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The 454 pyrosequencing technology is gaining popularity as an alternative to tra-
ditional Sanger sequencing. While each method has comparative advantages over
the other, certain properties of the 454 method make it particularly well suited for
small RNA discovery. We here describe some of the details of the 454 sequenc-
ing technique, with an emphasis on the nature of the intrinsic sequencing errors
and methods for mitigating their effect. We propose a probabilistic framework for
small RNA discovery, based on matching 454 flowgrams against the target genome.
We formulate flowgram matching as an analog of profile matching, and adapt sev-
eral profile matching techniques for the task of matching flowgrams. As a result,
we are able to recover some of the hits missed by existing methods and assign
probability-based scores to them.

1. Introduction

Historically, the chain termination-based Sanger sequencing17 has been
the main method to generate genomic sequence information. Alterna-
tive methods have been proposed, among which a highly parallel, high-
throughput pyrophosphate-based sequencing (pyrosequencing)16 is one of
the most important. 454 Life Sciences has made pyrosequencing commer-
cially available11 and the resulting abundance of 454-generated sequence in-
formation has prompted a number of studies which compare 454 sequencing
with the traditional Sanger method (see, e.g., 3,6,8,12,20).

454 pyrosequencing. In the 454 technology, the highly time-consuming
sequence preparation step which involves production of cloned shotgun li-
braries has been replaced with much faster PCR microreactor amplification.
Coupled with the highly parallel nature of 454 pyrosequencing, this novel
technology allows 100 times faster8 and significantly less expensive sequenc-
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ing. A detailed step by step breakdown of time required to complete the
process using both methods can be found in Wicker et al.20

Recent studies by Goldberg et al.8 on sequencing six marine microbial
genomes and by Chen et al.3 on sequencing the genome of P. marinus
report that 454’s ability to sequence throughout the regions of the genome
with strong secondary structure and the lack of cloning bias represent a
comparative advantage. However, the 454’s shorter read lengths (100 bp
on average compared to 800-1000 bp of Sanger) make it very hard if not
impossible to span long repetitive genomic elements. Also, the lack of paired
end reads (mate pairs) limits the assembly to contigs separated by coverage
gaps. As a consequence, both studies conclude that at the present stage
454 pyrosequencing used alone is not a feasible method for de novo whole
genome sequencing, although these two issues are being addressed in the
new 454 protocol. Another problem inherent to pyrosequencing is accurate
determination of the number of incorporated nucleotides in homopolymer
runs, which we discuss in Section 2.

Small RNA. Since its discovery in 19984, gene regulation by RNA in-
terference has received increasing attention. Several classes of non-coding
RNA, typically much shorter than mRNA or ribosomal RNA, have been
found to silence genes by blocking transcription, inhibiting translation or
marking the mRNA intermediaries for destruction. Short interfering RNA
(siRNA), micro RNA (miRNA), tiny non-coding RNA (tncRNA) and small
modulatory RNA (smRNA) are examples of classes of small RNA that have
been identified to date13. In addition to differences in genesis, evolutionary
conservation, and the gene silencing mechanism they are associated with,
different classes of small RNA have distinct lengths: 21-22 bp for siRNA,
19-25 bp for miRNA and 20-22 bp for tncRNA.

The process of small RNA discovery typically involves (1) sequencing
RNA fragments, (2) matching the sequence against the reference genome to
determine the genomic locus from which the fragment likely originated, and
(3) analyzing the locus annotations in order to possibly obtain functional
characterization. In this paper we focus on the second step.

Our contribution. 454 pyrosequencing appears to be particularly well-
suited for small RNA discovery. The limited sequencing read length does
not pose a problem given the short length of non-coding RNAs, even if we
take into account lengths of adapters which are ligated on both ends on the
small RNA prior to sequencing. Also, paired end reads are not required,
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as there is no need to assemble small RNA into larger fragments. Several
projects have already used 454 to sequence non-coding RNA (see, e.g., 7,14).

However, to the best of our knowledge, the issue of handling sequenc-
ing errors has not been addressed so far for short reads which occur in
small RNA discovery. Observe that this problem could be mitigated in
a scenario where an assembly step was involved – which is not the case
when sequencing small RNA. In the following sections we describe the 454
sequencing model and the typical sequencing errors it produces. We pro-
pose a probabilistic matching method capable of locating some of the small
RNA which would have been missed if the called sequences were matched
deterministically. We adapt the enhanced suffix array2 data structure to
speed up the search process. Finally, we evaluate the proposed method on
four libraries obtained by sequencing RNA fragments from stress-treated
Arabidopsis thaliana plants and return 26.4% to 28.8% additional matches.

