i.e., assigning bits to symbols), here we are not proposing a complete data
compression software tool. Also, since we our transform is not optimized for
digital images, the transform is not an image compression tool either. As said
above, the primary use of our transform primary is as a preprocessing step to
reorder the data so that the downstream compression with standard lossless
encoder would be more efficient.

2 Related works

Since we are not proposing a new compression method, we will not delve into the
vast literature on lossless image compression. There are however, a few related
works on the idea of reordering the columns and/or the rows of a matrix with
the objective of reducing the storage space or the access time to the element of
the matrix.

In [3–5], the main concern is to compress database tables by exploiting the
dependencies between the columns. In [3], Buchsbaum et al. observe that parti-
tioning the table into blocks of columns and compressing each block of columns
individually could improve compression. The key problem is to find the optimal
partition of columns. In the follow-up paper [4], the authors add the possibil-
ity of rearranging the columns. Their tool, called pzip outperforms gzip by a
factor of two on database tables. Along the same line of research, the authors
of [5] introduce the k-transform which captures the dependencies between k + 1
columns of a matrix. Although the problem of computing the k-transform for
k ≥ 2 is NP-hard, the proposed polynomial-time heuristic for the 2-transform
performs remarkably well compared to pzip, bzip2 and gzip.

The task of compressing boolean (sparse) matrices is also addressed in [6–
10]. For example, in [9] the objective is to reorder the columns of a matrix such
that the 1’s in each row appear consecutively. Again, the problem of finding a
reordering which minimizes the number of runs of 1’s is NP-hard. This problem
reduces to solving a traveling salesman problem for which the authors propose an
heuristic algorithm. In [10] the objective is to find a reordering of both rows and
columns of a boolean matrix so that the matrix can be broken into homogeneous
rectangles and the description complexity involved in describing those rectangles
(called cross-association) is minimized. The problem is defined in an information
theoretical context and a two-stage heuristics algorithm is proposed.

3 Notations and problem definition

The input to the transform is a two-dimensional n × m matrix X ∈ {0, 1}n×m.
The element (i, j) of X is denoted by X[i,j]. A contiguous submatrix from row
i1 to row i2 and from column j1 to column j2 is denoted by X[i1:i2,j1:j2].

A row selection of size k of X is defined as a subset of the rows R =
{i1, i2, . . . , ik}, where 1 ≤ is ≤ n for all 1 ≤ s ≤ k. Similarly, a column se-

lection of size l of X is defined as a subset of the columns C = {j1, j2, . . . , jl},
where 1 ≤ jt ≤ m for all 1 ≤ t ≤ l. Given a row selection R, we say that a
column j, 1 ≤ j ≤ m, is constant with respect to R if the symbols in the j-th
column of X restricted to the rows in R, are identical.

The submatrix X[R,C] induced by the pair (R, C) is defined as the matrix

X[R,C] =

X[i1,j1] X[i1,j2] · · · X[i1,jl]

X[i2,j1] X[i2,j2] · · · X[i2,jl]

· · · · · · · · · · · ·
X[ik,j1] X[ik,j2] · · · X[ik,jl]

A submatrix induced by a pair (R, C) is called columnwise-constant (resp.,
rowwise-constant) if all its columns (resp., rows) are constant. Hereafter, for
brevity we will use the term constant submatrix to denote either a columnwise-
constant or a rowwise-constant submatrix.

Example. Given the 6 × 6 matrix X =

001011

101101

100110

101001

111101

110110

over the alphabet Σ = {0,1},

a selection (R, C) = ({2, 4, 5}, {1, 3, 5, 6}) results in the columnwise-constant

submatrix X[R,C] =
1101

1101

1101

. X[R,C] is the largest area columnwise-constant sub-

matrix in X .
The main computational problem is the following. Given a matrix X ∈

{0, 1}n×m, find a constant submatrix with the largest area. This problem is
strongly related to the Maximum Edge Biclique problem since a n × m bi-
nary matrix can also be interpreted as the adjacency matrix of a bipartite graph.
The biclique problem requires to find the biclique which has the maximum num-
ber of edges which corresponds to the largest constant submatrix composed only
of 1’s. This problem was proved to be NP-hard in [11] by reduction to 3Sat.
The weighted version of this problem was shown to be NP-hard by Dawande et

al. [12]. A 2-approximation algorithm based on LP-relaxation was given in [13].

