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Genome-wide functional screens enable the
prediction of high activity CRISPR-Cas9 and
-Cas12a guides in Yarrowia lipolytica
Dipankar Baisya1,6, Adithya Ramesh2,6, Cory Schwartz2,5, Stefano Lonardi 1,3✉ & Ian Wheeldon 2,3,4✉

Genome-wide functional genetic screens have been successful in discovering genotype-

phenotype relationships and in engineering new phenotypes. While broadly applied in

mammalian cell lines and in E. coli, use in non-conventional microorganisms has been limited,

in part, due to the inability to accurately design high activity CRISPR guides in such species.

Here, we develop an experimental-computational approach to sgRNA design that is specific

to an organism of choice, in this case the oleaginous yeast Yarrowia lipolytica. A negative

selection screen in the absence of non-homologous end-joining, the dominant DNA repair

mechanism, was used to generate single guide RNA (sgRNA) activity profiles for both

SpCas9 and LbCas12a. This genome-wide data served as input to a deep learning algorithm,

DeepGuide, that is able to accurately predict guide activity. DeepGuide uses unsupervised

learning to obtain a compressed representation of the genome, followed by supervised

learning to map sgRNA sequence, genomic context, and epigenetic features with guide

activity. Experimental validation, both genome-wide and with a subset of selected genes,

confirms DeepGuide’s ability to accurately predict high activity sgRNAs. DeepGuide provides

an organism specific predictor of CRISPR guide activity that with retraining could be applied

to other fungal species, prokaryotes, and other non-conventional organisms.
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C lass II CRISPR endonucleases such as Cas9 and Cas12a are
now widely used for targeted genome editing and in
functional genomics screens. These multi-domain proteins

function by forming a ribonucleoprotein complex of a CRISPR
RNA (crRNA or spacer) and a structural component that enables
complexation of the crRNA with the CRISPR-associated endo-
nuclease (i.e., Cas9 or Cas12a)1,2. Targeting is achieved by the
complementarity of the crRNA to a desired genomic locus, which
must be adjacent to a protospacer adjacent motif (PAM) to
activate endonuclease function. When this targeting occurs, active
Cas9 or Cas12a can create a loss of function mutation as an
endonuclease induced double-stranded break in the genome is
repaired by native non-homologous end joining (NHEJ) or by
homologous recombination (HR) in the presence of a repair
template3,4. Gene regulation is also possible with Cas activity
disabled, by targeting repressor or activation domains to the
promoter region of the gene of interest5. Such editing and reg-
ulation can be accomplished individually6, in multiplexed format7

or with pooled libraries of gRNAs that target every gene in a
genome8. The development of these systems has not only enabled
genetic studies in model cell lines and microbes but has also eased
the burden of developing targeted genome editing tools in many
non-model or non-conventional organisms9–14.

The successful application of CRISPR systems is largely
dependent on the efficacy of the sgRNA, and while a number of
design tools have been developed, accurate predictions across
species and across different Cas endonucleases are not yet pos-
sible. A central challenge is that the vast majority of predictive
algorithms are trained on data generated from a limited number
of species, most commonly human and murine cell lines or
Escherichia coli. In addition, most screens to date that correlate
sgRNA sequence with activity have been conducted with Cas9 or
Cas9 variants, with only a limited number of such screens for
Cas12a (Cpf1) or other Cas proteins. A recent meta-analysis of
CRISPR-Cas9 screens suggests that the lack of cross-species
predictive power comes from variation in genomic context; a
strong correlation between sgRNA features and guide activity for
the target species was not able to predict guide activity when
applied to other species15. We have also observed this in our own
work, where genome-wide sgRNA activity profiles in the oleagi-
nous yeast Yarrowia lipolytica showed poor correlation with
activity predicted by a number of commonly-used guide design
tools trained on data generated from other species8.

Here, we developed a deep learning-based guide design algo-
rithm called DeepGuide that is capable of accurately predicting
Streptococcus pyogenes Cas9 and Lachnospiraceae bacterium
Cas12a sgRNA activity in Y. lipolytica. We focused our efforts on
this non-conventional yeast because it has value as an industrial
host for the conversion of biomass-derived sugars and industrial
waste streams (e.g., glycerol, alkanes, and fatty acids) into value-
added chemicals and fuels16–21. Similar to many other eukaryotes,
DNA repair in Yarrowia is dominated by NHEJ22. We exploit this
trait to perform negative selection CRISPR screens in the absence
of NHEJ repair where double-stranded breaks in the genome lead
to cell death or a significant impairment to cell fitness8,23. Such
screens enable the quantification of a cutting score (CS), a mea-
sure of activity, for every plasmid expressed sgRNA in the library,
thus creating a large dataset correlating sgRNA activity to guide
sequence, genomic context, and other genomic and epigenetic
features. This work generates a dataset for Cas12a and also uses
Cas9 genome-wide CS profiles generated in a previous work8 to
create a large, Y. lipolytica specific training set to understand and
predict guide activity for CRISPR studies in this yeast.

DeepGuide utilizes a deep learning framework based on a
convolutional neural network (CNN), which builds on existing
sgRNA activity prediction tools such as DeepCRISPR24 and Seq-

deepCpf125. Unsupervised learning was achieved using a con-
volutional autoencoder (CAE) in a pretraining step to learn the
representation of the sgRNA landscape within the genomic
context of Y. lipolytica. This was followed by supervised learning
on a CNN using sequence and a CS value for each sgRNA
sequence within the Cas9 and Cas12a datasets, and related
chromatin accessibility information for the target site of each
sgRNA. Lastly, the predictions of the model were cross-validated
to obtain correlations between observed and predicted CS values.
The activity of predicted guides was also independently validated
by targeting a set of genes whose null mutants generated easily
screenable phenotypes. DeepGuide outperformed existing guide
activity prediction tools on the Y. lipolytica datasets and predicted
20 nt Cas9 sgRNA with an NGG PAM, as well as 25 nt Cas12a
sgRNA with a TTTV PAM, with high accuracy.