2. The 454 Pyrosequencing Method

In the 454 sequencing method, DNA fragments are attached to synthetic
beads, one fragment per bead, and amplified using PCR to approximately
10 million copies per bead11. The beads are loaded into a large number of
picolitre-sized reactor wells, one bead per reactor, and sequencing by syn-
thesis is performed in parallel by cyclically flowing reagents over the DNA
templates. Depending on the template sequence, each cycle can result in
extending the strand complementary to the template by one or more nu-
cleotides, or not extending it at all. Nucleotide incorporation results in the
release of an associated pyrophosphate, which produces an observable light
signal. The signal strength corresponds to the length of the incorporated
homopolynucleotide run in the given well in that cycle. The resulting signal
strengths are reported as pairs (nucleotide, signal strength), referred to as
flows. The end result of 454 sequencing is a sequence of flows in the T,
A, C, G order called a flowgram. Terms positive flow and negative flow
denote, respectively, that at least one base has been incorporated, or that
the reagent flowed in that cycle did not results in a chemical reaction, and
hence that a very weak signal was observed. Every full cycle of negative
flows would be called as an N, because the identity of the nucleotide could
not be determined. Positive flow signal strengths for a fixed homopolynu-
cleotide length l are reported to be normally distributed with the mean
0.98956 · l + 0.0186 and standard deviation proportional to l, while the
negative flow signal strengths follow a log-normal distribution11. To the



September 25, 2007 11:19 Proceedings Trim Size: 9in x 6in paper

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9  10

lo
g 1

0 
nu

m
be

r 
of

 fl
ow

s

signal strength

A
C
G
T

Figure 1. Distribution of signals for the A. thaliana pyrosequencing dataset

best of our knowledge, the other parameters of the normal and log-normal
distributions have not been reported in the literature. In Section 7 we are
estimating the remaining parameters from the available data.

Figure 1 shows the distribution of signal strengths for the A. thaliana
dataset (50 million flows). Distributions of signal strengths for two addi-
tional sequencing projects performed at UC Riverside are given as Supple-
mentary Figure 1, available on-line at http://compbio.cs.ucr.edu/flat. The
overlaps between Gaussians for different polynucleotide lengths are respon-
sible for over-calling or under-calling the lengths of incorporated nucleotide
runs.

When sequencing small RNA, the 454-provided software employs a max-
imum likelihood strategy to call a homopolynucleotide length, with cut-off
point at l ± 0.5 for polynucleotide length l. This results in, for example,
flows (T,2.52) and (T,3.48) both being called as TTT even though the prox-
imity of the cut-off points indicates that the former one may have in fact
come from TT and the latter one from TTTT. This could be alleviated to
a degree by allowing approximate matches, where insertions or deletions
would address under-calling and over-calling. However, without the knowl-
edge of the underlying signal strengths any insertion or deletion would be
arbitrary.

Also, according to the 454 procedure, a flow with signal intensity 0.49
will be treated as a negative, even though it is very close to the cut-off
point for a positive flow. Consider the following example: sequence of
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flows (C,0.92)(G,0.34)(T,0.49)(A,0.32)(C,0.98) will be called as CNC and all
information about which nucleotide was most likely to be in the middle will
be lost.

These examples illustrate the intuition behind our approach: we use sig-
nal strengths to estimate probabilities of different lengths of homopolymer
runs that may have induced the signal. The target genome conditions the
probabilities, and the most probable explanations are returned as potential
matches. The following section formally introduces the notion of flowgram
matching.

3. Flowgram Matching

Let F be a flowgram obtained by pyrosequencing a genomic fragment orig-
inating from genome Γ, and let G be a flowspace representation of Γ de-
rived by run-length encoding (RLE)a of Γ and padding the result with
appropriate zero-length negative flows in a manner which simulates flowing
nucleotides in the T,A,C,G order, as illustrated in Supplementary Figure
2. Let flowgram F = {(b0, f0), (b1, f1), . . . , (bm−1, fm−1)} be a sequence
of m flows, where bi is the nucleotide flowed and fi is the resulting signal
strength. Let n be the length of G. Under the assumption that the occur-
rences of lengths of homopolynucleotide runs are independent events, the
probability that a flowgram F matches a segment in G starting at position
k can be expressed as

