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Abstract

Given a matrix X composed of symbols, a bicluster is a submatrix of X obtained by removing some of the rows and some of the
columns of X in such a way that each row of what is left reads the same string. In this paper, we are concerned with the problem of
finding the bicluster with the largest area in a large matrix X. The problem is first proved to be NP-complete. We present a fast and
efficient randomized algorithm that discovers the largest bicluster by random projections. A detailed probabilistic analysis of the
algorithm and an asymptotic study of the statistical significance of the solutions are given. We report results of extensive simulations
on synthetic data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering refers to the problem of finding a partition of a set of input vectors, such that the vectors in each subset
(cluster) are “close” to one another (according to some predefined distance). A common limitation to the large majority
of clustering algorithms is their inability to perform on high dimensional spaces (see, e.g., [1,2]).

Recent research has focused on the problem of finding hidden sub-structures in large matrices composed by thou-
sands of high dimensional vectors (see, e.g., [4,30,29,3,32,7,27,21,25,20]). This problem is known as biclustering. In
biclustering, one is interested in determining the similarity in a subset of the dimensions (subset that has to be deter-
mined as well). Although there exists several definitions of biclustering, it can be informally described as the problem
of finding a partition of the vectors and a subset of the dimensions such that the projections along those directions of
the vectors in each cluster are close to one another. The problem requires to cluster the vectors and the dimensions
simultaneously, thus the name “biclustering”.

Biclustering has important applications in several areas, such as data mining, machine learning, computational
biology, and pattern recognition. Data arising from text analysis, market-basket data analysis, web logs, etc., is usually
arranged in a contingency table or co-occurrence table, such as, a word-document table, a product-user table, a cpu-job
table or a webpage-user table. Discovering a large bicluster in a product-user matrix indicates, for example, which users
share the same preferences. Finding biclusters has therefore applications in recommender systems and collaborative
filtering, identifying web communities [17], load balancing, discovering association rules, among others.
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In computational biology, this problem is associated with the analysis of gene expression data obtained from microar-
ray experiments. Gene expression data is typically arranged in a table with rows corresponding to genes, and columns
corresponding to patients, tissues, time points, etc. The classical approach to analyze microarray data is clustering. The
process of clustering partitions genes into mutually exclusive clusters under the assumption that genes that are involved
in the same genetic pathway behave similarly across all the testing conditions. The assumption might be true when the
testing conditions are associated with time points. However, when the testing conditions are heterogeneous, such as
patients or tissues, the previous assumption is not appropriate anymore. One would expect that a group of genes would
exhibit similar expression patterns only in a subset of conditions, such as the subset of patients suffering from the same
type of disease. Under this circumstance, biclustering becomes the alternative to the traditional clustering paradigm.
The results of biclustering may enable one to discover hidden structures in gene expression data in which many genetic
pathways might be embedded. It might also allow one to uncover unknown genetic pathways, or to assign functions to
unknown genes in already known genetic pathways.

Biclustering is indeed, not a new problem. In fact, it is also known under several other names, namely “co-clustering”,
“two-way clustering” and “direct clustering” (see, e.g., [6,10,11]). Because of this and the wide range of application of
this problem, the theoretical and practical results are spread across different communities in Computer Science such
as computational biology, machine learning, databases and also in Statistics. In the following, we review some of the
results, without pretending to be exhaustive.

The problem was first introduced in the seventies in a paper by Hartigan [12].Almost 30 years later, Cheng and Church
[4] raised the interest on this problem for applications in gene expression data analysis (see, e.g., [11,13,15,18,19,31]).

Several other researchers studied the problem recently. Wang et al. propose the pCluster model that is capable of
discovering shifting or scaling patterns from raw data sets [30]. Tanay et al. [29] combine a graph-theoretic approach
with a statistical modeling of the data to discover biclusters in large gene expression data sets. Ben-Dor et al. [3]
introduce a new notion of a bicluster called order preserving submatrix, which is a group of genes whose expression
level induces a linear ordering across a subset of the conditions. Murali and Kasif [22] (see also [25]) propose the
concept of xmotif, which is defined as a subset of genes whose expression is simultaneously conserved for a subset of
samples.

As we were writing this document, we became aware of two other contributions to the subject, by Sheng et al. [27],
and Mishra et al. [21], that use a randomized approach similar with the work described here. Sheng et al. [27] propose
a randomized algorithm based on Gibbs sampling to discover large biclusters in gene expression data. Their model
of a bicluster is probabilistic, that is, each entry of the matrix is associated with a probability. Mishra et al. [21] are
concerned with the problem of finding �-bicliques which maximizes the number of edges. 1 Given a bipartite graph
(U, V, E), a subgraph (U ′, V ′) is �-biclique if each vertex in U ′ is a neighbor of at least (1 − �) fraction of vertices in
V ′. The authors give an efficient randomized algorithm that finds the largest �-biclique, but no experimental results are
reported. Finally, in Koyuturk et al. [16] dense biclusters were found using a combination of randomization and linear
algebra algorithms.

