
ENCODING PYRAMIDS BY

LABELING RAAM

Stefano Lonardi Alessandro Sperduti Antonina Starita

Dipartimento di Informatica

Universit�a di Pisa

Corso Italia 40, 56125 Pisa, Italy

e-mail: perso@di.unipi.it

Abstract

In this paper we present preliminary results on the applica-
tion of Labeling RAAM for encoding pyramids. The LRAAM
is a neural network able to develop reduced representations
of labeled directed graphs. The capability of such representa-
tions to preserve structural similarities is demonstrated on a
pyramid. We suggest to exploit this skill in data compression
and/or to discover scale a�ne autosimilarities.

INTRODUCTION

A model frequently used in image analysis is the quadtree, a hierarchical
data structure based on the principle of recursive decomposition of space
[10]. Di�erent instances of quadtree can be obtained depending on the type
of data represented, the decomposition principle, and the resolution (variable
or not). In this paper, we discuss how a new type of neural network, the
Labeling RAAM, seems specially suited to code it. Speci�cally, we consider a
complete quadtree implementing a pyramid , a data structure used to repre-
sent a multiresolution version of an image using nonoverlapping 2 by 2 blocks
of pixels (see Fig. 1). The aim is twofold: to get a compressed representation
and/or to discover scale a�ne redundancy in the image represented by the
pyramid. Firstly, we introduce the LRAAMmodel. Then, preliminary results
obtained on pyramids are presented and discussed.

LABELING RAAM

The Labeling RAAM (LRAAM) [12, 15, 16, 17] is an extension of the RAAM
model [9] which allows one to encode labeled structures. The general structure
of the network for an LRAAM is shown in Figure 2.



Figure 1: A pyramid implemented by a quadtree.

The network is trained by backpropagation to learn the identity function.
The idea is to obtain a compressed representation (hidden layer activation) of
a node of a labeled directed graph by allocating a part of the input (output)
of the network to represent the label (NL units) and the rest to represent one
or more pointers. This representation is then used as pointer to the node. To
allow the recursive use of these compressed representations, the part of the
input (output) layer which represents a pointer must be of the same dimension
as the hidden layer (NH units). Thus, a general LRAAM is implemented by
a NI �NH �NI feed-forward network, where NI = NL + nNH , and n is the
number of pointer �elds.

Labeled directed graphs can be easily encoded using an LRAAM. Each
node of the graph only needs to be represented as a record, with one �eld for
the label and one �eld for each pointer to a connected node. The pointers only
need to be logical pointers, since their actual values will be the patterns of
hidden activation of the network. At the beginning of learning, their values
are set at random. A graph is represented by a list of these records, and

N H N H

Decoder

Encoder

N H

N H

N H N H N HN L

N L

Output

Hidden

Input

Figure 2: The network for a general Labeling RAAM.



L

L

L

L

L

5

4

3

1

2

Figure 3: An example of a labeled directed graph.

this list constitutes the initial training set for the LRAAM. During training
the representations of the pointers are consistently updated according to the
hidden activations. Consequently, the training set is dynamic. For example,
the network for the graph shown in �gure 3 can be trained as follows:

input hidden output

(L1 Pn2(t) Pn3(t)) ! P
0

n1
(t) ! (L00

1 (t) P
00

n2
(t) P 00

n3
(t))

(L2 Pn3(t) Pn4(t)) ! P
0

n2
(t) ! (L00

2 (t) P
00

n3
(t) P 00

n4
(t))

(L3 Pn1(t) Pn5(t)) ! P
0

n3
(t) ! (L00

3 (t) P
00

n1
(t) P 00

n5
(t))

(L4 nil1(t) nil2(t)) ! P
0

n4
(t) ! (L00

4 (t) nil
00

1 (t) nil
00

2 (t))
(L5 Pn4(t) nil3(t)) ! P

0

n5
(t) ! (L00

5 (t) P
00

n4
(t) nil003 (t))

where Li and Pni are the label of and the pointer to the ith node, respec-
tively, and t represents the time, or epoch, of training. At the beginning of
training (t = 1) the representations for the non-void pointers (Pni(1)) and
void pointers (nili(1)) in the training set are set at random. After each epoch,
the representations for the non-void pointers in the training set are updated
depending on the hidden activation obtained in the previous epoch for each
pattern: 8i Pni(t + 1) = P 0

ni
(t). The void representations are, on the other

hand, copied from the output: nili(t+ 1) = nil0
i
(t).