P (F ∼ Gk..k+m−1) =
m−1∏

i=0

Pbi(L = gk+i|S = fi) (1)

where L is a random variable denoting the length of the homopolynu-
cleotide run in Γ, S is a random variable associated with the induced
signal strength in the flowgram, and gk+i is the length of the run at po-
sition i from the beginning of the match. For example, if the flowgram
(A,0.98)(C,0.14)(G,1.86)(T,0.24)(A,3.12) is matched against AGGAAA, the
run lengths for the genomic sequence are g = {1, 0, 2, 0, 3}, and the probabil-
ity of matching would be PA(L = 1|S = 0.98)·PC(L = 0|S = 0.14)·PG(L =
2|S = 1.86) ·PT (L = 0|S = 0.24) ·PA(L = 3|S = 3.12). One of the benefits
of casting the genome in flowspace is that a flowgram of length m will cor-
respond to a segment of length m in G, whereas the corresponding segment

aWe say that that a sequence w is a run of length k if w = ck, where c ∈ {A, C, G, T}.
In this case, the run-length encoding (RLE) of w is (c, k).
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in Γ would have context-dependent length. Also, once the starting flows are
aligned in terms of nucleotides, the remaining m − 1 flows will be aligned
as well. Using the Bayes’ theorem we can rewrite equation (1) as

P (F ∼ Gk..k+m−1) =
m−1∏

i=0

Pbi(S = fi|L = gk+i) · Pbi(L = gk+i)
Pbi

(S = fi)
(2)

where Pbi(L = gk+i) is the probability of observing a bi homopolynucleotide
of length gk+i in Γ, and Pbi

(S = fi|L = gi+k) and Pbi
(S = fi) depend on

the 454 sequencing model and can be estimated from the data through
a combination of the called sequences and the underlying flowgrams (see
Section 7).

If we assume a null model where homopolynucleotide runs are assigned
the probabilities obtained by counting their frequencies in G, the log-odds
score of the match is

Score(F ∼ Gk) = log
P (F ∼ Gk+m−1)
Pnull(Gk..k+m−1)

= log
∏m−1

i=0 Pbi(L = gk+i|S = fi)∏m−1
i=0 Pbi(L = gk+i)

Rewriting the numerator using the Bayes’ theorem allows us to cast flow-
gram matching as an analog of profile matching (see e.g. 2,5,19,21), with the
scoring matrix M defined as

Mi,j = log Pbi(S = fi|L = j)− log Pbi(S = fi)

The log-odds score can then be expressed as a sum of the matrix entries

Score(F ∼ Gk) =
m−1∑

i=0

Mi,j (3)

A brute-force approach for matching a flowgram F would be to align F

with all m flow long segments in G and report the best alignments. This
algorithm runs in O(mn) time per flowgram. With typical sequence library
sizes in the hundreds of thousands, flowgrams up to 100 bp and genomes
in the order of billion bp, this approach is computationally not feasible.

4. Enhanced Suffix Arrays

Recently, Beckstette et al.2 introduced the enhanced suffix array (ESA), an
index structure for efficient matching of position specific scoring matrices
(PSSM) against a sequence database. While providing the same function-
ality as suffix trees1, enhanced suffix arrays require less memory and once
precomputed they can be easily stored into a file or loaded from a file into
main memory. An enhanced suffix array can be constructed in O(n) time2,9.
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We employ enhanced suffix arrays to index the database of genomic se-
quences, with two adjustments. An ESA indexes the search space of positive
flows, in the order determined by the underlying genome. To provide the
view of the genomic sequences as observed by the 454 sequencer, positive
flows are padded with intermediate dummy negative flows, as illustrated in
Supplementary Figure 2 (available at http://compbio.cs.ucr.edu/flat). This
padding does not interfere with searching for the complement of the flow-
gram because CGTA, the reverse complement of the order TACG, is a cyclic
permutation of the original order with offset 2. Consequently the reverse
complements of the dummy flows would exactly match the dummy flows
inserted if the reverse complement of the RNA fragment was sequenced.

When a flowgram is being aligned along the “branches” of the suffix
array, the branches are run-length encoded and negative flows are inserted
where appropriate. This amounts to on-the-fly branch by branch flowspace
encoding of the underlying sequence database, without sacrificing the com-
pactness of the suffix array representation. The score of the alignment is
calculated using equation (3).

The first adjustment solves the problem of intermediate negative flows.
However, it can happen that the flowgram corresponding to the RNA frag-
ment starts or ends with one or more negative flows. The second adjustment
creates variants of the indexed database subsequence, where combinations
of starting and ending negative flows are allowed, as illustrated in Supple-
mentary Figure 3 (available at http://compbio.cs.ucr.edu/flat).