As shown in papers [22,27], the problem of biclustering gene expression data can be formulated on a discrete domain,
by first discretizing the gene expression matrix into a matrix over a finite alphabet. The simplifying assumption is that
the set of states in which each gene operates is finite, such as up-regulated, down-regulated or unchanged. Once the data
is discretized into strings where each symbol corresponds to a state, the biclustering problem reduces to the problem
of finding a subset of the rows and a subset of the columns such that the submatrix induced has the property that each
row reads the same string. Such a submatrix would therefore correspond to a group of genes that exhibit a coherent
pattern of states over a subset of conditions. This is indeed the formulation of the problem that we define in Section 2,
which is first proved to be NP-complete. In Section 3 we present a randomized algorithm which is efficient and easy
to understand and implement. Section 4 presents an asymptotic analysis that allows one to determine the statistical
significance of the solution. Finally, in Section 5 we report simulation results on synthetic data.

2. Notations and problem definition

We use standard concepts and notation about strings. The set � denotes a non-empty alphabet of symbols
and a string over � is an ordered sequence of symbols from the alphabet. We use the variable a as a shorthand

1 The connection between bicliques and bicluster will be explained in detail in Section 2.
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for the cardinality of the set �, that is, a = |�|. Given a string x, the number of symbols in x defines the length
|x| of x.

Similarly, we can define a two-dimensional n × m string (or matrix) X ∈ �n×m over the alphabet �. The element
(i, j) of X is denoted by X[i,j ]. A row selection of size k of X is defined as the subset of the rows R = {i1, i2, . . . , ik},
where 1� is �n for all 1�s�k. Similarly, a column selection of size l of X is defined as a subset of the columns
C = {j1, j2, . . . , jl}, where 1�jt �m for all 1� t � l.

The submatrix X(R,C) induced by the pair (R, C) is defined as the matrix

X(R,C) =

∣∣∣∣∣∣∣∣
X[i1,j1] X[i1,j2] · · · X[i1,jl ]
X[i2,j1] X[i2,j2] · · · X[i2,jl ]

· · · · · · · · · · · ·
X[ik,j1] X[ik,j2] · · · X[ik,jl ]

∣∣∣∣∣∣∣∣
.

Given a selection of rows R, we say that a column j, 1�j �m, is clean with respect to R if the symbols in the jth
column of X restricted to the rows R, are identical.

Example 1. Given the 6 × 6 matrix

X =

∣∣∣∣∣∣∣∣∣∣∣∣

001020
100100
301120
201020
131111
110120

∣∣∣∣∣∣∣∣∣∣∣∣
over the alphabet � = {0, 1, 2, 3}, a selection (R, C) = ({2, 5, 6}, {1, 4, 6}) results in the matrix

X(R,C) =
∣∣∣∣∣∣

110
111
110

∣∣∣∣∣∣ .
Given the row selection R = {2, 5, 6}, columns 1 and 4 are clean.

The problem addressed in this paper is defined as follows.

LARGEST BICLUSTER(f ) problem
Instance: A matrix X ∈ �n×m over the alphabet �.
Question: Find a row selection R and a column selection C such that the rows of X(R,C) are identical strings
and the objective function f (X(R,C)) is maximized.

Some examples of objective functions are the following:
• f1(X(R,C)) = |R| + |C|;
• f2(X(R,C)) = |R| provided that |C| = |R|; and
• f3(X(R,C)) = |R||C|.

Example 2. Assume X to be the matrix defined in Example 1. If we choose the objective functions f2 there are
three solutions, namely ({1, 3, 4},{2, 3, 5}) (corresponding to the string 012), ({1, 3, 4},{2, 3, 6}) (corresponding to
010) and ({1, 3, 4},{3, 5, 6}) (corresponding to 120). If we choose the objective functions f1 or f3, the solution is
({1, 3, 4},{2, 3, 5, 6}) (corresponding to 0120).

The problem in general may have multiple solutions which optimize the objective function. The solutions may also
“overlap”, that is, they may share some elements of the original matrix.

The computational complexity of this family of problems depends on the objective function f. In the literature, the
problem has been studied mostly from a graph-theoretical viewpoint which corresponds to the special case � = {0, 1}.
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In fact, observe that a matrix X ∈ {0, 1}n×m is the adjacency matrix of a bipartite graph G = (V1, V2, E) with |V1| = n

and |V2| = m. An edge (i, j) ∈ E connects node i ∈ V1 to node j ∈ V2 if Xi,j = 1. Thus, a submatrix of 1s in X
corresponds to a subgraph of G which is completely connected. Such a subgraph is called a biclique. Because of this
relation, we use the terms “submatrix”, “biclique”, and “bicluster” interchangeably.