Results
Library design and generating genome-wide CS profiles. To
generate Y. lipolytica CS profiles for CRISPR-Cas9 and CRISPR-
Cas12a, we designed plasmid-based sgRNA libraries with sixfold
and eightfold redundancy for every protein-coding gene in the Y.
lipolytica genome. The Cas9 library targeted 7854 out of 7919
protein-coding genes annotated in the CLIB89 strain (parent
strain of PO1f) of Y. lipolytica26, while the more restrictive PAM
sequence of Cas12a (TTTV for Cas12a vs. NGG for Cas9)
resulted in a library targeting only 7801 protein-coding genes.
Gene coverage of the library as well as distributions of the guides
within each library after plasmid construction are shown in
Supplementary Fig. 1. Libraries were designed using two distinct
approaches: a strategy biased towards active guides for Cas9, and
an unbiased strategy for Cas12a. For the Cas9 library, we used the
first iteration of sgRNA Designer27 to rank all possible Cas9
guides in Y. lipolytica and selected the top six scoring guides for
every targeted gene (Note: experimental analysis of this library
was previously accomplished, including CS profiling, and nega-
tive and positive selection screens8. Here we re-analyze this data
and use it as training and validation sets for DeepGuide). For the
Cas12a library, sgRNAs were selected at random starting from the
5’ end of each gene. With the exception of ensuring that the
sgRNAs would have minimal or no off-target effects, no addi-
tional criteria were used to design the library. We used only
minimal design criteria so that a significant portion of the library
would contain poorly active or inactive guides. This unbiased
Cas12a library was expected to provide a more informative
training set for DeepGuide due to the presence of a higher pro-
portion of “negative” training examples.

The workflow to generate the CS profiles along with the
distributions for both Cas9 and Cas12a are shown in Fig. 1, with
replicate correlations shown in Supplementary Fig. 2 and
Supplementary Table 1. The CS value for each guide is defined
as the log2 ratio of normalized sgRNA abundance in a NHEJ-
deficient strain, to that in a strain both deficient in NHEJ and
expressing Cas9/12a (Supplementary Data 1 and 2). The lack of
Cas activity removes pressure for selection and therefore sgRNA
abundance in the control strain was expected to remain relatively
constant over the course of the growth screen. Cas9/12a induced
double-stranded breaks in a strain deficient in NHEJ causes cell
death or significantly impairs growth, thus linking sgRNA
abundance (as measured by next-generation sequencing of the
recovered sgRNA expression plasmids) to Cas9/12a activity,
where high positive CS values indicate high activity guides and
negative CS values indicated inactive or poorly active guides.

With CS profiles for both Cas9 and Cas12a in hand, we set out
to determine if a number of commonly used guide prediction
methods could capture our experimentally determined CS
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profiles. Learning-based models that use only the sgRNA
sequence as input, including CRISPRater28, SSC29, and sgRNA
Scorer30 were partially able to capture CS across the genome with
SSC exhibiting the highest Pearson coefficient for Cas9 (r= 0.11)
and sgRNA Scorer the highest for Cas12a (r= 0.28). sgRNA
Designer27,31 and TSAM32 take as input the guide sequence and
the genomic context immediately surrounding it but were not
able to accurately capture experimentally determined CS values in
Y. lipolytica. TSAM performed the best of these (including both
versions of sgRNA Designer27,31), achieving a Pearson coefficient
of r= 0.16 for Cas9. These three algorithms are not designed for
Cas12a guide prediction, as such were not able to predict Cas12a
CS in Y. lipolytica. Lastly, three neural network-based approaches,
Seq-deepCpf125, DeepCRISPR24, and CRISPRon33, were also
only partially aligned with CS; Seq-deepCpf1 fared the best at
predicting Cas12a CS (r= 0.25), while CRISPRon was best at
predicting Cas9 activity (r= 0.21). DeepGuide, our CAE/CNN-
based approach, achieved Pearson coefficients of 0.5 and 0.66 for
Cas9 and Cas12a CS values, respectively. We note here that in the
case of Cas9, nucleosome occupancy was also used as input to the
predictive algorithm; details of this and DeepGuide optimization
are discussed in the following subsections.

The comparison of existing methods to DeepGuide was
accomplished using CS values after 4 days of cell growth. CS
distributions determined after 2, 4, and 6 days are shown in Fig. 2.
After only 2 days of culture, CS values remained close to zero
indicating minimal guide activity (at day 2, CSCas9,avg=−0.01 ± 0.21,
CSCas12a,avg 0.22 ± 0.83). At the end of the second day of growth post-
transformation, the sample and control strains reached confluency
for the first time and were subcultured to continue the growth screen
at this time point as well as after reaching confluency for a second
time 4 days into the screen. We elected to use day 4 data for further

analysis because the observed CS profiles remained relatively
unchanged from day 4 to day 6, suggesting that the majority of
sgRNA activity and the resulting phenotypic effect had occurred by
day 4. Both libraries also included a population of non-targeting
sgRNAs, constituting ~1.5% of each library, that functioned as
negative controls. For both Cas12a and Cas9, the average CS for the
negative control populations were in the −1.0 to −3.0 range (across
all days) and were represented by normal distributions around −1.56
for Cas12a (day 4) and −3.09 for Cas9 (day 4).

DeepGuide architecture and training. DeepGuide consists of
three interconnected neural networks, namely a CAE, a con-
volutional FCCN, and a small fully connected network that is
used to capture additional epigenetic features (in our case,
nucleosome occupancy data; Fig. 3). The CAE takes as input all
the k-mers from the genome of interest and builds a compressed
representation (in the form of internal weights in the encoder) of
the genomic background distribution. The second network is
composed of an encoder followed by a fully connected neural
network (FCCN; see Supplementary Table 2 for the list of layers).
The encoder matches the structure of the encoder in the CAE,
and its weights are first initialized from the CAE pre-training
step. The FCCN is composed of one flattening layer, three fully
connected layers, one concatenation layer, and one output layer
(see Supplementary Table 3 for the list of layers). The entire
second network (including the encoder) is trained via back-
propagation from input pairs of sgRNA sequences and their
corresponding CS values. The nucleosome data is fed into the
third FCCN. One-dimensional occupancy data is expanded into a
multi-dimensional real vector using a fully connected layer. The
output layer of this third network is finally combined using
element-wise multiplication with the output layer of the second

