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ABSTRACT: Predicting antibody−antigen interactions is a critical
step in developing new therapeutics to defend against viral
infections. However, measuring the extent of these interactions in
vitro is costly and time-consuming. With the increased availability
of experimental data, predictive methods using machine learning,
particularly large language models (LLMs), have emerged as a
powerful alternative to wet lab experiments. Here we focus on
antibodies targeting SARS-CoV-2 variants, given the abundance of
data on this highly contagious virus and the impact of COVID-19
on human life. The objective of this work is to predict the binding and the neutralizing properties of SARS-CoV-2 antibodies. While
there are many studies on predicting binding, to the best of our knowledge, we are the first to address the problem of predicting the
neutralizing properties of SARS-CoV-2 antibodies. Here we propose a new classifier that combines LLMs with structural
information. Extensive experimental results show our method (i) achieves high prediction accuracy (especially for closely related
antigen variants) and (ii) outperforms other classifiers in the literature on the prediction of antibody−antigen binding.

■ INTRODUCTION
The interaction between antibodies and antigens is the
fundamental mechanism of action of the immune system,
where specialized proteins called antibodies recognize and bind
to specific molecular targets known as antigens.1,2 This
molecular recognition process is crucial for the organism’s
defense against pathogens, enabling the precise identification
and neutralization of potential threats.3 Most interactions
occur in the complementarity-determining regions (CDR) of
antibodies, which are designed to target specific antigens with
high specificity and precision.4 The significance of these
interactions extends far beyond basic immunological research.5

By elucidating the complex “molecular rules” of how antibodies
bind to antigens, scientists can develop more effective
therapeutic interventions, design vaccines, and diagnostic
tools.6 These interactions are not just docking events, but
complex molecular processes involving intricate structural
arrangements, electrostatic interactions, and sophisticated
recognition mechanisms that allow the immune system to
distinguish between self-and nonself molecules with high
accuracy.7,8

Recent technical advances in machine learning (ML) have
revolutionized the prediction and understanding of antibody−
antigen interactions, addressing critical challenges in computa-
tional immunology.9 Traditional laboratory experimental
methods that can detect and measure these interactions are
time-consuming and resource-intensive, making computational
approaches increasingly essential.10 ML models, particularly
deep learning architectures like graph neural networks and
transformer-based models, can now predict antibody−antigen

binding affinities, epitope locations, and potential interaction
sites (see, e.g.,11−17). These computational approaches not
only promise to accelerate drug discovery and vaccine design
but also have the potential to provide insights into the complex
molecular recognition mechanisms that are challenging to
explain through conventional experimental techniques.18 By
leveraging the availability of large-scale structural databases and
advanced machine learning methods, researchers can now
deploy predictive models that can reduce screening time,
detect antibody−antigen interactions for novel pathogens, and
design more targeted therapeutic interventions.10

Recent innovations in large language models (LLMs) have
further transformed the landscape of antibody−antigen
interaction prediction tasks.19 Unlike traditional structure-
based methods that require extensive computational resources
and detailed structural information, sequence-based ap-
proaches leverage the power of LLMs to extract meaningful
patterns directly from amino acid sequences.20 Antibody-
specific LLMs can now predict interactions, binding affinities,
and functional characteristics by learning from vast databases
of antibody sequences.21 For instance, several studies have
explored the use of LLMs for antibody design and epitope
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prediction for SARS-CoV-2.22,23 Approaches based on LLMs
offer several critical advantages: reduced computational cost,
ability to handle proteins with unknown structures, faster
screening of potential protein−protein interactions, and the
capacity to generalize across diverse protein families.19,24

Moreover, sequence-based models can capture subtle evolu-
tionary and contextual relationships, providing insights into
protein−protein interactions that go beyond simple geometric
matching.25