When the alphabet is binary and we are looking for the largest submatrix composed only by 1s, 2 as for example
in [16], the LARGEST BICLUSTER reduces to well-known problems on bipartite graphs. More specifically, the LARGEST

BICLUSTER problem associated with objective function f1 is known as the MAXIMUM VERTEX BICLIQUE problem, and
it can be solved in polynomial time because it is equivalent to the maximum independent set in bipartite graphs which,
in turn, can be solved by a minimum cut algorithm (see, e.g., [14]). The same problem with objective function f2 over
a binary alphabet is called BALANCED COMPLETE BIPARTITE SUBGRAPH problem or BALANCED BICLIQUE problem and
it is listed as GT24 among the NP-complete problems in Garey and Johnson’s book [8] (see also [9]).

The LARGEST BICLUSTER problem with objective function f3 and � = {0, 1} is called MAXIMUM EDGE BICLIQUE

problem. The problem requires to find the biclique which has the maximum number of edges. The problem is proved
to be NP-complete in [24] by reduction from 3SAT. The weighted version of this problem is shown NP-complete by
Dawande et al. [5].

In [14] Hochbaum studies a problem related to MAXIMUM EDGE BICLIQUE, which is the problem of finding the number
of edges that need to be deleted so that the resulting graph is a biclique. Hochbaum describes a two-approximation
algorithm based on LP-relaxation. According to Pasechnik [23] this approximation ratio does not hold for the original
MAXIMUM EDGE BICLIQUE problem. Pasechnik shows a semidefinite relaxation, and claims that his relaxation is in
general better than [14].

The following theorem establishes the hardness of the problem of finding the largest area bicluster over a general
alphabet. For lack of space the proof is omitted.

Theorem 1. The decision problem associated with LARGEST BICLUSTER(f3) is NP-complete.

Proof. The problem is trivially in NP. We reduce MAXIMUM EDGE BICLIQUE to LARGEST BICLUSTER(f3). Observe
that LARGEST BICLUSTER is more general than the biclique problems on graphs, for two reasons: (1) in the LARGEST

BICLUSTER problem the alphabet is not necessarily binary and (2) a biclique corresponds to a submatrix of 1s in the
corresponding adjacency matrix, while LARGEST BICLUSTER can return submatrices with 0s as well.

Assume that we are given an instance of the biclique problem represented as an adjacency matrix X ∈ {0, 1}n×m.
Process X as follows. Replace each 0 in X by a unique new symbol. Now LARGEST BICLUSTER will be forced to return
a matrix of 1s, which corresponds to a biclique in the bipartite graph. �

By the same approach, LARGEST BICLUSTER(f2) can also be proved to be NP-complete. In the rest of this paper
we will concentrate our attention on the problem of finding the largest-area bicluster. For practical reasons that will
become apparent in Section 3, the objective function that we are maximizing is

f̃3(X(R,C), r̂, ĉ) = |R||C| provided that |R|� r̂ and |C|� ĉ,

where r̂ and ĉ are two input parameters.

3. Randomized search

Given that LARGEST BICLUSTER(f3) problem is NP-complete, it is unlikely that a polynomial time algorithm could
be found. In this paper, we present a randomized algorithm which finds a maximal solution with probability 1 − �,
where 0 < � < 1.

Assume that we are given a large matrix X ∈ �n×m in which a submatrix X(R∗,C∗) is implanted. Assume also that
the submatrix X(R∗,C∗) is maximal. To simplify the notation, let r∗ ≡ |R∗| and c∗ ≡ |C∗|.

The idea behind the algorithm comes from the following simple observation. Observe that if we knew R∗, then C∗
could be determined by selecting the clean columns with respect to R∗. If instead we knew C∗, then R∗ could be
obtained by taking the maximal set of rows which read the same string. Unfortunately, neither R∗ nor C∗ is known. Our

2 In general, a solution of the largest bicluster can contain a column of zeros, as long as they appear in all rows of the submatrix.
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Fig. 1. An illustration of a recovery of the embedded matrix by random projections. C∗ is the set of columns containing the embedded submatrix.
S is a random selection of columns. By following the steps described in the text, the correct solution can be easily retrieved.

approach is to “sample” the matrix by random projections, with the expectation that at least some of the projections
will overlap with the solution (R∗, C∗). Clearly, one can project either rows or columns. In what follows we describe
how to retrieve the solution by sampling columns.