If the backpropagation algorithm converges to zero error, it can be stated
that:

L1 = L
00

1 L2 = L
00

2 L3 = L
00

3 L4 = L
00

4

L5 = L
00

5 Pn2 = P
00

n2
Pn3 = P

00

n3
Pn4 = P

00

n4

Pn5 = P
00

n5
nil1 = nil

00

1 nil2 = nil
00

2 nil3 = nil
00

3

Once the training is complete, the patterns of activation representing
pointers can be used to retrieve information. Thus, for example, if the ac-
tivity of the hidden units of the network is clamped to Pn1, the output of
the network becomes (L1,Pn2,Pn3), enabling further retrieval of information
by decoding Pn2 or Pn3, and so on. In order to decide whether a pointer is
void or not, one bit of the label is allocated for each pointer �eld to repre-
sent the void condition. This convention allows us to avoid a commitment
to any prede�ned representation for the void pointer. Consequently, copying



20

1918

1716
0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 4: An example of label encoding of a pyramid for an 8� 8 image.

the representations for the void pointers from the output of the network to
the training set results in a faster training, where multiple representations for
the void pointer are developed by the network itself. For more details on this
issue the reader is re�ered to [15]. Note that multiple labeled directed graphs
can be encoded in the same LRAAM.

ENCODING PYRAMIDS

Since a pyramid can be represented as a labeled tree, it can be easily encoded
by an LRAAM. The aim in using an LRAAM is to obtain a compact represen-
tation of the pyramid where the same pattern at di�erent scales is uniquely
represented, i.e., without a�ne redundancy [1]. The de�nition of the label
for a pattern in the training set of the LRAAM can proceed from the leaf
level to the root of the pyramid (see Fig. 4). One drawback of this approach
is that the number of patterns in the training set grows exponentially in the
dimension of the image. Given a 2n � 2n image, if the scale factor is 1/2,

the total number of patterns in the training set is
P

n�1

i=0
4i. Thus, it is clear

that images of large dimensions are di�cult to handle with a single LRAAM.
For example, the training set for a 256 � 256 image would be composed by
slightly less than 22,000 patterns. One possible solution to this problem, that
we have to verify, is the use of a modular LRAAM, where every module is
responsible for the encoding of a given subtree. Another solution is to start
learning with a training set representing the lower resolution levels of the
pyramid and, after convergence, augmenting the training set to the complete
one.

Once the training set has been generated, the LRAAM is trained until
it can decode successfully the pyramid. We have observed that, with this
stopping criterion, and under the condition of a�ne redundancy in the image,
learning converges rather early. For example, using the encoding scheme
shown in �gure 5 on an 8 � 8 version of the Sierpinski triangle, the mean
number of epochs employed by the corresponding 12 � 2 � 12 LRAAM was
slightly more than 100.

We veri�ed faster learning using the descending-epsilon heuristic tech-
nique [18]: during the learning phase we maintain a list of the patterns hav-



ing a decoding error higher than a speci�ed value. The backpropagation
is performed only on the patterns of the list: when all patterns are below
the threshold, we lower the threshold and resume the backpropagation. The
procedure stops when we obtain the perfect decoding.

Analysis

An important property of the LRAAM model is the capability to develop sim-
ilar hidden representations for pointers to similar labeled trees. An example
of this capability is given by the hidden activation deviced by the 12� 2� 12
LRAAM encoding the Sierpinski triangle. In �gure 6 we show, on the left
side, the label map obtained by decoding a set of points sampled from the
pointer space, and on the right side, the vector �elds obtained by transform-
ing the same set of points through the children transformations. A vector
�eld is represented by plotting the sampled points (domain points) and their
transformed results (image points) as vectors starting from the domain (dots)
and arriving to the image points. Note how the network exploits the same
pointer transformation for pointer �elds encoding the same set of subtrees.
This allows the LRAAM to decode correctly this image at a resolution higher
than the one used in the training set. This property, however, must be veri�ed
on images which are not so regular.