Fig. 1 Generating genome-wide CRISPR-Cas9 and CRISPR-Cas12a guide activity scores as input to machine learning algorithms for guide activity
prediction. a Pooled libraries of single-guide RNAs (sgRNAs) for Streptococcus pyogenes Cas9 and for Lachnospiraceae bacterium Cas12a were transformed
into Y. lipolytica strains with non-homologous end-joining (NHEJ) DNA repair disabled by disruption of KU70. The sample strain (smpl) expresses Cas9 or
Cas12a, while the control strain (cntrl) does not. The Cas12a screens were conducted for this work, while the Cas9 screens were previously reported in
ref. 8. A double-stranded CRISPR cut to the genome in the absence of KU70 function leads to cell death (or a dramatic reduction in cell growth), thus
enabling the quantification of guide activity through a cutting score (CS) defined as the log2 fold change of normalized guide abundance in the control vs.
the sample determined by next-generation sequencing. b Genome-wide CS and sgRNA sequence are used as inputs to the convolutional autoencoder
(CAE)-based learning method, DeepGuide, to predict sgRNA CS. DeepGuide prediction of Cas9 guides also used as input a normalized score for
nucleosome occupancy across the genome46. The performance of established CRISPR guide prediction algorithms, including Spacer Scoring for CRISPR
(SSC)29, sgRNA Scorer 2.0 (Scorer 2.0)30, CRISPRater28, Designer v1 and v227, 31, TSAM32, CRISPRon33, DeepCRISPR24, and Seq-deepCpf125, are shown
as a comparison to DeepGuide. The graph shows the Pearson correlation coefficient between CS and the predicted CS for each method. DeepGuide was
trained on Cas9 and Cas12a genome-wide CS, the corresponding sgRNA sequence, and genomic context, while all other algorithms used sgRNA sequence
(and when appropriate, genomic context) as inputs.
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network to generate CS predictions that account for the sgRNA
sequence, genomic context, and nucleosome occupancy. Addi-
tional details with respect to these architectures and their training
are provided in the “Methods” section.

DeepGuide optimization. The choice of a CAE combined with a
fully connected CNN was motivated by the results of a five-fold
cross-validation performance evaluation among various machine
learning methods (Fig. 4a). The compared methods include support

vector machines, gradient boosting, logistic and linear regression,
random forests, and a FCNN. As judged by Pearson and Spearman
correlations of the predicted CS and experimentally determined CS,
the core CAE/CNN architecture of DeepGuide performed better
than all other tested methods. For Cas12a, DeepGuide achieved a
Pearson r-value of 0.66 and a Spearman r-value of 0.66, while for
Cas9 Pearson and Spearman values were 0.43 and 0.37, respectively.
The inclusion of nucleosome occupancy data improved Cas9 pre-
diction accuracy, increasing the Pearson and Spearman r-values to
0.50 and 0.43, respectively. This effect is in agreement with

Fig. 2 CRISPR-Cas12a and CRISPR-Cas9 cutting score (CS) distributions in Yarrowia lipolytica. CS distributions were calculated across 3 separate days
after subculturing transformants twice when they reached confluency. Blue and pink distributions plotted on the left y-axis show CS values of Cas12a and
Cas9 libraries, while the dark red data plotted with the right y-axis depicts the non-cutting control population, constituting ~1% of the respective library. The
higher the value of CS, the better the cutting activity of the sgRNA. a Histogram of CS values in Cas12a library. b Histogram of CS values in Cas9 library.
The CS values at Day 4 for both Cas9 and Cas12a were carried forward for further analysis.

Fig. 3 The architecture of DeepGuide. First, the entire Y. lipolytica PO1f genome was fragmented into sgRNA sized chunks (using a sliding window of
20 bp for Cas9 and 25 bp for Cas12a). Unsupervised pre-training was carried out on these unlabeled fragments using a convolutional autoencoder (left).
The internal weights from the autoencoder were used to initialize a fully connected convolutional neural network (center). Labeled sgRNA (i.e., sequence
and associated cutting score) were used as inputs for back-propagation learning on the fully connected neural network. See Supplementary Tables 2 and 3
for a description of the layers.
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observations of nucleosome inhibition of Cas9/12a targeting in vitro
and in vivo34–37. A similar nucleosome occupancy effect on
DeepGuide’s ability to predict Cas12a CS values, however, was not
observed.

One important question about the performance of any
machine learning method relates to the size of the training set,
that is, how much data are necessary to obtain the best
predictions and what performance penalty is incurred when the
training dataset size is limited. Figure 4b shows the Pearson and
Spearman correlations for DeepGuide as the size of the dataset
increases, up to the full-size dataset correlating sgRNA sequence
to experimentally determined CS. This analysis shows that (i)
DeepGuide’s performance improves as the size of the training set
increases for both Cas12a and Cas9, and (ii) the performance for
Cas9 plateaus as dataset size increases above ~30,000 examples.
While the performance curve for Cas12a appears to indicate that
a larger dataset could potentially improve performance, the trend
still shows that the correlations start to the plateau above a
training set size of ~30,000.

DeepGuide’s hyperparameters (e.g., number of hidden layers,
number of neurons in each layer, type of activation function,
learning rate, etc.) were also optimized using cross-validation.

To determine the optimal number of hidden layers in the
FCCN downstream of the encoder, we carried out an ablation
analysis as described in the next section. Among the input
hyperparameters, the length of the context around the sgRNA
significantly affected prediction performance. Observe that
sequence lengths from 32-40 bp resulted in the best performance
for Cas12a; 32 bp was selected because it produced a model with a
smaller number of parameters, thus reducing the possibility of
overfitting (Fig. 4c). Similarly, for Cas9 28 bp was selected from a
range of 20–40 bp as it produced the best prediction performance.

Ablation analysis of DeepGuide. To understand how pre-
training and the number of fully connected layers (downstream of
the encoder in the second network) affect DeepGuide’s perfor-
mance, an ablation analysis was performed. First, as a “sanity”
check, the encoder alone (i.e., no fully connected layers, but a
flatten layer to get a single output) was tested on Cas12a and Cas9
data without any training or pre-training (i.e., using random
weights). Observe in the first row of Table 1 (also see Tables S4
and S5) that Spearman and Pearson are essentially zero, as
expected. Second, random weights were used for the encoder,
then back-propagation was run on the flatten layer. Observe in
the second row that training just one layer resulted in a significant
jump in prediction performance on both datasets. In rows 3–7,
the weights of the encoder were initialized from the pre-training
step (CAE) and back-propagation was run exclusively on the fully
connected layers downstream of the encoder, that is by freezing
the pre-trained weights of the encoder. Under these conditions,
the performance was measured by incrementally adding one fully
connected layer at the time. By comparing row 2 to row 3,
observe that pre-training improves the performance for both
Cas12a and Cas9, but more so for Cas12a. Also, observe in rows
3–7 that the best performance on the Cas12a dataset is obtained
when the second network includes only one fully connected layer
(fc8). Similarly, rows 3–7 show that none of the fully connected
layers (fc8, fc9, fc10) help to improve the performance of the Cas9
dataset. However, a significant performance improvement was
gained for Cas9 by introducing the multiplication layer (mult11),
which combines the nucleosome occupancy.