The algorithm works as follows. Select a random subset S of size k uniformly from the set of columns {1, 2, . . . , m}.
Assume for the time being that S ∩ C∗ �= ∅. If we knew S ∩ C∗, then (R∗, C∗) could be determined by the following
three steps: (1) select the string(s) w that appear exactly r∗ times in the rows of X[1:n,S∩C∗], (2) set R∗ to be the set of
rows in which w appears and (3) set C∗ to be the set of clean columns corresponding to R∗.

Example 3. For example, consider the matrix in Fig. 1. The shaded cells contain the embedded submatrix, and r∗ = 3,

c∗ = 4. Once S ∩ C∗ is determined, the string AB is chosen since it is the only one that has frequency equal to r∗.
Then, R is determined by the location of AB and C is determined by selecting the clean columns of R.

The algorithm would work, but there are a few problems that are still unresolved. First, the set S∩C∗ could be empty.
The solution is to try different random projections S, relying on the argument that the probability that S ∩ C∗ �= ∅
at least once will approach one with more and more projections. The second problem is that we do not really know
S ∩ C∗. But, certainly S ∩ C∗ ⊆ S, so our approach is to check all possible subsets U ⊆ S such that |U |�kmin, where
1�kmin �k is a user-defined parameter. The final problem is that we assumed that we knew r∗, but we do not. The
solution is to introduce a row threshold parameter, called r̂ , that replaces r∗.

As it turns out, we need another parameter to avoid producing solutions with too few columns. The column threshold
ĉ is used to discard submatrices whose number of columns is smaller than ĉ. The algorithm considers all the submatrices
which satisfy the user-defined row and column threshold as candidates. Among all candidate submatrices, only the
ones that maximize the total area are kept. A sketch of the algorithm is shown in Fig. 2. As noted in the introduction, a
very similar strategy was developed independently and concurrently by Mishra et al. [21].

The algorithm depends on five key parameters, namely the projection size k, the minimum subset size kmin, the row
threshold r̂ , the column threshold ĉ, and the number of iterations t. We discuss how to choose each of these in the rest
of the section.

Parameter selection: The projection size k is determined by a probabilistic argument. To simplify our presentation
in this section, we assume that all symbols are generated with the same probability 1/a (for a generalization see the
next section). It is well-known that in a random string of size m over an alphabet of size a, the number of occurrences
of substrings has two different probabilistic regimes: (1) Gaussian distributed for strings shorter than loga m and (2)
Poisson distributed for strings longer than loga m (see, e.g., [26]). 3 Based on this observation, when kmin = k we argue
that k = loga m is the optimal trade-off between generating too many trivial solutions (k too small) and potentially
missing the solution (k too large). At the end of this section we will see that k = loga m corresponds to the minimums
in the graph associated with the probability of missing a solution (see Fig. 3.) This value of k has also been confirmed
to be the optimal choice in our simulations. When kmin = 1, then k can be chosen significantly larger, but this will

3 In general, the cut of depends whether mP(string) = O(1) or mP(string) → ∞.
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Fig. 2. A sketch of the algorithm that discovers large biclusters (sampling columns).
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Fig. 3. The graph of the function �̃ for different choices of the projection size k (x-axis) and alphabet size a. The fixed parameters are
n = 256, m = 256, r∗ = 64, c∗ = 64. Note that the minimum of the function �̃ is at k ≈ loga m.

adversely affect the running time. An experimental comparison between kmin = k (i.e., no subsets), and kmin = 1 (i.e.,
all subsets) is reported in Section 5.1.

The thresholds r̂ and ĉ are associated with the uncertainty on the size of the largest submatrix r∗, c∗ for a particular
input instance. There may be situations in which the user has already a good idea about r∗, c∗. If however r∗ and c∗ are
completely unknown, then our target will be to find “statistically significant” biclusters. In Section 4 we will present
a theorem (Theorem 2) which gives the expected number of columns of the largest submatrix in a random matrix,
when the number of rows is fixed. Based on this, we propose the following trial-and-error strategy. Set r̂ to some value
between 1 and n, and use Theorem 2 to set the value ĉ. Run the algorithm. If the algorithm returns too many solutions,
try to increase r̂ and update ĉ correspondingly. If there are no solutions, lower the value of r̂ and repeat. Observe that
the number of choices for r̂ is finite since r̂ ∈ [1, n]. By using Theorem 2 to set the threshold ĉ, we are trying to filter
out submatrices whose size is small enough that they could appear in totally random matrices.