While sequence-based models offer significant advantages,
they inherently miss the critical structural context that defines
antibody−antigen interactions.26 Structural information pro-
vides crucial insights into molecular recognition that cannot be
fully captured by sequence data alone.27 The three-dimen-
sional arrangement of amino acids and their precise
interactions has a fundamental role in determining anti-
body−antigen binding specificity and affinity.28 Consequently,
integrating structural data within LLMs has great potential to
advance the field of computational immunology.29 Recent
developments in AlphaFold and other AI-driven structure
prediction technologies have enabled the generation of high-
accuracy protein structures from sequences, bridging the gap
between sequence and structural information.30 By combining
synergistically the pattern recognition capabilities of LLMs
with the structural insights provided by AlphaFold, more
comprehensive and accurate predictive models of protein−
protein interactions have been developed.31 This hybrid
approach allows for a more holistic understanding of molecular
recognition, capturing both the evolutionary context encoded
in sequences and the critical spatial arrangements that
determine binding specificity.32 For instance, ESMFold offers
a practical and scalable alternative to AlphaFold for protein
structure prediction.33 ESMFold is more computationally
efficient than AlphaFold and does not require users to provide
a multiple sequence alignment. Extensive benchmarking
showed that ESMFold achieves comparable performance to
AlphaFold on some classes of proteins (e.g., antibodies), and it
can provide global fold and framework architectures which are
most relevant for auxiliary structure-based modeling.34 The
idea of combining sequence-based modeling with evolutionary,
structural or functional information has been explored in the
literature (e.g., AlphaFold Evoformer,27 MSA Transformer35).
Some models focus on training separate encoders for sequence
and structure and then combine them to predict the properties
(see, e.g.,36,37). Other approaches use a structure-aware

vocabulary38 or remote homology39 to force the model to
learn the structural features.

The problem of predicting the interaction of antibodies
against the same class of target antigen remains, however,
relatively unexplored. Most studies in the literature focus on
antibody−antigen interactions across various pathogens, where
significant differences in antigen sequence and structure exist.
However, when antigens differ by only a few amino acid
substitutions, existing predictive models often struggle to
accurately capture changes in interactions. It has been shown
that minor mutations in the antigen sequence can significantly
influence antibody binding and neutralization, highlighting the
challenges in modeling such subtle yet impactful changes.40

In this study, we evaluate the ability of a LLM to predict the
binding specificity and neutralizing properties of antibodies
targeting various variants of SARS-CoV-2. The key finding of
our study is that incorporating structural information allows
the LLM to more effectively capture the binding and
neutralizing properties of antibodies against variants of the
same pathogen.

■ MATERIALS AND METHODS
First, we pretrained two language models individually for the
heavy and light chains using the masked language modeling
(MLM) objective. The language models were trained with and
without structural information. For heavy and light chains, we
explored four variants, namely BERT-based MLM, ESM2-
based MLM, and their respective structure-augmented
versions. After pretraining, we developed classifiers that
combine the embeddings for the heavy chain, the embeddings
for the light chain, and antigen sequences to predict binding or
neutralization classes.

In the classifier architecture, heavy chain and light chain
models are either frozen or fine-tuned, while the antigen
sequence is encoded using a frozen ESM2 model. The
embeddings from each branch are concatenated and passed
through a feedforward network for final classification. This
two-stage design�pretraining followed by classification�
enables a systematic assessment of how structure augmentation
and fine-tuning impact downstream performance. Figure 1
shows the outline of our method.
Data Set. Our training data set was derived by the

CovAbDab database (Feb 2024),41 which contains a
comprehensive collection of annotated antibodies known to
interact with various SARS-CoV-2 variants, including the

Figure 1. Overview of the study. (A) Several LLMs have been trained in this study on the heavy and light chain sequences of antibodies; BERT +
MLM and ESM2 + MLM were trained with sequences only; BERT + MLM + Structure and ESM2 + MLM + Structure were trained using both
sequence and structure; MLM = Masked Language Modeling (B). The proposed architecture for predicting binding and neutralizing properties of
antibodies; it combines one heavy chain LLM, one light chain LLM (both pretrained in step A), and one ESM2 LLM.
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original Wuhan strain (hereafter WT), as well as β, Delta, and
Omicron variants. CovAbDab provides detailed annotations
for each antibody, including amino acid sequences for heavy
and light chains, the host species, binding specificity, and
neutralization properties. Additionally, structural data, precise
epitope mappings, and germline gene information are often
available.