If back-propagation is allowed to fine-tune the weights of the
encoder, the overall performance improvement is striking (i.e.,
compare rows 3–7 with rows 8–12). Observe that in the case of
Cas12a, one additional fully connected layer (fc9) helps the
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Fig. 4 Design and parameter optimization for DeepGuide on the Cas12a (top) and Cas9 (bottom) datasets. a Evaluation of DeepGuide in a cross-
validation analysis with several machine learning (ML) methods, including random forest (RF), support vector machines (SVM), logistic regression
(Logistic), gradient boosting regression (GBR), linear regression (Linear), fully connected neural networks (FCNN), and the core architecture of DeepGuide,
a combination of a convolutional autoencoder and a convolutional fully connected neural network (CAE+ CNN). In addition to interconnected CAE and
CNN, the final architecture of DeepGuide also includes a third fully connected network to account for nucleosome occupancy. Error bars indicate standard
deviation over five independent cross-validation experiments. b The dependency of DeepGuide’s performance as a function of the training set size with
smaller datasets produced by downsampling. c The dependency of DeepGuide’s performance as a function on the length of the context sequence around
the sgRNA (tenfold cross-validation). One-way ANOVA indicates that sequence length has a significant effect (****p < 0.0001) for both Cas12a and Cas9.
Tukey’s multiple comparison post hoc analysis indicates that for Cas12a the Spearman values for all sequence lengths, with exception of 32 vs. 40 bp
(p= 0.708), are significantly different (p < 0.0001). For Cas9, Tukey’s multiple comparisons indicates that all values are significantly different (p < 0.0001)
with the exceptions of 20 vs. 23 (p= 0.9995) and 28 vs. 40 bp (p > 0.9999).
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performance but adding more is detrimental. As a result of this
ablation analysis, the third fully connected layer (fc10) and the
multiplication layer (mult11) were removed from DeepGuide’s
architecture for Cas12a guides.

On Cas9, observe in Table 1 that adding one fully connected
layer (fc8) improves the performance, but the biggest improve-
ment is due to the multiplication layer (mult11) that incorporates
the nucleosome occupancy data. As a result of this ablation
analysis, the second and third fully connected layers (fc9 and fc10)
were removed from DeepGuide’s architecture for Cas9 guides.

External and internal validation of DeepGuide. Given the
optimized DeepGuide architecture, we next set out to measure its
ability to predict Cas9 and Cas12a sgRNA activity as measured in
single-gene disruption experiments. To do so, we used Deep-
Guide to predict five high activity and five poor activity Cas9 and
Cas12a sgRNAs for four genes whose disruption can be measured
with an easily screenable phenotype (Supplementary Fig. 3).
These genes included MFE1, the knockout of which prevents
growth on long-chain fatty acids; CAN1, which is involved in
resistance to L-canavanine; and MGA1 and RAS2, knockouts of
which result in colonies with a smooth appearance due to loss of
pseudohyphae formation. Plasmids expressing each of the
sgRNAs were individually transformed into Y. lipolytica in bio-
logical triplicate and screened for the presence or absence of the
targeted phenotype. For high activity Cas9 guides, the predicted
CS ranged from 4.65 to 5.19, while for Cas12a the CS values of the
highest activity guides ranged from 1.09 to 2.08. At the lower end,
poor-activity guides ranged from −1.12 to 1.88 for Cas9 and
−0.72 to 1.00 for Cas12a. The near overlap of CS values in the
low and high predicted activity groups for Cas12a is due to the
fact that only 12 TTTV PAM sequences are contained within
MGA1, thus providing a limited set to select from. The ten guides
that provided the largest range were selected even though two
of these had nearly equal predicted CS values (for MGA1,
CSpredicted= 1.09 was included in the high activity group, while
CSpredicted= 1.00 was included in the low activity group).

DeepGuide was generally successful in predicting active
sgRNAs for both Cas12a and Cas9 but had limited ability to
accurately predict low-activity guides for Cas9 (Fig. 5). Seventeen
of the twenty Cas12a guides that were predicted to be of high
activity, clustered together with a mean disruption efficiency of

77.4% and a CSpredicted of 1.67 (Supplementary Fig. 4). Three
guides from the high-activity group, CSpredicted of 1.91, 1.65, and
1.09, did not cluster well with the others and exhibited disruption
efficiencies of 24.6, 19.1, and 4.8%, respectively. Predicting the
lower end of the activity scale was also successful for Cas12a
where 20 of the 20 guides clustered together with an average
disruption efficiency of 12.1% and a CSpredicted of 0.16.
Predictions for highly active Cas9 guides were also accurate; 18
of 20 sgRNAs clustered together with an average disruption
efficiency and CSpredicted of 69.8% and 4.91, respectively.
However, DeepGuide performed poorly in predicting low or
inactive guides for Cas9. Only 4 of 20 sgRNAs in the low-activity
group exhibited disruption efficiencies below 25%, another
9 sgRNAs achieved efficiencies between 25% and 50%, while
the remaining seven proved to be highly active with disruption
efficiencies above 50%. One explanation for the discrepancy in
performance between Cas9 and Cas12a is the difference in
training sets. The Cas9 library was biased from the outset toward
high-activity guides, thus limiting the number of poor activity
guides to learn from. Conversely, the Cas12a sgRNA library was
not biased from the outset and consequently resulted in a CS
dataset that included a high number of both poorly active and
highly active guides.

In addition to the external validation where individual sgRNAs
were tested for disruption efficiency, we also sought to evaluate
DeepGuide’s ability to discriminate between active and inactive
sgRNAs as measured in the pooled screens; that is, we compared
experimentally determined CS vs. predicted CS in a receiver
operating characteristic curve (ROC) analysis. To do so, the mean
CS values of the high activity clusters for Cas9 and Cas12a were
taken as the threshold for binarizing guide activity. Guides with
CS > 1.67 for Cas12a and CS > 4.91 for Cas9 were classified as
active, and CS values below this threshold were classified as inactive.
DeepGuide outperformed all other tools in classifying highly active
guides as indicated by an area under the ROC (AUROC) of 0.77 for
Cas12a and 0.73 for Cas9 (Fig. 5c, d and Supplementary Fig. 5). It is
important to note that when seq-DeepCpf1, a prediction algorithm
with similar architecture as DeepGuide, was retrained on the Cas9
and Cas12a CS profile generated in Yarrowia, the AUROC curve
improved from 0.61 to 0.72 for Cas12a and 0.58 to 0.69 for Cas9,
underscoring the importance of the dataset used for training the
machine learning model.

Table 1 DeepGuide ablation analysis.