The worst case time complexity of the algorithm LARGEST_BICLUSTER_C is O(tk
∑k

j=kmin

(
k
j

)
(kn+nm)), where kmin

is size of the smallest subset of S that the algorithm generates. If kmin = 1, the complexity becomes O(tk2k(kn+nm)).
Although the complexity is exponential in k, the optimal value of k is O(loga m), which makes the algorithm run in
O(tkm(kn + nm)) time.
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Because of the randomized nature of the approach, there is no guarantee that the algorithm will find the solution
after a given number of iterations. We therefore need to choose t so that the probability that the algorithm will recover
the solution in at least one of the t trials is 1 − �, where 0 < � < 1 is a user-defined parameter.

Let �(n, m, k, r∗, c∗, a) be the probability of missing the solution in one of the trials assuming that r∗ and c∗ are
known and that kmin = 1. There are two disjoint cases in which the algorithm can miss (R∗, C∗). The first is when the
random projection S misses completely C∗, i.e., S ∩ C∗ = ∅. The second is when S ∩ C∗ = U �= ∅ but the string w
chosen by the algorithm among the rows X[1:n,U ] also appears in another row that does not belong to the set R∗ of the
real solution. In this case, the algorithm will select a set of rows larger than R∗ and thus miss the solution. Hence, we
have

�(n, m, k, r∗, c∗, a) = Pr{S ∩ C∗ = ∅} +
k∑

i=1
Pr{|S ∩ C∗| = i and |R| > r∗}

= Pr{S ∩ C∗ = ∅} +
k∑

i=1
Pr{|R| > r∗ given |S ∩ C∗| = i}Pr{|S ∩ C∗| = i}.

Let Y be the random variable associated with the size of the set S ∩C∗, that is, Y = |S ∩C∗|. Since we are sampling
without replacement, Y follows the hyper-geometric distribution.

Pr{Y = 0} =
(

m − c∗
k

)
/

(
m

k

)
and Pr{Y = i} =

(
c∗
i

) (
m − c∗
k − i

)
/

(
m

k

)
.

In order to compute the probability of missing the solution given that |S ∩ C∗| = i, we have to estimate how likely
a string w belonging to some of the rows of X[1:n,U ] is more frequent than r∗. In fact, if the string w appears more than
r∗ times, the algorithm will select a larger set of rows, and it will miss the solution.

Hereafter, we assume that the pattern is known to be w and its probability is p(w). For example, if the symbols in
the matrix X are generated by a symmetric Bernoulli i.i.d. model, then simply p(w) = a−i . The probability that w will
never appear in the other n − r∗ rows is (1 − p(w))n−r∗

, and therefore

Pr{|R| > r∗ given |S ∩ C∗| = i} = 1 − (1 − p(w))n−r∗
.

Combining all together, the probability of missing the solution in one iteration is given by

�(n, m, k, r∗, c∗, a) =

(
m − c∗

k

)
+ ∑k

i=1(1 − (1 − p(w))n−r∗
)

(
c∗
i

) (
m − c∗
k − i

)
(

m

k

) .

Now suppose we want the probability of missing the solution to be smaller than a given �, 0 < � < 1. We can obtain
the number of iterations t by solving the inequality (�(n, m, k, r∗, c∗, a))t ��, which gives

t � log �

log �(n, m, k, r∗, c∗, a)
. (1)

This bound on the number of iterations has been verified by our experimental results (compare Table 1 with our
experimental results shown in Fig. 5). For example, by setting a = 4, k = 4, � = 0.7, Eq. (1) gives t = 90 iterations
whereas the experimental results show that with 90 iterations we obtain a performance of � = 0.689.

The worst-case time complexity of LARGEST_BICLUSTER_C is bounded by O(t
∑k

j=kmin

(
k
j

)
(kn + nm)). If kmin = 1,

then the time complexity becomes O(t2k(kn + nm)). Although the complexity is exponential in k, choosing k to be
O(loga m) makes the algorithm run in O(tm1/ log2 a(kn + nm)) time.

The probability of missing the solution changes significantly when we set kmin = k. In this case, we are not checking
any of the subsets of S, but we simply rely on the fact that eventually one of the random projections S will end up
completely contained in C∗, in which case we have a chance to find the solution.