The pointers' dynamics is the subject of �gure 7: in this representation the
application of the same pointer transformation is repeated until convergence
to a �xed point. The gray scale denotes the number of steps to reach the �xed
point where darker areas mean a higher number of iterations. Note that the
network places the �xed points in the vertices of the [�1; 1]NH space. This
property can be explained by probabilistic arguments concerning the stability
of the decoding (for a discussion on stability properties of the LRAAM see
[16]).

Another example of pyramid (Fig. 8) with the corresponding label map,
children vector �elds and pointers' dynamics maps are shown in �gures 9 and
10.

From our analysis of the decoding of the label and the pointers' dynamics,
the fractal approximation developed by the LRAAM seems to have a close
relationship with the hierarchical iterated function system model [3, 4], where
a graph of hierarchical IFS generates the image. In our case, nodes of the
graph represent �xed points of the pointers' dynamics. Each node is labeled
by the label obtained by decoding the corresponding �xed point. Arcs of the
graph represent pointer transformations of the �xed points (see Figure 11).

It must be stressed that the construction of these graphs can be done, in
this case, only because any �xed point is actually transformed in another one
(or in itself) in just one transformational step. In general, however, this may
not be the case. We are currently investigating under which conditions the
graph construction scheme holds.



Figure 5: The pyramid coding the Sierpinski triangle.

1.0

1.0

0.0

0.0

-1.0

-1.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

-0.2

-0.2

-0.4

-0.4

-0.6

-0.6

-0.8

-0.8

Figure 6: Representations devised by an LRAAM encoding an 8�8 Sierpinski
triangle; left: label map on the pointer space; right: vector �elds for the
children transformations.

1

3

2

4

Figure 7: The pointers' dynamics maps for the Sierpinski triangle.



Figure 8: The pyramid coding the simple triangle.

1.0

1.0

0.0

0.0

-1.0

-1.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

-0.2

-0.2

-0.4

-0.4

-0.6

-0.6

-0.8

-0.8

Figure 9: Representations devised by an LRAAM encoding an 8� 8 triangle.
left: label map on the pointer space; right: vector �elds for the children
transformations.

1

3

2

4

Figure 10: The pointers' dynamics maps for the simple triangle.



1,2,3,4

1,3,4

2

1,2,3,4

1,2,3,4

2

3

1,4

Figure 11: The graphs, derived by the LRAAM, generating the Sierpinski
triangle pyramid (left) and the triangle pyramid (right). Each node represents
a �xed point in the pointers' dynamics and its label is the label obtained by
decoding the �xed point. Arcs represent pointer transformations. Node x is
connected to node y by an arc labeled i if Ti(x) = y, i.e., if the �xed point
associated to x is transformed to y by the pointer transformation Ti().

Applications

There are two possible applications of encoding pyramids by Labeling RAAM:

� data compression; a set of pyramids can be described by the set of
pointers to the roots plus the decoder part of the LRAAM;

� a�ne redundancy discovery ; the likeness among pointers can be used
to establish similarities among patterns at di�erent scales, so to device
an e�cient fractal compression.

Using an LRAAM for data compression requires a careful choice of the
number of units in the hidden layer. More units in the hidden layer guar-
antee a better reconstruction of the image represented by the pyramid, but
the compression factor decrease because the number of parameters (weights)
grows as a quadratic function. Speci�cally, given pointers of dimension NH

and label of dimension NL, we have

4N2

H + (NL + 5)NH + NL

parameters. In fact, the dimension of the hidden layer a�ects the number of
di�erent labels that the LRAAM can encode. Having an insu�cient number
of hidden units constrains the network to �nd the minimal approximation
with the most used label present in the image at every scale, which is the
simplest fractal approximation allowed by the pyramidal representation. We
are still working on the evaluation of the best trade-o� between quality of



the image and data compression. Note that pruning techniques like OBD [7],
and OBS [6] can be used to reduce the number of weights in the network.

