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Abstract. The growing number of metagenomic studies in medicine and
environmental sciences is creating new computational demands in the
analysis of these very large datasets. We have recently proposed a time-
efficient algorithm called Clark that can accurately classify metage-
nomic sequences against a set of reference genomes. The competitive
advantage of Clark depends on the use of discriminative contiguous k-
mers. In default mode, Clark’s speed is currently unmatched and its
precision is comparable to the state-of-the-art, however, its sensitivity
still does not match the level of the most sensitive (but slowest) metage-
nomic classifier. In this paper, we introduce an algorithmic improvement
that allows Clark’s classification sensitivity to match the best metage-
nomic classifier, without a significant loss of speed or precision compared
to the original version. Finally, on real metagenomes, Clark can assign
with high accuracy a much higher proportion of short reads than its clos-
est competitor. The improved version of Clark, based on discriminative
spaced k-mers, is freely available at http://clark.cs.ucr.edu/Spaced/.
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1 Introduction

One of the primary goals of metagenomic studies is to determine the compo-
sition of a microbial community, which typically involves the analysis of short
reads obtained from sequencing a heterogenous microbial sample. The analysis
can reveal the presence of unknown bacteria and viruses in a newly explored
microbial habitat (e.g., in marine environment [24]), or in the case of the human
body, elucidate relationships between diseases and imbalances in the microbiome
(see, e.g., [7,10]).

Classification tools such as NBC [21], Kraken [25], Clark [19], among
others, can be used to determine the composition of the microbial diversity from
the sequenced reads for a microbial sample. We have recently proposed Clark

in [19] and demonstrated that its classification speed is currently unmatched.
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Independently from us, it has been shown that Clark’s classification precision is
comparable or better than best state-of-the-art classifiers [15]. However, Clark’s
classification sensitivity is inferior compared to NBC [19].

The work presented in this manuscript describes a new approach to improve
Clark’s classification sensitivity. The approach exploits the concept of (dis-
criminative) spaced k-mers. We first describe the notion of spaced k-mers as
implemented in a new mode called Clark-S (S for “spaced”), then compare
the performance of Clark-S against two of the most sensitive classifiers in
the literature (i.e., NBC and Kraken), on several simulated/real metagenomic
datasets. We show that at the phylum/genus level Clark-S outperforms both
NBC and Kraken on all metrics.

2 Classification by Discriminative Spaced k-mers

2.1 Preliminaries

The concept and the utility of spaced seeds were initially described in context
of a sequence-alignment tool called PatternHunter [17]. A spaced seed s is
a string over the alphabet {1,*}, where ‘1’ indicates that one should sample
that position while ‘*’ indicates that position should be ignored. The number
of symbols in s is the length |s| of s, while the number of 1s in s is the weight
of s. A spaced k-mer is a spaced seed of length k. Let s be a spaced k-mer and
weight w, and let m be a text of length k. We define s(m) be the w-mer obtained
from m using only the positions in s denoted by a 1. For example, if the text
m = AAGTCT and s = 11*1*1 (k = 6, w = 4) then s(m) = AATT. The same text
processed using the spaced 6-mer s = 1*11*1 would give the 4-mer s(m) = AGTT.

The work of Ma et al. in [17] demonstrated that the use of single (and multi-
ple) spaced seeds/k-mers significantly increased the chance of detecting a valid
sequence alignment between the query and the target compared to contigu-
ous seeds/k-mers, while incurring no additional computational cost. As a direct
consequence of this work, spaced seeds are now used in the state-of-the-art
homology search methods, such as Blast [1] or MegaBlast [26]. For more
information about spaced seeds, we also refer the reader to [5,6,11–14] and ref-
erences therein.