Since we avoid checking the O(2k) subsets of S, the number of iterations t to achieve the same level of performance
of the case kmin = 1 must be significantly larger. Indeed, by a similar argument as we did for kmin = 1, the probability
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Table 1
The estimated number of iterations for a matrix 256 × 256 with a submatrix 64 × 64, for different choices of �, alphabet size a, and projection size
k (sampling columns)

� a = 2, k = 8 a = 4, k = 4 a = 8, k = 3 a = 16, k = 2 a = 32, k = 2

0.005 18,794 1342 306 179 99
0.05 10,626 759 173 101 56
0.1 8168 583 133 78 43
0.2 5709 408 93 54 30
0.3 4271 305 70 41 23
0.4 3250 232 53 31 17
0.5 2459 176 40 23 13
0.6 1812 129 29 17 10
0.7 1265 90 21 12 7
0.8 792 57 13 8 4
0.9 374 27 6 4 2

Fig. 4. A sketch of the algorithm that discovers large biclusters (sampling rows).

of missing the solution when kmin = k can be estimated by the following formula

�̃(n, m, k, r∗, c∗, a) = Pr{|S ∩ C∗| < k} + Pr{|S ∩ C∗| = k and |R| > r∗}
= 1 − Pr{|S ∩ C∗| = k} + Pr{|S ∩ C∗| = k and |R| > r∗}
= 1 −

((
c∗
k

)
/

(
m

k

))
+

(
(1 − (1 − p(w))n−r∗

)

(
c∗
k

)
/

(
m

k

))

= 1 −
(

(1 − p(w))n−r∗
(

c∗
k

)
/

(
m

k

))
,

where w is the string of size k selected by the algorithm. In the symmetric model, p(w) = a−k .
In Fig. 3 we plotted the function �̃ for different choices of k and a (n = 256, m = 256, r∗ = 64, c∗ = 64).

As discussed in the beginning of this section, the value of k which minimizes the value of �̃ is k ≈ loga m.
As mentioned above, we also have the option to project the rows instead of the columns, which would result in a

slightly different algorithm that we called LARGEST_BICLUSTER_R. We illustrate the algorithm in Fig. 4.
The worst case time complexity of the algorithm LARGEST_BICLUSTER_R is O(t

∑k
j=kmin

(
k
j

)
(km + nm)), which

becomes O(t2k(km + nm)) when kmin = 1. The probability of missing a solution can be obtained using the same
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argument as above, and it is given by

�(n, m, k, r∗, c∗, a) =

(
n − r∗

k

)
+ ∑k

i=1(1 − (1 − p(w))n−c∗
)

(
r∗
i

) (
n − r∗
k − i

)
(

n

k

) .

Both strategies were implemented and tested extensively. Results are reported in Section 5.

4. Statistical analysis

We now analyze the statistical significance of finding a large submatrix of size r×c hidden into a random n×m matrix
over an alphabet of cardinality a. More specifically, we randomly generate a matrix X ∈ �n×m using a memoryless
source with parameters {p1, . . . , pa} where pi is the probability of the ith symbol in �. Given X, the goal is to
characterize asymptotically the size of the largest submatrix in X.

For convenience of notation, let us call Pr = pr
1 + pr

2 + · · · + pr
a the probability of observing a clean column over r

rows, and let us define H(x) = −x ln x − (1 − x) ln(1 − x). We observe that Pr = pmax(1 + O(�r )) as r → ∞ where
� < 1 and pmax = max{p1, . . . , pa}.

The first result characterizes the number of columns of the largest bicluster, when the number of rows is set to be r.
More precisely, let Zj1,...,jr be the number of clean columns in rows 1�j1 < · · · < jr �n. Our goal is to find

Cn,m,r,a = max
1� j1<···<jr �n

{Zj1,...,jr }. (2)

The following characterize the typical behavior of Cn,m,r,a .

Theorem 2. Let Cn,m,r,a be the random variable associated with the number of columns of the submatrix with the
largest area in a matrix X ∈ �n×m generated from a memoryless source, once the number of rows r is fixed as defined
in (2). Then

Cn,m,r,a �mPr + √
2Pr(1 − Pr)mF(n, r) ≡ Cmax

with high probability and as n → ∞, where

F(n, r) =
{

r log n if r = o(n),

nH(�) if r = �n and 0 < � < 1,

where Pr ∼ pmax when r is large.

Proof. Observe that

Pr{Zj1,...,jr = k} =
(

m

k

)
P k

r (1 − Pr)
m−k,

and in particular, E[Zj1,...,jr ] = mPr and Var[Zj1,...,jr ] = mPr(1 − Pr). We now proceed as follows:

Cn,m,r,a = max
1� j1<···<jr �n

{Zj1,...,jr }

= √
Var[Zj1,...,jr ] max

1� j1<···<jr �n

{
Zj1,...,jr − E[Zj1,...,jr ]√

Var[Zj1,...,jr ]

}
+ E[Zj1,...,jr ]

= √
Var[Zj1,...,jr ] max

1� j1<···<jr �n
{Yj1,...,jr } + E[Zj1,...,jr ], (3)

where Yj1,...,jr are asymptotically normally distributed N(0, 1). Observe that Yj1,...,jr are not independent.
We now estimate C′

n,m,r,a = max1� j1<···<jr �n{Yj1,...,jr }. Since Yj1,...,jr are normally distributed we have, when
r = o(n)