Row Training Layer Pearson, r

Cas12a Cas9

1 Random weights Encoder⇨flatten7 0.070 0.003
2 Back prop-flatten7 Encoder⇨flatten7 0.455 0.312

3 Pretrained+ back prop flatten7⇨fc8–10⇨mult11 Encoder⇨flatten7 0.532 0.353
4 Encoder⇨flatten7⇨fc8 0.534 0.310
5 Encoder⇨flatten7⇨fc8⇨fc9 0.517 0.291
6 Encoder⇨flatten7⇨fc8⇨fc9⇨fc10 0.514 0.305
7 Encoder⇨flatten7⇨fc8⇨fc9⇨fc10⇨mult11 0.514 0.388

8 Pretrained+ back prop-all Encoder⇨flatten7 0.641 0.409
9 Encoder⇨flatten7⇨fc8 0.658 0.424
10 Encoder⇨flatten7⇨fc8⇨fc9 0.664 0.414
11 Encoder⇨flatten7⇨fc8⇨fc9⇨fc10 0.664 0.414
12 Encoder⇨flatten7⇨fc8⇨fc9⇨fc10⇨mult11 0.664 0.501

Row 1 shows the performance of the encoder (followed by a flatten layer) using random weights (no pre-training or back-propagation); row 2 shows the performance of the encoder (followed by a flatten
layer) using random weights and then performing back-propagation only on the flatten layer; rows 3–7 show the performance after pre-training the encoder and then running back-propagation only
layers downstream of the encoder; rows 8–12 show the performance after pre-training and then running back-propagation on the whole network (including the encoder); correlation coefficients in bold
corresponds to the best performance.
fc fully connected layer, flatten flatten layer, mult multiplication layer (see Supplementary Table 3 for the list of layers).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28540-0

6 NATURE COMMUNICATIONS |          (2022) 13:922 | https://doi.org/10.1038/s41467-022-28540-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Discussion
Current prediction methods have proven effective at designing
active CRISPR sgRNAs24,25,27–33,38,39, but the predictive power is
typically limited to the organism from which the training data
was generated8,15. In this context, we created DeepGuide, a
machine learning approach to design sgRNA guides based on an
organism-specific training set. An evaluation of several machine
learning methods and models (see Fig. 1) allowed us to choose the
combination of architectures that would achieve the best pre-
dictive performance on our Y. lipolytica datasets. When trained
on genome-wide CS profiles for both Cas12a and Cas9, Deep-
Guide accurately designed sgRNA sequences that resulted in high
genome editing efficiency (Fig. 5) and outperformed other
methods in predicting Cas9 and Cas12a activity across the gen-
ome. Ablation analysis revealed that the organism-specific nature
of DeepGuide is not solely related to the sgRNA training set but
also the genomic context; predictions improved for both Cas9
and Cas12a if DeepGuide’s internal weights were initialized via a
genome-wide unsupervised learning step on the Y. lipolytica
genome, rather than being assigned at random (Fig. 3 and
Table 1). With retraining, DeepGuide was able to predict guide
activity in E. coli (see ref. 38) with good accuracy (see Supple-
mentary Fig. 7). Given the significant differences in genomic
context and methods of generating genome-wide activity profiles,
we found that Yarrowia-optimized DeepGuide was not able to
accurately predict sgRNA activity in mammalian cells to the same
level as the bidirectional long short-term memory neural net-
works (LSTM) methods that were highly-optimized on such
datasets (see ref. 39; Supplementary Fig. 7).

While DeepGuide was successful in designing active guides for
both Cas12a and Cas9, our analysis and validation experiments
revealed significant differences between the two systems. The first
was that DeepGuide performed much better on the Cas12a
dataset (Cas12a Pearson, r= 0.66 vs. Cas9, r= 0.50), possibly due
to the fact that the Cas12a library covers a greater fraction of the
total Cas12a PAM sites within the genome (there are 809,401

TTTN PAM sites for Cas12a in Y. lipolytica and 2,415,425 Cas9
NGG PAM sites). Library design could also be a driving factor;
DeepGuide was not able to accurately predict poor activity guides
for Cas9, a result that we ascribe to the low number of “negative”
examples in the biased library designed for Cas9. Lastly, sequence
and genomic context were sufficient to drive accurate predictions
for Cas12a, but additional contextual information in the form of
nucleosome occupancy was necessary to obtain the maximal
predictive power for Cas9. The difference in predictive perfor-
mance between the two systems highlights the importance of
having a “good” training set, in particular for deep learning
architectures. A good training set for CRISPR sgRNA prediction
should represent high and low activity guides equally, should
uniformly sample the entire genome-wide k-mer space, should be
noise-free (i.e., the guide activity scores should be accurate), and
should be sufficiently large (e.g., tens of thousands of data points
or more).

While this work focuses on the development of DeepGuide for
its specific use in Y. lipolytica, the same experimental-
computational workflow that involves (i) library design, (ii)
generating genome-wide guide activity profiles, (iii) predictor
design (learning and optimization), and (iv) external validation,
can be readily applied to other fungal species, broadly to pro-
karyotes, and any other organisms in which genome-wide func-
tional screens can be used to estimate sgRNA activities. Moreover,
DeepGuide adds to the growing number of examples in which
deep learning is being used to solve complex problems in mole-
cular biology, e.g., the prediction of essential genes40,41.

Methods
DeepGuide architecture. DeepGuide uses a CAE to derive a reduced-
dimensionality representation of the underlying distribution of sgRNA sequences
in the whole genome. The autoencoder is composed of an encoder (6 layers) and a
decoder (6 layers). The objective of the unsupervised training is to infer the internal
weight so the input layer to the encoder is as close as possible to the output layer of
the decoder. The CAE encoder has two Conv1D layers of 20 filters and 40 filters,
respectively, one MaxPooling1D layer, one AveragePooling1D layer, and two
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Fig. 5 External and internal validation of DeepGuide performance. a, b Editing efficiencies of 5 predicted high-activity and 5 predicted low-activity sgRNA
for Cas12a and Cas9 in single-gene disruption experiments. Genes MGA1, MFE1, CAN1, and RAS2 were picked as their null mutants displayed easily
screenable phenotypes. Predicted high-activity sgRNAs clustered together, while low-activity sgRNAs clustered at lower editing efficiencies for Cas12a.
Data points represent the mean of three biologically independent samples (n= 3), while the error bars represent the standard deviation. c, d ROC plots and
AUROC values for DeepGuide prediction of high- and low-activity Cas9 and Cas12a sgRNAs.
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BatchNormalization layers (see Supplementary Table 2 for the order). A rectified
linear activation function (ReLU) is used as activation and the Glorot uniform
initializer is used to initialize the convolutional filters. The layer regularizer for the
encoder is L2 with a value of 10E−4. The decoder has the same structure as the
encoder but uses UpSampling1D instead of MaxPooling, and UpSampling1D
instead of AveragePooling1D. The layer regularizer in the decoder is again L2 with
a value of 10E−4. The loss function for training is the binary cross-entropy, and
Adam is the optimizer with a learning rate of 10E−3. A batch size of 64 and 200
epochs are used for training (no early stopping).