Consider now the following problem: we are given a read r and two target
sequences g1 and g2, and we want to classify r to g1 or g2, i.e., we want to
know whether r is more likely to originate from g1 or from g2. As it is done in
homology search methods, we can use seeds/k-mers as “witnesses” of possible
valid alignments. A time-efficient solution is to count the number shared k-mers
between r and targets g1 and g2, and assign r to the target that has the highest
count. As said, spaced seeds/k-mers increases the probability of detecting a valid
alignment compared to contiguous seeds/k-mers. It is always possible, however,
that a shared seed/k-mer (whether it is spaced or not) may be a false positive.
In order to compensate for false positives, we use discriminative spaced k-mers,
as described next.
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2.2 Discriminative Spaced k-mers

Given a set of reference sequences (or targets) {g1, g2, . . . , gp}, i ∈ {1, 2, . . . , p},
the set Di of discriminative k-mers for target gi is the set of all k-mers in gi that
do not appear in any other reference sequences [19]. Given a spaced seed s of
length k and weight w, we define Di,s to be the set of all w-mers obtained via s
from k-mers in Di. We then define the set Ei,s of discriminative spaced k-mers
as the set of all w-mers of Di,s that do not appear in any set Dj,s where j �= i.
Thus, any w-mer in Ei,s is a spaced k-mer of weight w that can be found in one
and only one target.

As stated earlier, the concept of spaced k-mers is not new. Several pop-
ular metagenome classifiers, such as MetaPhyler [16], PhymmBL [4] or
MEGAN [9], as BLAST-based methods, have been implicitly using spaced seeds.
In addition, other similarity-based methods that analyze genomic and metage-
nomic sequences use spaced k-mers, such as Seed [2]. However, to the best of our
knowledge, the concept of discriminative spaced k-mers is novel and introduced
for the first time in this manuscript.

2.3 Selection of Optimal Spaced Seeds and Index Creation

The selection of specific spaced seed is critical to achieve high precision and
sensitivity (see, e.g., [5,6,11–14,17]). For contiguous k-mers, the classification
precision increases as we increase k. However, the highest sensitivity occurs with
somewhat shorter k-mers. Clark is more precise for long contiguous k-mers
(e.g., k = 31), but the highest sensitivity occurs for k-mers of length 19–22 [19].
As a consequence, we considered here spaced seeds of length k = 31 and weight
w = 22. The choice of selecting a length of 31 is also motivated by a fair com-
parison against Clark and Kraken, which achieve high accuracy thanks to
long 31-mers in their default mode. However, we realize that a more exhaustive
analysis of k and w would be necessary, but (i) the intent of this work is to show
the advantage of replacing discriminative contiguous seed with discriminative
spaced seed, (ii) an analysis of other choices of w will be reported in the journal
version of this paper.

Given k and w, the second step is to determine the structure of the spaced
seed. In order to determine the optimal structure we proceeded to model
sequence similarly as it is done in alignments-based method (see, e.g., [17]).
We considered that the succession of matches/mismatches follows a Bernoulli
distribution with parameter p, where p represents the similarity level between
the read and the reference sequence. If a short read belongs to a known ref-
erence sequence, then the similarity level should be high since the amount of
mismatches dues to genomic variations or sequencing errors are low. This is why
we assumed a high similarity level, and chose p = 95%.

We searched exhaustively through all the spaced seeds of length k = 31
and weight w = 22 (starting/ending with ‘1’) using a similarity level of 95 %,
and a random region of length 100 bp, by using the dynamic programming app-
roach from [17] and implemented in [12]. The spaced seed with the highest
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hit probability [17], 0.998113, is 1111*111*111**1*111**1*11*11111. In addi-
tion, we have also selected two additional spaced seeds with the highest hit
probability namely 11111*1**111*1*11*11**111*11111 (0.998099) and finally
11111*1*111**1*11*111**11*11111 (0.998093).

Before a read can be classified, Clark-S builds a database of discriminative
spaced k-mers for each target. Clark-S can take advantage of multiple spaced
seeds, thus multiple databases can be created. For each spaced seed, discrimina-
tive spaced k-mers were built from contiguous discriminative 31-mers. Once the
three databases of discriminative spaced k-mers were computed, they are stored
in disk so they can be loaded for classification.

The classification algorithm of the “Spaced” mode is identical to that of the
“full” mode (extensively described in [19]), except for two differences, namely (i)
Clark-S queries against discriminative spaced k-mers instead of discriminative
k-mers and (ii) Clark-S does three queries for each k-mer in a read, because
there are three different databases. Finally, as done in the full and other modes,
the read is assigned to the target that has the highest amount of successful
queries, and several statistics (such as the confidence score and gamma score,
see [19]) are computed as well.