In this study, the antigen of interest is the spike protein of
SARS-CoV-2. However, CovAbDab does not contain
annotations for SARS-CoV-2 variants; thus, we manually
obtained these variant sequences from the Protein Data Bank
(PDB) hosted at RCSB.42 The sequence variations in the spike
protein for β, Delta, and Omicron variants relative to the WT
sequence include amino acid substitutions, insertions, and
deletions. Figure 2 illustrates the positions of these variations

for all the SARS-CoV-2 variants. Observe that (1) the most
common variations are substitutions, and (2) most sub-
stitutions occur prominently within the receptor-binding
domain (RBD, positions 305−534), (3) insertions and
deletions predominantly appear in the N-terminal domain
(positions 13−304). The Levenshtein (edit) distance between
the WT and other SARS-CoV-2 variants ranges from 14 to 57
amino acids (data not shown). Given that the total length of
the spike protein sequence of WT is 1208 residues, these
distances represent approximately 3% sequence divergence,
highlighting the high similarity among the variant antigen
sequences.

We processed the CovAbDab data set to determine the list
of antibody−antigen binding pairs and the list of antibody−

antigen neutralizing pairs. Since every antibody−antigen
interaction is not equally represented in CovAbDab, we
restricted the analysis to variants with at least 1000 interacting
antibodies to ensure robust statistical support and reliability in
our results. This subset of CovAbDab contained 42,091
antibody−antigen pairs. Table 1 summarizes the number of
antibody−antigen pairs for which the binding and neutralizing
properties are known. Note that neutralizing antibodies
represent a subset of antibodies that bind to their respective
target antigens. It is not possible for an antibody to be
neutralizing but not binding. Observe that SARS-CoV-2 WT
has the highest number of antibodies in the data set. This likely
reflects annotation bias, as the original Wuhan strain emerged
the earliest, prompting extensive initial research and antibody
characterization. Newer variants have fewer annotated anti-
bodies due to comparatively limited studies and experimental
data. We also created a combined label that captures three
interaction modalities, namely (i) binding and neutralizing, (ii)
binding but not neutralizing, and (iii) neither binding nor
neutralizing.

Next, we determined which pairs of amino acids in the
antibodies are in close proximity because those pairs are more
likely to form contacts. According to the guidelines used in the
Critical Assessment of protein Structure Prediction (CASP)
competition, two amino acids are considered in contact when
the distance between their α-carbon atoms is less than 8° A.43

The subset of CovAbDab used in this study contained 10,386
distinct antibodies, of which only 2237 had an experimentally
determined 3D structure available in the Protein Data Bank
(PDB). To address this problem, we predicted the structures
of the missing antibodies using ESMFold.33 Then, we
calculated all pairwise distances between the α carbon Cα
atom on all residue−residue pairs. Given the 3D structure of
an antibody S of length |S|, we generated a |S| × |S| binary
matrix contact map, where element (i, j) = 1 if the Cα atom of
residues S[i] and S[j] were closer than 8° A, (i, j) = 0
otherwise. This process was carried out on the heavy chain and
the light chain of all the antibodies in the data set.
Pretraining LLMs on Sequence and Structure. Protein

Language Models (PLMs) are analogous to LLMs for natural
language processing. PLMs are trained on large protein
sequence data sets to capture evolutionary and structural
information. They facilitate predicting protein interactions,

Figure 2. Positions of amino acid substitutions, insertions and
deletions of SARS-CoV-2 variants with respect to the original Wuhan
strain (WT).