Pr{C′
n,m,r,a > x}�

(
n

r

)
Pr{Yj1,...,jr > x} ∼ nr

r!
e−x2/2

x
, (4)
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where we approximate
(
n
r

) = nr/r! for r = o(n). Hence for x = √
2 log nr we find that

Pr{C′
n,m,r,a >

√
2 log nr}�O(1/ log n) → 0

as n → ∞. We have

Cn,m,r,a �mPr + √
2Pr(1 − Pr)mr log n

with high probability.
If instead r = �n, then we must use (cf. [28])(

n

�n

)
∼ enH(�)

√
2�n�(1 − �)

,

where H(�) = −� log � − (1 − �) log(1 − �). In this case, Eq. (4) should be replaced by

Pr{C′
n,m,r,a > x}�

(
n

r

)
Pr{Yj1,...,jr > x}� 1√

2�n�(1 − �)

enH(�)−x2/2

x
.

Thus x = √
2nH(�) makes the above probability small and C′

n,m,r,a ∼ √
2nH(�) with high probability leading finally to

Cn,m,r,a �mPr + √
2Pr(1 − Pr)mnH(�)

with high probability. �

The practical implications of Theorem 2 are twofold. First, the expected number of columns can be used to set
the column threshold parameter ĉ?max{Cmax, 1}. That allows the algorithm to avoid considering statistically non-
significant submatrices. Second, observe that when log n = o(m), then the dominant term of Cmax is the average, say
E[C], of the number of clean columns, that is, E[C] = mPr . This implies Cmax/E[C]�1 + o(1) for log n = o(m),
and therefore with high probability any algorithm is asymptotically optimal. Clearly, this is not true for r = �n.

Now we deal with the optimization problem associated with f3 (in a probabilistic setting). More precisely, we define

An,m,a = max
i,j

{Ai,j}, (5)

where i = (i1, . . . , ir ) and j = (j1, . . . , jc) such that 1� i1 < · · · < ir �n and 1�j1 < · · · < jc �m. Our second
result characterizes the typical behavior of An,m,a . It is easy to realize that An,m,a = O(log nm) when r = o(n) and
c = o(m), thus for the largest area either r = O(n) or c = O(m), as shown below.

Theorem 3. Let An,m,a be the random variable associated with the area of the largest submatrix in a matrix X ∈
�n×m, m�n, generated from a memoryless source. Then, with high probability for any � > 0 and as n → ∞

An,m,a �(1 + �)rc,

where r = n/2 and c = 2 ln 2/ ln p−1
max.

Proof. First, observe that

Pr{An,m,a > r · c}�
(

n

r

) (
m

c

)
P c

r . (6)

Now one needs to select r and c such that the right-hand side of Eq. (6) is small. Since we know that the largest bicluster
is of order O(n), we assume r = �n and c = o(n). As above, we have that(

n

�n

)
∼ enH(�)

√
2�n�(1 − �)

,
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Table 2
The statistics of large submatrices in a random {0, 1}-matrix of size 256 × 256

Rows Columns observed Columns predicted

1 256 256
2 160 165.6771209
3 100 103.9626215
4 67 67.24371945
5 45 44.84053788
6 31 30.70906224
7 23 21.48364693
8 16 15.26873716

The second column reports the number of columns of the submatrices observed in a random matrix, whereas the third reports the prediction based
on Theorem 2.

where H(�) is a natural entropy. Since P�n ∼ p�n
max, we arrive at

Pr{An,m,a > �cn}� enH(�)+c ln m−rc ln p−1
max√

2�n�(1 − �)
.

Now we choose �∗ such that

H(�∗) = c�∗ ln p−1
max. (7)

If we select r = (1 + �)�∗n we can make Eq. (6) small. In fact, since m�n, we have

Pr{An,m,a > �∗cn}�e−�n → 0

for some � > 0. Thus the largest submatrix has An,m,a �(1 + �)n�∗c provided c = O(1) (since otherwise (7) does not
have a solution).

But we may still want to find the largest �∗c subject to constraint (7), that is, max �∗c under the condition that
H(�∗) = c�∗ ln p−1

max. This can be solved by setting c = H(�∗)/(�∗ ln p−1
max) and the maximizing

�∗c = �∗ H(�∗)
�∗ ln p−1

max
= H(�∗)

ln p−1
max

. (8)

Eq. (8) reaches the maximum when �∗ = 0.5. Then the optimal number of columns is c = 2 ln 2/ ln p−1
max. �

The intuition behind Theorem 3 is that on random matrices one should expect the largest submatrix to be “skinny”,
that is, a few columns and lots of rows, or vice versa. For example, we expect the largest submatrix in a random
{0, 1}-matrix of size 256 × 256 to be size 2 × 160 (see Table 2).