Classi�cation of fractal images by a neural network was explored in the
paper [5]. The feed-forward network used in that work, where the pyramid
is explicitly represented into the topology of the network, can be considered
as a special case of our model. In our case, however, we are not interested in
classi�cation, but in discovering scale a�ne autosimilarity. The ability of the
LRAAM to represent similar patterns by similar pointers can be exploited to
identify a fractal approximation of the image [1, 2, 11, 8].

CONCLUSIONS

The LRAAM model seems ideal to code a pyramid representing an image
with scale a�ne redundancy. The hidden representations developed by the
LRAAM seem to capture redundancies present in the image at di�erent scales.
The LRAAM can be used either to compress the pyramid or to discover au-
tosimilarities which can be exploited by a fractal compression method. The
compression rate can also be improved by coding the image into an incomplete
pyramid using a decomposition principle based on statistical regularities. In-
complete pyramids can be encoded without problems by an LRAAM which
can represent every kind of tree.

Besides the present line of research, it is likely that all areas utilizing
quadtrees for di�erent applications could use the interesting characteristics
of the subsymbolic coding developed by the LRAAM.

Acknowledgments

The authors wish to thank Ahmad Zandi for comments and suggestions.

References

[1] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.

[2] M. F. Barnsley, L. P. Hurd, Fractal Image Compression, AK Peters Ltd, 1993.

[3] K. Culik, S. Dube, \Rational and A�ne Expressions for Image Description",
Discrete Applied Mathematics, 41, pp. 85{120, 1993.

[4] K. Culik, S. Dube, \Balancing Order and Chaos in Image Generation",
Computer & Graphics, 17(4), pp.465{486, 1993.

[5] B. Freisleben, J. H. Greve, J. Lober, \Recognition of Fractals Images Using a
Neural Network", Proceedings of Int. Workshop on Arti�cial Neural Networks,
Lecture notes in Computer Science 686, pp.632{637, Springer Verlag, 1993.



[6] B. Hassibi, D.G. Stork, \Second Order Derivatives for Network Pruning: Op-
timal Brain Surgeon", Advances in Neural Information Processing Systems,
San Mateo: Morgan Kaufmann, Vol. 5, pp.164{171, 1993.

[7] Y. Le Cun, J.S. Denker, S.A. Solla, \Optimal Brain Surgeon",
Advances in Neural Information Processing Systems, San Mateo: Morgan
Kaufmann, Vol. 2, pp.598{605, 1990.

[8] S. Lonardi, Analisi e sintesi frattale di immagini, Thesis, Computer Science
Department, University of Pisa, Italy, 1994.

[9] J. B. Pollack, \Recursive distributed representations", Arti�cial Intelligence,
46(1-2), pp.77{106, 1990.

[10] H. Samet, \The Quad-Tree and Related Hierarchical Data Structures",
ACM Computing Surveys, 16(2), pp.188{260, 1984.

[11] P. Sommaruga, S. Lonardi, \Best Fractal Orthogonal Approximation and
Block Coding of Images", submitted to Signal Processing.

[12] A. Sperduti, A. Starita, \An Example of Neural Code: Neural Trees
Implemented by LRAAMs", Intl. Conf. on Neural Networks and Genetic Alg-
orithms, Innsbruck 1993, pp.33{39.

[13] A. Sperduti, A. Starita, \Modular Neural Codes Implementing Neural Trees",
to appear in 6th Italian Workshop on Parallel Architectures and Neural
Networks, 1993.

[14] A. Sperduti, Optimization and Functional Reduced Descriptors in Neural
Networks, PhD Thesis, Computer Science Department, University of Pisa,
Italy, TD-22/93, 1993.

[15] A. Sperduti, \Labeling RAAM", Technical Report 93-029, International Com-
puter Science Institute, 1993. Accepted for pubblication on Connection Sci-

ence.

[16] A. Sperduti, \On Some Stability Properties of the LRAAM Model",
Technical Report 93-031, International Computer Science Institute, 1993.

[17] A. Sperduti, \Encoding of Labeled Graphs by Labeling RAAM", to appear
in Advances in Neural Information Processing Systems, San Mateo: Morgan
Kaufmann,Vol. 6, 1994.

[18] Y. Yu, R. Simmons, \Descending Epsilon in Backpropagation: a Technique for
Better Generalization", Proceedings of IJCNN , San Diego 1990, pp.167{172.