4 Finding the largest columnwise-constant submatrix

Given that the problem of finding the largest constant submatrix of 1’s is NP-
hard, it is unlikely that a polynomial time algorithm could be found. In [1] we
introduced a randomized algorithm which is able to find the optimal solution
with probability 1 − ε, where 0 < ε < 1. For completeness of presentation,

1

1

1

1

1

1

1

1

1

1

1

1

0 0 1

0

0

0 0

0

1

1

0

1

0

1

0

0

1

0 1

0 0 1 00

S S C*

U

1

1

1

1

1

1

11

11

11

11

11

11

0 0 11

0

00

00 00

00

11

11

00

11

00

11

00

00

11

00 1

00 0 1 0000

C*

11:3

10:1

01:1

00:1

1

1

1

1

1

1

11

11

11

11

11

11

00 00 11

0

00

00 00

00

11

11

00

11

00

11

00

00

11

00 1

00 00 11 0000

R

1

1

1

1

1

1

1

1

1

1

1

1

00 00 11

0

00

00 00

00

11

11

00

11

00

11

00

00

11

00 1

00 00 11 0000

C

Fig. 1. An illustration of a recovery of a constant submatrix (shaded boxes), assuming
r∗ = 3

next we give a brief outline of the algorithm for the largest columnwise-constant
submatrix. Rowwise-constant submatrices can be found along the same lines.

Recall that we are given a matrix X ∈ {0, 1}n×m and the objective of the
algorithm is to discover a columnwise-constant submatrix X(R∗,C∗). Let us as-
sume that the submatrix X(R∗,C∗) is maximal. To simplify the notation, let us
call r∗ ≡ |R∗| and c∗ ≡ |C∗|.

The key idea is the following. Observe that if we knew R∗, then C∗ could be
determined by selecting the constant columns with respect to R∗. If instead we
knew C∗, then R∗ could be obtained by taking the maximal set of rows which
read the same symbol on the columns C∗. Unfortunately, neither R∗ nor C∗ is
known. Our approach is to “sample” the matrix by randomly selecting subsets
of columns (or rows), expecting that eventually one of the subsets will overlap
with the solution (R∗, C∗).

In the following we describe how to retrieve the solution by sampling columns
(one has also the choice to sample the rows). First, select a subset S of size k

uniformly at random from the set of columns {1, 2, . . . , m}. Assume for the time
being that S ∩ C∗ 6= ∅. If we knew S ∩ C∗, then (R∗, C∗) could be determined
by the following three steps (1) select the string(s) w that appear exactly r∗

times in the rows of X[1:n,S∩C∗], (2) set R∗ to be the set of rows in which w

appears and (3) set C∗ to be the set of constant columns corresponding to R∗.
An example is illustrated in Figure 1.

The algorithm would work, but there are a few problems that need to be
solved. First, the set S ∩ C∗ could be empty. The solution is to try several
different sets S, relying on the argument that the probability that S ∩C∗ 6= ∅ at

least once will approach one with more and more selections. The second problem
is that we do not really know S∩C∗. But, certainly S∩C∗ ⊆ S, so our approach
is to check all possible subsets of S. The final problem is that we assumed that we
knew r∗, but we do not. The solution is to introduce a row threshold parameter,
called r̂, that replaces r∗.

As it turns out, we need another parameter to avoid producing submatrices
with small area which could potentially degrade the compressibility at later

Largest Columnwise Constant Submatrix(X, t, k, r̂, ĉ)
Input: X is a n ×m matrix over {0, 1}

t is the number of iterations
k is the selection size
r̂, ĉ are the “thresholds” on the number of rows and columns, resp.