5. Lookahead Scoring

Flowgram matching using the index structure described in the previous sec-
tion can be stopped early if the alignment does not appear to be promising.
More precisely, given a threshold score t which warrants a good match of
the flowgram against the sequence database, and the maximum possible
score for each flow, we can discard low-scoring matches early by establish-
ing intermediate score thresholds thi. The final threshold for the whole
flowgram, thm, is equal to t, and the intermediate thresholds are given by
thi−1 = thi − maxj(Mi,j). This method, termed lookahead scoring, was
introduced in Wu et al.21, and was combined with the enhanced suffix ar-
rays in Beckstette et al.2. The threshold score t can be estimated using
statistical significance of the match (see Section 6).

Although lookahead scoring gives the same asymptotic worst case run-
ning time, in practice, it results in significant speed-ups by pruning the
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subtrees which start with low-scoring prefixes in the database.

6. Statistical Significance of Scores

Intuitively, a higher raw score obtained by matching a flowgram F against a
segment of the sequence database should correspond to a higher likelihood
that F was generated by pyrosequencing the matched genomic segment.
One way to associate a probability value p with a given raw score is to
compute the cumulative distribution function (cdf) over the range of scores
that can be obtained by matching F against a flowspace-encoded random
genomic segment. Formally, if T is a random variable denoting the score,
t is the observed score, and fT is the probability mass function, the p-
value p associated with t is P (T ≥ t) =

∑
i≥t fT (i). The probability mass

function can be computed using a dynamic programming method described
in Staden et al.18 and Wu et al.21, using a profile matching recurrence
relation adjusted for the task of flowgram matching:

f i
T (t) =

∑

l

f i−1
T (t−Mi,l) · Pbi(L = l)

An improvement to this method, described in Beckstette et al.2, is based on
the observation that it is not necessary to compute the whole cdf, but only
the part of the cdf for scores higher than or equal to the observed score t.
Values of the probability mass function are computed in decreasing order of
achievable scores, until threshold score t for which the sum of probabilities
is greater than p is reached. Modified recurrence relation is as follows:

f i
T (t) =

∑

l∈{l|Mi,l≥maxi−d}
f i−1

T (t− d−Mi,l) · Pbi(L = l)

For a user specified statistical significance threshold p, this method gives a
score threshold t which can be used to perform statistical significance filter-
ing of the matches. The threshold score t can be used in conjunction with
previously described lookahead scoring to speed up the search. In addition,
a correspondence between obtained scores and p-values allows for indirect
comparison between scores obtained by matching different flowgrams across
different sequence databases.

The expected number of matches in a random sequence database of size
n, generally known as the E-value, can be calculated as p · n.
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7. Parameter Estimation for Probability Distributions

The output of a 454 sequencer is given as a set of three files: (1) a col-
lection of called sequences in FASTA format, (2) accompanying per-called
base quality scores which are a function of the observed signal and the con-
ditional distributions of signal strengths11, and (3) the raw flowgram files.
The 454 flowgrams start with the first observed positive flow, and signals
are reported with 0.01 granularity.

We combined (1) and (3) to obtain four sets (one per nucleotide) of
conditional distributions for different called lengths. Using the maximum
likelihood method, we estimated means and standard deviations of the nor-
mal distributions for positive flows. Only the conditionals for l ≤ 4 were
used, as data for higher lengths becomes noisy (see Figure 1 and Supple-
mentary Figure 1). We fit a line through the observed values for σ, and use
this as an estimate for σl.

The signals for the negative flows are distributed according to a dis-
tribution which resembles the log-normal, but which exhibits a markedly
different behavior in the tails. Most notably, as the signal intensities ap-
proach 0, the number of observed signals should also approach 0, and the
observed frequencies are significantly higher. Because we have a large num-
ber of negative flow signals (no less than 3.5 million flows per library per
nucleotide), we decided to use histograms for the distribution of negative
flow signals on the [0, 0.5] interval, and extrapolate it using an exponential
function on (0.5,∞).

8. Experiments

We coded a prototype implementation of our method in C++; we called
this program FLAT (for FLowgram Alignment Tool). The suffix array
index was built using mkvtree10.