The encoder in the second network has the same structure as the encoder in the
CAE (see Supplementary Table 3). The initial configuration of the network
downstream of the encoder uses one flatten layer, three fully connected layers (fc8,
fc9, fc10) of 80 neurons, 40 neurons, and 40 neurons, respectively. The feature map
for layer pool6 is 7 × 40, which is 280 dimensional. The feature map for the first
fully connected layer (fc8) is 280 × 80= 22400 dimensional. The feature map for
the second and third fully connected layers (fc9 and fc10) are 80 × 40= 3200 and
40 × 40= 1600 dimensional, respectively. Layer mult11 is a multiplication layer
that combines sequence and nucleosome occupancy features. ReLU is the
activation and Glorot uniform initializer is used to initialize the convolutional
filters. The second network is trained for 150 epochs using back-propagation; if the
value of loss function does not improve for 15 consecutive epochs the training is
terminated.

The third fully connected network is used to provide DeepGuide with
nucleosome occupancy data. The nucleosome occupancy for each sgRNA is a
floating-point value in [0,1]. The third network uses one fully connected layer with
40 units to expand the one-dimensional nucleosome occupancy value to a 40-
dimensional vector, to match the dimensionality of the output layer of the second
network. Sequence and nucleosome data are merged by performing an element-
wise multiplication between the output layer of the second network and the output
layer of the third network. When DeepGuide is used in “classification mode” (i.e.,
binary output) the activation function is a sigmoid; when DeepGuide is used in
“regression mode” (i.e., CS output), the activation function is linear.

Note that following the ablation analysis, only two fully connected layers (and
no multiplication layer) are used for Cas12a; similarly, only one fully connected
layer connected to the multiplication layer is used for Cas9.

DeepGuide training and pre-training. For the pre-training step of the CAE all k-
mers from the Y. lipolytica genome were extracted using a sliding window of 1 bp.
For Cas9 the input length was 28 bp, which includes the length of each possible
spacer (20 bp), plus 3 bp for a PAM sequence, and 2 bp upstream and downstream
for context. For Cas12a, 32-mers were used to account for the 25 bp spacer, a 4 bp
PAM, 1 bp of context upstream of the PAM, and 2 bp of context downstream of the
spacer (see Fig. 4b). These unlabeled sgRNA datasets contained over 20 million k-
mers each. sgRNA sequences were converted into a numerical representation using
one-hot encoding, that is, each sgRNA was converted into a 4 × n dimensional
binary matrix where n is the length of the guide.

The training data to DeepGuide consisted of sgRNA sequences, their
nucleosome occupancy score, and their CS values. sgRNA sequences were one-hot
encoded, while nucleosome occupancy data were processed as explained in the
“Nucleosome occupancy analysis” subsection below. CS scores were produced as
explained in the “CS analysis” subsection also provided below.

When the pre-training concluded, the internal weights of the CAE were used to
initialize the encoder in the second network. The second network was trained via
back-propagation using either ~45,000 sgRNAs for Cas9 or ~58,000 sgRNA for
Cas12a, each with their associated CS value. In all, 60% of these guides were used
for training, 20% for validation, and 20% for testing. The training step not only
allowed the inference of the weights for the fully connected layers downstream of
the encoder but also fine-tuned the weights of the encoder. As explained in the
section “Ablation analysis of DeepGuide” (main text) the pre-training step helped
the supervised learning to converge faster and improved the prediction
performance.

Supplementary Fig. 6 illustrates the loss curve for training and validation of the
CNN without pre-training and with pre-training as a function on the number of
training epochs. Observe that in the CNN without pre-training the difference
between training and validation loss function starts increasing after about 20
epochs. In contrast, for the CNN with pre-training, the training and validation
curves of the loss function are overlapping after about 30 epochs. This indicates
that the pre-training prevents the network from overfitting and helps the network
to generalize better.

sgRNA library design. Custom Matlab scripts were used to design an LbCas12a
sgRNA library with ~8-fold coverage of all protein-coding sequences annotated in
the Y. lipolytica PO1f parent strain genome, CLIB89 [https://www.ncbi.nlm.nih.gov/
assembly/GCA_001761485.1]26. A list of 25 nucleotide (nt) sgRNAs with a TTTV
(V=A/G/C) PAM were identified in both the top and the bottom strand of the
coding sequence of each gene (CDS). A second list containing all possible 25nt
sgRNAs with a TTTN PAM from the top and bottom strands of all 6 chromosomes
in Y. lipolytica was also generated and used to test for sgRNA uniqueness. The
uniqueness test was carried out by comparing the first 14nt of each sgRNA in the
first list to the first 14nt of every sgRNA in the second list. If a sequence occurred

more than once, the sgRNA was identified as non-unique and excluded from
consideration. The sgRNAs that passed the test for uniqueness were then picked in
an unbiased manner, with even representation from the top and bottom strands
when possible, starting from the 5’ end of the CDS. Six-hundred and fifty-one
sgRNAs of random sequence confirmed to not target in the genome were also
designed using a similar methodology but with more stringent criteria for
uniqueness (i.e., first 10 nt were not found anywhere in the genome). A detailed
procedure of sgRNA design for both Cas9 and Cas12a is provided in ref. 42 and
additional data on the Cas9 guide design criteria are provided in ref. 8. Briefly, for
Cas9 sgRNAs the first version of sgRNA Designer27 was used to identify the top
predicted guides for every CDS, these guides were filtered for uniqueness, and the
top six unique guides were selected.

Microbial strains and culturing. The parent yeast strain used in this study was Y.
lipolytica PO1f with genotype MatA, leu2-270, ura3-302, xpr2-322, axp-2. The PO1f
Cas9 and the PO1f Cas12a strains were constructed by integrating UAS1B8-
TEF(136)-Cas9-CYCT and UAS1B8-TEF(136)-LbCpf1-CYCT expression cassettes
into the A08 locus43. The PO1f Cas9 ku70 and PO1f Cas12a ku70 strains were
constructed by disrupting KU70 using CRISPR-Cas9 as previously described23. All
strains used in this study are listed in Supplementary Table 6. All plasmid con-
struction and propagation were conducted in E. coli TOP10. Cultures were con-
ducted in Luria-Bertani (LB) broth with 100 mg L−1 ampicillin at 37 °C in 14 mL
polypropylene tubes, at 225 r.p.m. Plasmids were isolated from E. coli cultures
using the Zymo Research Plasmid Miniprep Kit.