3 Results

3.1 Datasets

To evaluate numerically the performance of the classifiers we used simulated
datasets. From the available literature, we have selected the following three
simulated metagenomes, which we made available at http://clark.cs.ucr.edu/
Spaced/. The first dataset is “A1.10.1000” which was derived from “A1”, the first
group of paired-end reads in the dataset “A” from [15]. According to authors,
this dataset closely mimics the complexities, size and characterization of real
metagenomes. The A1 dataset contains about 28.9M reads, 80 % of which cor-
respond to known sequenced genomes (from bacterial, archaeal and eukaryotes
genomes), and 20 % of which are randomized reads (from real genomes) that
should not be assigned to any taxa. We have extracted 10,000 reads from A1
as follows. We have arbitrarily taken nine different genomes from the list of
genomes used to build “A1” (see Supplementary Table 1 in [15]). Then, we took
the first 1,000 reads for each selected genome, and also 1,000 “random” reads.
The resulting dataset, called “A1.10.1000”, contains 10,000 reads (each 100 bp
long) and can be considered as medium/high complexity.

The second dataset is “B1.20.500” which was derived from “B1”, the first
group of reads in the dataset “B”, from [15]. Similarly as done for A1.10.1000,
we have extracted 10,000 reads from B1 as follows. We have arbitrarily taken 19
different genomes from the list of genomes used to build “B1” (see Supplementary
Table 2 in [15]). Note that these 19 selected genomes are different from those
selected in A1. Then we took the first 500 reads for each selected genome, and also
500 “random” reads. The resulting dataset, called “B1.20.500”, contains 10,000
reads (each 100 bp long) and can be considered as medium/high complexity.

http://clark.cs.ucr.edu/Spaced/
http://clark.cs.ucr.edu/Spaced/
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The third dataset “simBA-5” comes from the Kraken paper and is described
in it. According to the authors, it was created using bacterial and archaeal
genomes, and with an error rate five times higher than the default. It contains
10,000 reads, each read is 100 bp long, and can be considered as high complexity.

To classify these metagenomic datasets, we use the entire set of bacter-
ial/archaeal genomes from NCBI/RefSeq as reference genomes. At the time of
writing, they represent 2,644 genomes and distributed in 36 phyla. The cumula-
tive length of these genomes is 9.1 billion base pairs, where the average genome
length is 3.4 million base pairs.

3.2 Comparison with Other Tools

A large set of metagenomic classifiers exists in the literature. However, a com-
parison between Clark and all existing classifiers is not necessary. An inde-
pendent comprehensive evaluation of a wide range of metagenomics classifiers
has been carried out recently using six large datasets of short paired-end
reads [15]. On the data tested, Kraken is among the most accurate meth-
ods at the phylum level compared to other popular and used methods, such
as mOTU [23], MetaPhlAn [22], MetaPhyler or MEGAN. However, the
experimental results in [25] shows that NBC is more sensitive than Kraken,
Megablast and PhymmBL at the genus level. In our study [19], we have also
shown that NBC is more sensitive than Kraken at the genus level. In addition,
NBC is more sensitive than Clark, at the genus level, even when the latter is
run in its most sensitive settings (i.e., “full” mode and k = 20) [19]. Note that
the study [3] also shows the high sensitivity of NBC. As a consequence of this
analysis, it appears sufficient to compare Clark against NBC and Kraken, as
they are the two most accurate classifiers among current published methods, at
the phylum and genus level.

3.3 Classification Accuracy

In this section, we present the performance of Clark (v1.2.1-beta), NBC (v1.1)
and Kraken (v0.10.5-beta) on the three simulated datasets described above.
Consistently with other published studies (e.g., [19,25] or [3]), the sensitivity
is defined as the ratio between the number of correct assignments at a given
taxonomy rank (e.g., phylum or genus) and the number of reads defined for
that rank. The precision is defined as the ratio between the number of correct
assignments at a given taxonomy rank (e.g., phylum or genus) and the number
of assigned reads.