1 repeat t times

2 select randomly a subset S of columns such that |S| = k

3 for all subsets U ⊆ S do

4 D ← all strings composed of either 0 or 1 induced by X[1:n,U] that
appear at least r̂ times

5 for each string w in D

6 V ← rows corresponding to w

7 Z ← all constant columns corresponding to V

8 if |Z| ≥ ĉ then save (V, Z)
9 return the (V, Z) that maximizes |V | × |Z|

Fig. 2. A sketch of the algorithm that discovers large columnwise-constant submatrices

stages as discussed in Section 5. The column threshold parameter ĉ is used to
discard submatrices whose number of columns is smaller than ĉ. The algorithm
considers all the submatrices which satisfy the user-defined row and column
thresholds as candidates. Among all candidate submatrices, only the ones that
maximize the total area are kept.

A sketch of the algorithm is shown in Figure 2. The algorithm depends on
four key parameters, namely the selection size k, the row threshold r̂, the col-
umn threshold ĉ, and the number of iterations t. A detailed discussion on how to
choose each of these can be found in [1]. The worst case time complexity of the al-
gorithm Largest Columnwise Constant Submatrix is O

(

tk2k(kn + nm)
)

.
Because of the randomized nature of the approach, there is no guarantee

that the algorithm will find the solution after a fixed number of iterations. We
therefore need to choose t so that the probability that the algorithm will recover
the solution in at least one of the t trials is 1 − ε, where 0 < ε < 1. In [1], we
proved that the algorithm is able to find the maximal solution with probability
1 − ε when the number of random selections t satisfies

t ≥
log ε

log

(

(

m−c∗

k

)

+
∑k

i=1

(

1 −
(

1 − 1
|Σ|i

)n−r∗

)

(

c∗

i

)(

m−c∗

k−i

)

)

− log
(

m

k

)

(1)

5 Forward transform

As mentioned in the introduction, our strategy to boost the compressibility of
two-dimensional data is to recursively decompose the input matrix based on the
presence of large columnwise-constant or rowwise-constant submatrices found by
the randomized search described above. The input to the recursive decomposition

algorithm is the original matrix X along with user-defined thresholds (r̂ and ĉ)
and the number of iterations t. If one fixes ε, then the number of iterations t can
be computed using equation (1).

The recursive decomposition is carried out as follows. First, the procedure
Largest Columnwise Constant Submatrix (and possibly also the proce-
dure Largest Rowwise Constant Submatrix) is ran on X . If a constant
submatrix is found, the rest of the matrix is partitioned into two submatrices
depending on the size of the constant submatrices discovered at the next recur-
sion level, as illustrated in Figure 3.

The decision whether to choose the partition (a+c, b) or the partition (a, b+c)
depends on the size of the constant submatrices found in the resulting matrices
a+c, b, b+c, and a. Let us call A1, A2, B1, B2 the areas of the constant subma-
trices found in a+c, b, a, b+c, respectively. Based on the values of A1, A2, B1,

and B2 we studied three distinct criteria to determine the partition. The first is
based on the condition A1 + A2 > B1 + B2 (hereafter called sum). The second
and the third tests are max{A1, A2} > max{B1, B2} (called max) and A1 > B2

(called indiv3). In all cases, if the test is true the algorithm chooses the partition
(a + c, b). Otherwise, the algorithm chooses the partition (a, b + c). A discussion
on how the test type affects the final compressed size is reported in Section 6.

Once the partition is determined, the randomized search is performed re-
cursively on the newly formed matrices in the same manner. The recursion
stops when the matrix becomes non-decomposable. We say that a matrix is
non-decomposable if either it has less than r̂ rows or less than ĉ columns, or if
the largest constant submatrix contained in it is smaller than r̂ × ĉ.