Plasmid construction. All plasmids and primers used in this work are listed in
Supplementary Tables 7 and 8. To create the LbCas12a sgRNA expression plasmid
(pLbCas12ayl), we first added a second direct repeat sequence at the 5’ of the polyT
terminator in pCpf1_yl (see ref. 44). This was done to ensure that library sgRNAs
could end in one or more thymine residues without being construed as part of the
terminator. To make this change, pCpf1_yl was first linearized by digestion with
SpeI. Subsequently, primers ExtraDR-F and ExtraDR-R were annealed and this
double-stranded fragment was used to circularize the vector (NEBuilder® HiFi
DNA Assembly) For integrating LbCas12a, pHR_A08_LbCas12a was constructed
by digesting pHR_A08_hrGFP (Addgene #84615) with BssHII and NheI, and the
LbCas12a fragment was inserted using the New England BioLab (NEB) NEBuilder®
HiFi DNA Assembly Master Mix. The LbCas12a fragment was amplified along
with the necessary overlaps by PCR using Cpf1-Int-F and Cpf1-Int-R primers from
pLbCas12ayl. Successful cloning of the entire fragment was confirmed with
sequencing primers A08-Seq-F, A08-Seq-R, Tef-Seq-F, Lb1-R, Lb2-F, Lb3-F, Lb4-F,
and Lb5-F. To create the Cas12a sgRNA genome-wide library expression plasmid
(pLbCas12ayl-GW) the UAS1B8-TEF- LbCas12a-CYC1 fragment was removed
from pLbCas12ayl with the use of XmaI and HindIII restriction enzymes. Subse-
quently, the primers BRIDGE-F and BRIDGE-R were used to circularize the vector,
and the M13 forward primer was used to ensure the correct assembly of the
construct.

To conduct the validation experiments of predicted CS values by DeepGuide,
four genes with easily screenable phenotypes were selected and 10 sgRNAs (five
highly active and five with poor activity) targeting each of these genes for Cas9 and
Cas12a were selected and cloned for individual disruption experiments. All 40
Cas9 sgRNAs with required overlaps for cloning were purchased from a
commercial vendor (IDT-DNA) as single-stranded primers and assembled into
pCRISPRyl (Addgene #70007) after linearizing the vector with AvrII, using
NEBuilder® HiFi DNA Assembly. In a similar manner, the 40 Cas12a sgRNAs with
necessary overlaps were cloned into pLbCas12ayl, after linearizing the vector with
SpeI. These primers are also included in Supplementary Table 8.

sgRNA library cloning. The LbCas12a library targeting the protein-coding genes
in PO1f was ordered as an oligonucleotide pool from Agilent Technologies Inc. and
cloned in-house using the Agilent SureVector CRISPR Library Cloning Kit (Part
Number G7556A). The backbone vector (pLbCas12ayl-GW) was first linearized by
PCR using the primers InversePCR-F and InversePCR-R, DpnI digested, cleaned
up using Beckman AMPure XP SPRI beads, and transformed into E.coli TOP10
cells to verify minimal contamination from the circularized plasmid. Library oligos
were amplified by PCR using the primers OLS-F and OLS-R for 15 cycles as per
vendor instructions using Q5 high fidelity polymerase and cleaned up using the
AMPure XP beads. The linearized backbone and the amplicons were combined in 4
replicate reactions of sgRNA library cloning that were carried out as per vendor
instructions and pooled prior to bead cleanup. Two amplification bottles con-
taining 1 L of LB media and 3 g of library-grade low gelling agarose were prepared,
autoclaved, and cooled to 37 °C. Eighteen replicate transformations of the cloned
library were conducted using Agilent’s ElectroTen-Blue cells (Catalog #200159) via
electroporation (0.2 cm cuvette, 2.5 kV, 1 pulse). Cells were recovered and with a
1 hr outgrowth in SOC media at 37 °C (2% tryptone, 0.5% yeast extract, 10 mM
NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose.) The
transformed E. coli cells were then inoculated into two amplification bottles and
grown for 2 days until colonies were visibly suspended in the matrix. Colonies were
recovered by centrifugation and subject to a second amplification step by inocu-
lating an 800 mL LB culture. After 4 hr, the cells were collected, and the pooled
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plasmid library was isolated using the ZymoPURE II Plasmid Gigaprep Kit (Cat-
alog #D4202) yielding ~2.4 mg of plasmid DNA containing the Cas12a sgRNA
library. The library was subject to a NextSeq run to test for fold coverage of
individual sgRNA and skew.

Yeast transformation and screening. Transformation of Y. lipolytica with the
sgRNA plasmid library was done using a previously described method with slight
modifications8. Briefly, 3 mL of YPD was inoculated with a single colony of the
strain of interest and grown in a 14 mL tube at 30 °C with shaking at 200 RPM for
22-24 hours (final OD ~30). Cells were pelleted by centrifugation (6,300 g) and
washed with 1.2 mL of transformation buffer (0.1 M LiAc, 10 mM Tris (pH=8.0),
1 mM EDTA). To these resuspended cells, 36 µL of ssDNA mix (8 mg/mL Salmon
Sperm DNA, 10 mM Tris (pH= 8.0), 1 mM EDTA), 180 µL of β-mercaptoethanol
mix (5% β-mercaptoethanol, 95% triacetin), and 8 µg of plasmid library DNA were
added, mixed via pipetting, and incubated for 30 min at room temperature. After
incubation, 1800 µL of PEG mix (70% w/v PEG (3350 MW)) was added and mixed
via pipetting, and the mixture was incubated at room temperature for an additional
30 min. Cells were then heat shocked for 25 min at 37 °C, washed with 25 mL of
sterile milliQ H2O, and used to inoculate 50 mL of SD-leu media for screening
experiments. Dilutions of the transformation (0.01% and 0.001%) were plated on
solid SD-leu media to calculate transformation efficiency. Three biological repli-
cates of each transformation were performed for each condition. Transformation
efficiency for each replicate is presented in Supplementary Table 9. Details of the
Cas9 library are provided in ref. 8.

Screening experiments were conducted in 50 mL of liquid media in a 250 mL
baffled flask (220 rpm shaking, 30 °C). Cells first reached confluency after 2 days of
growth (OD600 ~12), at which time 200 µL (which includes a sufficient number of
cells for approximately 500-fold library coverage) was used to inoculate 25 mL of
fresh media. The cells were again subcultured upon reaching confluency at day 4
for the growth screen, and the experiment was halted after 6 days of growth. At
each time point (i.e., days 2, 4, and 6), 1 mL of culture was removed and treated
with DNase I (New England Biolabs; 4 and 25 µL of DNaseI buffer) for 1 h at 30 °C
to remove any extracellular DNA. Cells were isolated by centrifugation at 4500 × g
and the resulting cell pellets were stored at −80 °C for future analysis.