We present below results for the phylum and genus level. In Tables 1 and 2,
the first three rows report results from Kraken Clark, and NBC, all run
in their default/recommended parameters. We ran Kraken and Clark in the
default mode, with k = 31, and NBC, with k = 15. The last two rows in
these tables report the performance of Clark-S. In the last row we report the
precision and sensitivity when filtering only high confidence (HC) assignments
(i.e., assignment with confidence score ≥ 0.75 and gamma score ≥ 0.03).
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Table 1. Phylum-level accuracy (%) of Kraken, NBC, Clark, Clark-S and Clark-
S (HC) on A1.10.1000, B1.20.500 and simBA-5

A1.10.1000 B1.20.500 simBA-5

Precision Sensitivity Precision Sensitivity Precision Sensitivity

Kraken 99.91 77.59 99.98 90.91 99.98 94.49

Clark 99.93 76.87 100.00 90.12 99.99 93.46

NBC 79.86 79.86 94.91 94.91 99.89 99.89

Clark-S 94.50 79.99 98.95 94.98 99.87 99.70

Clark-S (HC) 99.63 79.97 99.99 94.93 100.00 99.29

Table 2. Genus-level accuracy (%) of Kraken, NBC, Clark, Clark-S and Clark-S
(HC) on A1.10.1000, B1.20.500 and simBA-5

A1.10.1000 B1.20.500 simBA-5

Precision Sensitivity Precision Sensitivity Precision Sensitivity

Kraken 99.80 70.61 99.94 90.55 99.85 91.97

Clark 99.80 69.98 99.95 89.69 99.82 90.77

NBC 77.94 77.94 94.76 94.76 98.97 98.97

Clark-S 92.71 78.38 98.76 94.74 98.58 98.22

Clark-S (HC) 99.35 76.41 99.95 94.52 99.61 97.24

Observe in Table 1 that (i) Clark-S (HC) and NBC achieve very high sensi-
tivity, (ii) Kraken’s sensitivity is lower than NBC or Clark-S for all datasets,
(iii) Clark-S outperforms NBC’s sensitivity in A1.10.1000 and B1.20.500,
(iv) both Clark and Kraken have high precision and achieve more than 99.9 %
in all datasets (even though A1.10.1000 and B1.20.500 contain reads that do not
belong to any bacterial/archaeal genomes), but (v) Clark-S (HC) is as precise
as them and outperforms NBC in all datasets.

Table 2 shows that (i) Clark’s sensitivity is lower than NBC, (ii) Clark-
S (HC) and NBC achieve the highest sensitivity and outperforms Kraken,
(iii) Clark-S is more NBC in A1.10.1000, (iv) Kraken and CLARK show
high precision and achieve both more than 99.8 % in our datasets, (v) Clark-S
(HC) is as precise as Kraken and Clark, it outperforms NBC in all datasets,
especially for A1.10.100 or B1.20.500. For simBA-5, NBC achieves the best
sensitivity with 98.97, less than 2 % more than the level performed by Clark-
S (HC).

3.4 Real Metagenomic Samples

In this section, we evaluate the performance of Clark-S (HC) on a large real
metagenomic dataset. We have selected the dataset from [18], which is a recently
published study on the population dynamics in microbial communities present
in surface seawater in Monterey Bay, CA.
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This dataset contains 42M reads, and the average read length is 510 bp.
We pre-processed the dataset of raw reads using the following trimming steps:
(i) we removed the first five bases and kept the following 100 bases using FastQ

Trimmer1, (ii) we removed reads containing sequencing adapters using Scythe2,
(iii) we trimmed the read ends if contained bases with a quality score below
30 and discarded reads containing any Ns using Sickle3. The resulting dataset
contained 37M short reads.

We classified these 37M short reads using Kraken (default) and Clark-S,
using the bacterial/archaeal genomes from NCBI/RefSeq. Kraken was able to
classify only 1,1M reads (or 3 % of the total). Clark in its default mode also
classifies about 1,1M reads. However, Clark-S classifies 20M reads (or 54 %
of the total), about 20 times more than Kraken. Among these 20M classified
reads, there are 7M high confidence assignments (or 19 % of the total), which is
about 6 times more than Kraken.