The reason behind our choice of splitting in (a + c, b) or (a, b + c), instead of
(a, b, c) is the following. Each time the algorithms partitions the matrix, we risk
to split large constant submatrices that we could have potentially found later.
The smaller is the number of matrices we split, the higher are the chances of
finding large constant submatrices. Experimental results (not shown) confirmed
our choice.

It should be noted that the user-defined thresholds (r̂ and ĉ) play an im-
portant role in the transform. If the thresholds are too low, there is a danger
of having a deep recursion tree and potentially finding a large number of tiny
constant submatrices. If the thresholds are too high, there will be just a few con-
stant submatrices. Both cases will have a negative impact on the compression.
An experimental study regarding the choice of these thresholds is reported in
Section 6.

6 Implementation, Experiments and Results

We now describe how the transformed data is represented. Clearly, each constant
submatrix can be represented very succinctly. The column indices of columnwise-
constant submatrices are reordered so that each row reads 00. . . 0011. . .11. Thus,

3 note that in this latter case we do not need to search in b and a.

a

b

c

original

matrix

find

largest

uniform

submatrix

reorder

(a,b+c)

decomposition

a

a b

(a+c,b)

decomposition

b

c
c

Fig. 3. Illustration of one step of the forward transform. Depending on the size of the
constant submatrices in a+c, b, a, b+c either the decomposition (a + c, b) or (a, b + c)
is chosen.

each constant submatrix can be represented by the list of rows and column
indices, and where the transition from 0 to 1 takes place. Non-decomposable
submatrices are saved contiguously in row-major order. The content of non-
decomposable matrices is saved in a file called string.

Row and column indices of constant and non-decomposable submatrices are
saved in another file called index. For each set of row and column indices, the
first index is saved as it is, while the rest is saved as differences between adjacent
indices. The length file is used to record the number of rows and the number of
columns for constant and non-decomposable submatrices, along with a binary
flag to indicate whether the submatrix is constant or non-decomposable.

The information contained in the files string, index and length allows one
to invert the transform and reconstruct the original matrix. The inverse trans-
form is simple and extremely fast. Basically, the matrix is reconstructed element
by element in the order of the indices stored in index. The inverse transform was
implemented and tested to make sure that we had all the information necessary
to recover the original matrix. The time complexity of the inverse transform is
linear in the size of input.

In order to determine whether the transform improves compression, we com-
pared the size of the file obtained by compressing the original matrix against the
overall size of the files string, index and length compressed with the same pro-
gram. We employed two popular lossless compression algorithms, namely gzip

and bzip2.

We tested the three criteria (sum, max, indiv) discussed in Section 5 on sev-
eral images and simulated data. The result on the image bird is reported in
Figure 4 for different choices of the thresholds. In the majority of our experi-

1500

1600

1700

1800

1900

2000

2100

2200

10 20 30 40 50 60 70 80 90 100 110 120

Threshold

F
in

a
l
s
iz
e

 (
b

y
te
s
)

sum + gzip sum + bzip 2

indiv + gzip indiv + bzip 2

max + gzip max + bzip 2

Fig. 4. The performance of the algorithm on the image bird for different strategies
(sum, max, indiv) in choosing how to partition the matrix

filename gzip transform+gzip bzip2 transform+bzip2

matrix1 11,121 10,041 11,014 10,197

matrix2 11,111 9,536 11,051 9,712

matrix3 11,094 8,989 10,951 9,194

matrix4 11,061 8,395 10,919 8,530

Table 1. Results on 256 × 256 synthetic data. File matrixi contains i embedded
columnwise-constant submatrices of size 64×64. Parameters: r̂ = 10, ĉ = 10, t = 10, 000

ments, the strategy indiv appeared to be the best. Therefore, all experimental
tests that follow employ the indiv test.

6.1 Simulations on synthetic data

We generated several datasets, each composed of four random matrices of size
256 × 256 over a binary alphabet. In each of the four matrices we embedded one,
two, three, and four columnwise-constant submatrices of size 64×64, respectively.
The position and the content of each embedded submatrix were randomly chosen
under the condition that the submatrices did not overlap with each other.