Library isolation and sequencing. Growth screen samples were thawed and resus-
pended in 400 µL sterile, milliQ H2O. Each cell suspension was split into two, 200 µL
samples, and plasmids from each sample were isolated using a Zymo Yeast Miniprep
Kit (Zymo Research). Splitting into separate samples here was done to accommodate
the capacity of the Yeast Miniprep Kit. The split samples from a single pellet were then
pooled, and plasmid copy number was quantified using quantitative PCR with qPCR-
GW-F and qPCR-GW-R and SsoAdvanced Universal SYBR Green Supermix (Biorad).
Each pooled sample was confirmed to contain at least 107 plasmids.

To prepare samples for next-generation sequencing, isolated plasmids were
subjected to PCR using forward (ILU1-F, ILU2-F, ILU3-F, ILU4-F) and reverse primers
(ILU(1-12)-R) containing all necessary barcodes and adapters for next-generation
sequencing using the Illumina platform (Supplementary Table 10). Schematics of the
amplicons from the Cas9 and Cas12a experiments submitted for NGS are pictured in
Supplementary Fig. 7. At least 0.2 ng of plasmids (approximately 3 × 107 plasmid
molecules) were used as templates, and PCR reactions were amplified for 16 cycles and
not allowed to proceed to completion to avoid amplification bias. PCR product was
purified using SPRI beads and tested on the bioanalyzer to ensure the correct length.
Samples were pooled in equimolar amounts and submitted for sequencing on a
NextSeq 500 at the UCR IIGB core facility.

Generating sgRNA read counts from raw reads. Next-generation sequencing
reads were processed using the Galaxy platform45. First, read quality was assessed
using FastQC v0.11.8. The reads were then demultiplexed using Cutadapt v1.16.6,
trimmed using Trimmomatic v0.38, and mapped to each sgRNA using a combination
of Bowtie 2 v2.4.2, and custom MATLAB scripts for counting bowtie alignments and
naïve exact matching. Parameters used for each method are provided in Supple-
mentary Table 11 and MATLAB scripts are provided as part of the GitHub link found
below in the section “Data availability”. Supplementary Table 12 provides further
information correlating the NCBI SRA file names to the information needed for
demultiplexing the readsets. Analysis of the CRISPR-Cas12a growth screens revealed
that five sgRNAs were not present in the sequencing data. A pairwise comparison
between normalized read abundances for biological replicates was done to verify
consistency, see Supplementary Fig. 2 and Supplementary Table 1.

CS analysis. The CS associated with each guide was determined by taking the log2
of the ratio of normalized read counts of the control condition to the normalized
read counts of the treatment condition. The control condition was taken as the
normalized read counts at the end of the growth screen in a strain without Cas12a
or Cas9. The treatment condition included constitutively expressed Cas9 or Cas12a
with disrupted KU70. Normalized counts were taken as the total number of reads
for a given sgRNA divided by the total reads for the corresponding sample. If no
reads were identified for a given sgRNA, a pseudo-count of one was added to the
read count to facilitate subsequent calculations. In all cases, normalized read counts

for each biological replicate were averaged together to produce an average nor-
malized read count and associated standard deviation for each sgRNA. All nor-
malized read counts and CS values are provided in Supplementary Data 3 and 4.

Nucleosome occupancy analysis. To account for genomic features, specifically
nucleosome occupancy, we determined an average normalized occupancy score
(ranging from 0 to 1) for every target locus using previously published MNase-Seq
coverage data46 (Supplementary Data 5). Per base nucleosome occupancy scores
were summed up for each sgRNA, averaged, and normalized to a value between 0
and 1 by taking its ratio to the highest averaged value. This information was
integrated into DeepGuide via a separate FCCN, the first step of which was to
convert the one-dimensional occupancy data into an 80-dimensional real vector
using a fully connected layer with 80 neurons. Using element-wise multiplication,
the output of this layer was combined with the output of the last fully connected
layer of the CS-predicting CNN to generate CS predictions that account for guide
sequence, genomic context, and nucleosome occupancy.

Validation of predicted sgRNA for Cas9 and Cas12a. Four genes with easily
screenable phenotypes, including MEF1, CAN1, MGA1, and RAS2 were selected for
the validation of predicted sgRNA CS values (Supplementary Fig. 3). Gene sequences
and the per base nucleosome occupancy of these genes were provided as input to the
DeepGuide algorithm. As output DeepGuide predicted a CS value for each sgRNA of
a given gene. sgRNAs were sorted from best to worst based on the predicted CS value
from sequence-only (for Cas12a) and sequence plus nucleosome occupancy (for
Cas9). The top 5 and bottom 5 sgRNA from the list were tested for editing efficiency.

To screen for RAS2 and MGA1 gene disruption, cultures with CRISPR plasmids
growing in SD-Leu were diluted and plated in triplicate on YPD to obtain greater
than 50 colonies on each plate. After two days of growth at 30 °C, the number of
smooth colonies was counted and expressed as a fraction of the total colonies on the
plate. For disruption of the CAN1 gene, cultures were similarly diluted and plated
on YPD to obtain single colonies. Thirty colonies in triplicate were then randomly
selected and streaked on SD-leu agar media supplemented with 50mg L−1 of
L-canavanine. Colonies that grew on SD with canavanine were identified as positive
for CAN1 disruption. To screen for MFE1, cultures were similarly plated, and 30
colonies from each transformation were randomly selected and streaked on SD-
Oleic acid and dotted on YPD. Growth on YPD but not on SD-Oleic acid indicated
MFE1 disruption. Screening of MFE1 was done on agar plates containing SD media
supplemented with oleic acid as the sole carbon source (SD oleic acid; 0.67% Difco
yeast nitrogen base without amino acids, 0.079% CSM (Sunrise Science, San Diego,
CA), 2% agar 0.4% (v/v) Tween 20, and 0.3% (v/v) oleic acid).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sgRNA sequencing data generated in this study have been deposited in the NCBI SRA
database under accession code PRJNA766088. The sgRNA activity data (cutting scores)
generated in this study are provided in the Supplementary Information/Source Data.

Code availability
Source code for DeepGuide can be found at https://github.com/dDipankar/DeepGuide. Our
GitHub page includes instructions for installation, usage examples. Custom MATLAB
scripts that were used for the design of the Cas12a CRISPR library and processing the
Illumina reads to generate sgRNA abundance can also be found on the GitHub page. The
Github repository has been archived to Zenodo to provide a permanent reference to the
version of code used in this study [https://doi.org/10.5281/zenodo.5889577]. Generating
sgRNA predictions for Y. lipolytica using DeepGuide does not require any specialized
hardware and it can be carried out on a laptop with Conda installed.
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