The fact that Kraken assigns only 3 % of the reads can be explained by
the fact that (i) Kraken relies on matching exact k-mer, and (ii) the current
database of bacterial/archaeal likely contains only a limited fraction of the bac-
terial/archaeal diversity in seawater. Seawater metagenomes are likely to con-
tain a high proportion of organisms that are missing in NBCI/RefSeq database
because while the marine environment is one of the most biologically diverse
on the planet [8], the culture in laboratory of bacteria from seawater is difficult
[20]. Since Clark-S allows mismatches on the k-mers, it can identify at least
the phylum/genus of unknown organisms.

Kraken identified, as dominant phyla, Proteobacteria (57 %) and Bac-
teroides (27 %). This is consistent with results reported in [18], as well as
phyla in low-abundance such as Actinobacteria (1 %) or Thaumarchaeota (2 %).
Within high confidence assignments of Clark-S, the two dominant phyla are,
as expected by estimations from [18], Proteobacteria (56 %) and Bacteroides
(32 %). Consistently with [18], phyla in low-abundance were correctly identified,
for example, Actinobacteria (1 %) and Thaumarchaeota (2 %).

Experimental results from Kraken and Clark-S (HC) indicate the
expected dominant phyla in the dataset (with the expected abundance for each).
While Kraken and Clark-S (HC) are consistent for this dataset, we do notice
one significant disagreement. The expected abundance of Cyanobacteria is 0–
2 %, according to [18], but Kraken reports 9 % and Clark-S (HC) reports 3 %.
Such discrepancies can be explained by our pre-processing to create this dataset,
however, the estimation by Clark-S (HC) is more accurate than Kraken. As
a consequence, Clark-S was able to assign about 20 times more short reads
than Kraken, and its high confidence assignments show stronger consistency
with expected results than Kraken’s results.

1 http://hannonlab.cshl.edu/fastx toolkit/index.html.
2 https://github.com/ucdavis-bioinformatics/scythe.
3 https://github.com/ucdavis-bioinformatics/sickle.

http://hannonlab.cshl.edu/fastx_toolkit/index.html
https://github.com/ucdavis-bioinformatics/scythe
https://github.com/ucdavis-bioinformatics/sickle
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3.5 Time and Space Complexity

All experiments presented in this study were run on a Dell PowerEdge T710
server (dual Intel Xeon X5660 2.8 Ghz, 12 cores, 192 GB of RAM). NBC’s
speed is the slowest at 8–9 reads per minute, Kraken’s speed is 1.8–2M reads
per minute, while Clark (default mode) runs the fastest, at 2.8–3M reads
per minute. However, Clark-S runs slower than Clark, and classifies about
150–200 thousand reads per minute. While Clark is the fastest in the default
mode, it does not provide the same classification accuracy of NBC or Clark-S.
The fact that Clark-S computes spaced k-mers and uses several spaced seeds
explains this difference of speed. However, Clark-S is still several thousand of
times faster than NBC.

NBC consumed less than 500 MB of RAM, while Clark and Kraken used
70 and 77 GB respectively. Finally, Clark-S used 110 GB. This larger RAM
usage is due to the multiple databases corresponding to the three spaced seeds.
However, this amount remains significantly lower than 160 GB, which is the
amount needed to build/construct the database of discriminative k-mers.

4 Discussion

We have introduced for the first time the use of discriminative spaced k-mers for
the classification problem of short metagenomic reads. To the best of our knowl-
edge, Clark is the first metagenome classifier using (multiple) discriminative
spaced k-mers. We have tested Clark-S against Clark, Kraken and NBC.

Our results on several realistic metagenomic samples show that (i) Clark/
Kraken achieves high precision while being less sensitive than NBC at the
phylum/genus level, (ii) NBC achieves high sensitivity while being less precise
than the other tools, however, (iii) Clark-S (HC) can be both as precise as (or
more precise than) Kraken and as sensitive as NBC. While Clark-S is slower
than Clark because its uses mutiple spaced seeds, it is still faster than NBC

by several order of magnitude. Finally, in the context of real metagenomic data,
we proved that Clark-S (HC) can classify with high accuracy a much higher
proportion of short reads than Clark/Kraken.

We are currently improving the speed and the RAM usage of Clark-S.
A public release of Clark-S is available at http://clark.cs.ucr.edu/Spaced/.
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