For each matrix we compared the compression size obtained with gzip and
bzip2 before and after the transform. The performance of the transform was
measured on several datasets. Table 1 shows the results averaged on all datasets.
The results are very stable with respect to the choices of r̂ and ĉ. Any choice in
the range 10 to 60 produces almost identical results. The number of iterations t

was set to 10, 000.
The goal of these simulations was twofold. First, it allowed us to test the

ability of our randomized search to recover the embedded submatrices. Failures
in recovering all the submatrices are typically due to the recursive partitioning.
If the partitioning process happens to split an embedded submatrix, there is no

filename size gzip transform+gzip bzip2 transform+bzip2

bird 65,792 1,978 1521 1,778 1581

camera 65,792 4,330 3693 3,839 3664

lena 65,792 3,450 3186 3,026 2930

peppers 65,792 3,186 2941 2,757 2671

tulips 65,792 5,133 4695 4,483 4329

Table 2. Comparing the compressibility of 256 × 256 binary images before and after
the transform. Threshold parameters r̂ = 60, ĉ = 60. Iterations t = 10, 000

hope of recovering it as a single piece. This observation is behind the idea of
partitioning into (a+c, b) or (a, b+c) instead of partitioning into. (a, b, c). That
may avoid splitting a potentially large constant submatrix that lies in a + c or
b + c

Second, this synthetic data is arguably the most favorable type of data for
our transform. The “background” of the matrix is random, and therefore there
are very few dependencies between rows and columns. The large majority of the
dependencies are the ones created by the embedding of the constant submatrices.
In some sense, this data represents the best case scenario. This is shown by a
considerable improvement in the file size after the transform is applied.

6.2 Experiments on digital binary images

In order to determine whether the transform can boost the compressibility of
general data, we tested the transform on five 256×256 images downloaded from
the Internet (namely bird, camera, lena, peppers, and tulips, all of which
are commonly used in the data compression community). Each 8 bpp greyscale
image was converted to binary by setting to black each pixel whose brightness
was below 128 and to white each pixel above 128. Table 2 shows the compression
results before and after the transform (for r̂ = 60, ĉ = 60, t = 10, 000). In all the
images we tested, the transform improves the lossless compression downstream.

In these experiments, we considered only columnwise-constant matrices. We
tested an implementation of the transform that also searches for rowwise-constant
matrices, but it did not boost the compressibility further.

Although a comparison of the results in Table 2 against a specialized lossless
image tool, say JBIG, would appear appropriate, it is not. Our transform is (1)
general purposed (i.e., not optimized for digital images), and (2) not a complete
compression tool. As said in the introduction, we do not deal with the encoding
problem (we are in fact relying on gzip and bzip2), nor we are necessarily bound
to process digital images. If we were to compare the results of the table against
JBIG, the performance of gzip/bzip2would also part of the equation, and these
tools have not been designed specifically to compress digital images.

Next, we tested how sensitive is the transform to the choice of the param-
eters r̂ and ĉ, and to the number of iteration t. We selected the image bird,

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100 110 120

Threshold

C
o
u
n
t

t=1,000 t=10,000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10 20 30 40 50 60 70 80 90 100 110 120

Threshold

A
v
e
ra

g
e

 a
re

a

t=1,000 t=10,000

Fig. 5. LEFT: Number of columnwise-constant submatrices in image bird. RIGHT:
Average area of columnwise-constant submatrices in image bird