We compared FLAT to two methods which could be used for matching
small RNA against the target genome: (1) exact matching using a suffix
array and (2) BLAST(version 2.2.15) with parameters optimized for finding
short, near identical oligonucleotide matches (seed word size 7, E-value cut-
off 1000). FLAT is matching flowgrams, whereas the other two methods
are matching sequences obtained by base calling the same flowgrams which
were returned by 454 Life Sciences. In all three cases, adaptors enclos-
ing the sampled small RNA inserts were trimmed before the search. The
flowgram dataset was obtained by pyrosequencing four small RNA libraries
constructed from A. thaliana plants exposed to abiotic stress conditions: A)
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cold (61,685 raw flowgrams), B) drought and ABA (74,432), C) NaCl and
copper (51,894), and D) heat and UV light (33,320). Reference A. thaliana
sequences were downloaded from TAIR15. We matched small RNA against
whole chromosome sequences as well as AGI Transcripts (cDNA, consisting
of exons and UTRs) datasets, because small RNA could have been sampled
before or after splicing.

All three methods were run on a 64 bit 1,594 MHz Intel Xeon processor.
Searching for matches of the first library against Arabidopsis chromosome 1
(30.4 million bp), for example, took 6 hours 46 minutes for FLAT, 2 hours 9
minutes for BLAST and 14 minutes for exact matching using highly efficient
suffix array implementation.

Results. The number of matches returned by the three methods are sum-
marized in Figure 2. Relatively small numbers of matches compared to
the sizes of the libraries is due to the high percentage (59.3-62.8%) of raw
flowgrams which were shorter than 18bp once the adaptor sequences were
trimmed, and hence too short to belong to a known class of small RNA.

Exact matching is the most stringent and most reliable method of the
three; however, due to the number of short inserts which cannot be inter-
preted as small RNA candidates and due to the nature of the sequence base
calling method, only a small fraction (16.0-23.9%) of the original flowgrams
match the target genome.

Allowing probabilistic matching using FLAT or tolerating insertions and
deletions using BLAST increases the number of matches at the expense of
reliability. It is difficult to compare FLAT and BLAST directly, as they
were designed with different goals in mind; furthermore, an approximate
BLAST match has no grounding in the underlying flowgram signals and
unlike FLAT with respect to this is completely arbitrary. However, the
number of matches they return and the number of returned matches which
appear also in the exactly matched dataset, given as a function of the E-
value, provide an intuition about FLAT’s behavior. For E-value of 10−3,
which in our experiments provided the best balance between the number of
matches and false positives, in all four libraries, FLAT consistently returns
98.0% to 98.4% of the exact matches, while returning additional 26.4% to
28.8% matches not found exactly. At higher E-values, the relaxed matching
conditions mean that less probable matches would also be included in the
output.

BLAST returns nearly all exact matches at E-value 10−2, at which point
it returns the number of additional matches comparable to FLAT for the
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Figure 2. Comparison between the number of matches found for the four stress-
induced A. thaliana small RNA libraries: A) cold, B) drought and AB, C) NaCl
and copper, and D) heat and UV light.

same E-value. It is of interest to note that even though the number of
matches is similar, not all of them are found by both methods (the dot-
dashed line with star markers in Figure 2).

To illustrate some of the additional matches returned by FLAT and
missed by BLAST, consider the flowgram (C,2.06)(G,1.02)(T 0.23)(A
1.53)(C 2.22)(G 0.23)(T 1.99) (A 1.13)(C 0.33)(G 0.96)(T 0.39)(A 0.19)(C
0.96)(G 0.19)(T 0.93)(A 0.10) (C 1.15)(G 0.10)(T 0.26)(A 0.90)(C 0.18)(G
1.02)(T 2.03)(A 0.22)(C 0.12) (G 2.32) for which the maximum likelihood
base-called sequence is CCGAACCTTAGCTCAGTTGG, which does not occur in
the genome. However, if we allow the first A flow with the intensity 1.53
to come from A and not AA we get an alternative base-called sequence
CCGACCTTAGCTCAGTTGG, which occurs in a number of tRNA genes.
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9. Discussion

In this paper, we described a procedure which makes use of the flow sig-
nal distribution model to efficiently match small RNA flowgrams against
the target genome in a probabilistic framework. Depending on the user-
specified statistical significance threshold, additional matches missed by
exact matching of the called flowgram sequences are returned.

In principle, evaluating the biological significance as a function of the
statistical significance is a challenging task. When analyzing the additional
matches, most would agree that calling a flow (A,1.53) as either A or AA

would make sense. However, calling a flow (A,0.20) as A, however less
probable, is still possible under the model provided in Marguiles et al.11,
if less probable matches are allowed by increasing the threshold statistical
significance. FLAT provides several output and filtering options which
allow the user to focus on the analysis of the non-exact matches or their
subset. Most promising matches, in terms of their functional analysis after
the tentative genomic loci have been determined, would require additional
post-processing and ultimately biological verification.
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