5. Implementation and experiments

We implemented column- and row-sampling algorithms in C++ and tested the programs on a desktop PC with
a 1.2 GHz Athlon CPU and 1 GB of RAM, under Linux. Although the algorithms do not require sophisticated data
structures, in order to carry out step 4 in the algorithm of Fig. 2, one needs a data structure to store the strings and their
frequencies. Since k and a are usually not very large, our experience shows that a simple hash table (of size ak) is a
good choice. If ak becomes too large, a trie would be a better data structure. If one uses the hash table, it is important to
keep track of the non-zero entries in another balanced data structure. That would avoid the algorithm to spend O(ak) to
search for the frequently occurring strings. Observe also that row-sampling algorithm (Fig. 4) does not require any hash
table, or any other data structure. However, our experiments show that in order to get the same level of performance of
the column sampling, the row sampling strategy needs a significantly larger projection k which adversely affects the
running time.
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Fig. 5. Comparing the performance of the randomized algorithm LARGEST_BICLUSTER_C when kmin = k versus kmin = 1, for different choices of
the alphabet size a. The projection size is k = loga m.

Another issue is whether one should keep track of the projections generated so far to avoid generating duplicates.
We studied this matter experimentally, and found that it is worthwhile to keep track of the projections in some balanced
data structure only when k is small. If k is large, the overhead required to keep the data structure updated is much higher
than the time wasted in processing the same projection multiple times.

5.1. Simulations

In order to evaluate the performance of the algorithms, we designed several simulation experiments. In these experi-
ments we randomly generated one thousand 256×256 matrices of symbols drawn from an symmetric i.i.d. distribution
over an alphabet of cardinality a = 2, 4, 8, 16, 32. Then, in each matrix we embedded a random 64 × 64 submatrix at
random columns and random rows. We ran the algorithms for a few tens of iterations (t = 5, . . . , 100), and for each
choice of t we measured the number of successes out of the 1000 distinct instances. Fig. 5 summarizes the performance
of LARGEST_BICLUSTER_C, for several choices of alphabet size a and projection size k, and minimum subset size kmin.
Fig. 6 summarizes the performance of LARGEST_BICLUSTER_R under the same conditions.

In order to make a fair comparison between kmin = k and kmin = 1, the number of iterations for the case kmin = k

was multiplied by 2k −1. Note that by doing so, we are assuming that one projection for kmin = 1 takes about the same
time as one projection for kmin = k, which is not necessarily very accurate. Under this assumption, however, kmin = k

outperforms kmin = 1 (see Fig. 5). This not necessarily true in the row sampling strategy (see Fig. 6).
By comparing the performance of row sampling against column sampling, one can observe that if one uses the same

set of parameters, column sampling always outperforms row sampling.
Unfortunately, we were unable to compare the performance of our randomized approach to other biclustering

algorithms (e.g. [4,30,3,29,7,22,27,20]), because their notion of bicluster is generally different from ours.



S. Lonardi et al. / Theoretical Computer Science 368 (2006) 217–230 229

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

iterations (t)

su
cc

es
se

s/
10

00

a = 32, k = 4, kmin = 1 a = 32, k = 4, kmin = 4 a = 16, k = 4, kmin = 1 a = 16, k = 4, kmin = 4 a = 8, k = 5, kmin = 1

a = 8, k = 5, kmin = 5 a = 4, k = 7, kmin = 1 a = 4, k = 7, kmin = 7 a = 2, k = 11, kmin = 1 a = 2, k = 11, kmin = 11

Fig. 6. Comparing the performance of the randomized algorithm LARGEST_BICLUSTER_R for different choices of the alphabet size a, the projection
size k, and the smallest subset kmin.

6. Conclusions

In this paper we have introduced the LARGEST BICLUSTER problem. This problem has a variety of applications ranging
from computational biology to data mining. As far as we know, the pattern matching community has not looked yet at
this problem from a combinatorial perspective. Unfortunately, the problem is generally NP complete.

Here we presented a rather simple algorithm based on random projections. Its performance with respect to the number
of projection was carefully analyzed. We have also presented a probabilistic analysis of the LARGEST BICLUSTER

problem, which allows one to determine the statistical significance of a solution.
Our approach performs remarkably well on synthetic data. On large alphabets, thirty or so iterations are enough to

give a performance close to 100%. With respect to other biclustering algorithms (see e.g., [4,22,27]), our algorithm
simultaneously discovers multiple solutions which satisfy the user-defined parameters without masking or changing
the original data. In addition to this, the algorithm will never report solutions which are completely contained in other
solutions.
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