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100 110 120

Threshold

P
ro
p
o
rt
io
n

t=1,000 t=10,000

1500

1600

1700

1800

1900

2000

2100

2200

2300

10 20 30 40 50 60 70 80 90 100 110 120

Threshold

F
in

a
l
s
iz
e

 (
b

y
te
s
)

gzip t=1,000

gzip t=10,000

bzip t=1,000

bzip t=10,000

Fig. 6. LEFT: Proportion of columnwise-constant submatrices in image bird. RIGHT:
Comparing the final compression size for the image bird for different choices of the
threshold parameters

and we ran the transform on different parameter choices. We computed the to-
tal number and the average area of the columnwise-constant submatrices found
(Figure 5), for several choices of r̂ = ĉ and for two values for t. We also recorded
the total proportion of the matrix which was covered by columnwise-constant
submatrices (the rest is non-decomposable), and the final size of the files after
compression (Figure 6). Observe that when the thresholds are low, the propor-
tion of the matrix covered by columnwise-constant submatrices is quite high.
However with low thresholds, the transform finds a large number of columnwise-
constant submatrices which average area is low (Figure 5), which in turn results
in large file sizes for index and length. Compared to the file string, files index
and length are considerably harder to compress. Therefore, the consequence of
choosing thresholds too low is poor compression boosting. Good compression
relies on finding a balance between the gain of representing a portion of the
matrix a single bit and the cost of adding the extra information necessary to
reconstruct the original matrix.

The optimal value of the thresholds r̂ = ĉ for the image bird is around 40, but
other values in the range 40 to 70 achieve very similar results. We carried out the

same analysis on other 256 × 256 images, and the same general considerations
apply. With respect to the final compression, in most cases the larger is the
number of iterations t, the better is the compression.

References

1. Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections.
In: Proceedings of Symposium on Combinatorial Pattern Matching (CPM’04). Vol-
ume 3109 of LNCS., Istanbul, Turkey, Springer (2004) 74–88

2. Storer, J.A., Helfgott, H.: Lossless image compression by block matching. Comput.
J. 40(2/3) (1997) 137–145

3. Buchsbaum, A.L., Caldwell, D.F., Church, K.W., Fowler, G.S., Muthukrishnan,
S.: Engineering the compression of massive tables: an experimental approach. In:
Proceedings of the ACM-SIAM Annual Symposium on Discrete Algorithms, San
Francisco, CA (2000) 213–222

4. Buchsbaum, A.L., Fowler, G.S., Giancarlo, R.: Improving table compression with
combinatorial optimization. In: Proceedings of the ACM-SIAM Annual Symposium
on Discrete Algorithms, San Francisco, CA (2002) 175–184

5. Vo, B.D., Vo, K.P.: Using column dependency to compress tables. In Storer, J.A.,
Cohn, M., eds.: Data Compression Conference, Snowbird, Utah, IEEE Computer
Society Press, TCC (2004) 92–101

6. Galli, N., Seybold, B., Simon, K.: Compression of sparse matrices: Achieving
almost minimal table sizes. In: Proceedings of Conference on Algorithms and
Experiments (ALEX98), Trento, Italy (1998) 27–33

7. Bell, T., McKenzie, B.: Compression of sparse matrices by arithmetic coding. In
Storer, J.A., Cohn, M., eds.: Data Compression Conference, Snowbird, Utah, IEEE
Computer Society Press, TCC (1998) 23–32

8. McKenzie, B., Bell, T.: Compression of sparse matrices by blocked Rice coding.
IEEE Trans. Inf. Theory 47(3) (2001) 1223 – 1230

9. Johnson, D.S., Krishnan, S., Chhugani, J., Kumar, S., Venkatasubramanian, S.:
Compressing large boolean matrices using reordering techniques. In: To appear in
Proceedings of International Conference on Very Large Data Bases (VLDB 2004),
Toronto, Canada (2004)

10. Chakrabarti, D., Papadimitriou, S., Modha, D., Faloutsos, C.: Fully automatic
cross-assocations. In: Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD-04), ACM Press (2004)
89–98

11. Peeters, R.: The maximum-edge biclique problem is NP-complete. Technical Re-
port 789, Tilberg University: Faculty of Economics and Business Adminstration
(2000)

12. Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and
multipartite clique problems. Journal of Algorithms 41 (2001) 388–403

13. Hochbaum, D.S.: Approximating clique and biclique problems. Journal of Algo-
rithms 29(1) (1998) 174–200