Table 1. Number of Antibodies Binding or Neutralizing the 14 SARS-CoV-2 Variants Used in this Study

variant binding not binding neutralizing not neutralizing

sars-cov-1 1723 1578 472 2829
sars-cov2-wt 8960 958 4425 5493
sars-cov2-β 827 123 419 531
sars-cov2-delta 979 221 510 690
sars-cov2-omicron-ba1 2288 1905 1903 2290
sars-cov2-omicron-ba1.1 790 696 775 711
sars-cov2-omicron-ba2 2292 1466 1724 2034
sars-cov2-omicron-ba2.12.1 812 848 773 887
sars-cov2-omicron-ba2.13 696 708 674 730
sars-cov2-omicron-ba2.75 1436 1896 1411 1921
sars-cov2-omicron-ba3 756 746 706 796
sars-cov2-omicron-ba4 607 891 567 931
sars-cov2-omicron-ba5 1786 2933 1655 3064
sars-cov2-omicron-xbb1 502 1786 485 2685
total 24,454 17,637 16,499 25,592
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structures, and functional properties by leveraging patterns
learned from sequence data. PLMs are typically trained using a
Masked Language Modeling (MLM) objective to learn the
“language of proteins” at the sequence level by minimizing the
loss MLM, defined as follows

M
y y1

log( )
i M c

C

i c i cMLM
1

, ,=
| | =

where M is the set of masked positions in the sequence, C is
the vocabulary size (i.e., the number of all the possible amino
acids in any position), yi,c is the ground truth for amino acid c
in position i, and ŷi,c is the predicted probability for amino acid
c in position i.

It is well-known that the function of proteins is determined
by their 3D structure. General PLMs are expected to learn
protein functions from the primary sequences, which limits the
predictive ability for downstream tasks that depend on the 3D
structure. Using a contacts-based loss (structural information)
guides the LLM to learn spatial proximity patterns between
residues, inherently capturing structural and functional proper-
ties. This structural awareness can directly enhance the
capability of the model to predict antibody binding and
neutralizing properties, since these properties strongly depend
on precise molecular interactions and 3D conformations. In
this study, we incorporated the contact information between all
pairs of amino acids in the antibodies as a training objective as
follows

L
M M1

log( )
i

L

j

L

i j i jcontacts 2
1 1

, ,=
= =

where L is the length of the sequence, Mi,j is the ground truth
for the structural contact between amino acid i and j, and M̂i,j is
the predicted contact between amino acid i and j.

We used the following objective function to train our
structure-aware LLMs.

MLM structure MLM contacts= ++

Figure 1A illustrates the pretraining step for all the LLMs
used in this study. The input to each LLM was (1) the
sequence for the heavy chain of the antibody, (2) the sequence
for the light chain of the antibody, and (3) optionally, the
contact map for the antibody obtained from its 3D structure.
Input sequences were processed through BERT (Bidirectional
Encoder Representations from Transformers)44 or ESM2,45

using the loss function MLM. BERT is a popular transformer-
based architecture for the analysis of biological sequences such
as DNA and proteins.46,47 Our BERT + MLM is a 12-layer
architecture with eight attention heads that we trained from
scratch using exclusively the sequences for the heavy chains
and light chains. ESM2 is a transformer-based PLM that was
trained on all the protein sequences from the UniRef
database.45 ESM2 is a state-of-the-art protein language model
that provides latent space embeddings for downstream tasks
such as stability prediction, function annotation, and viral
fitness modeling.48−50 We started from a pretrained ESM2,
then fine-tuned it on our antibodies, which resulted in the
ESM2 + MLM models for heavy and light chain sequences. For
the structure-aware LLMs, we developed BERT + MLM +
Structure and ESM2 + MLM + Structure for heavy and light
sequences, using the objective function MLM structure+ . We
trained BERT from scratch to assess the ability of an antibody-

specific language model trained without prior protein knowl-
edge. The comparison of ESM2 with a model trained from
scratch enabled us to evaluate whether it is advantageous to
incorporate general protein knowledge for antibody-specific
modeling. We compared the performance of all these antibody-
specific LLMs with a basic pretrained ESM2 to carry out the
three prediction tasks.

The pretraining of these LLMs was carried out on an
NVIDIA A100 GPU server, utilizing a batch size of 64 and a
total of 30 epochs. Each epoch consisted of 123 batches. The
input sequences were divided into 80% training and 20% test
sets, with 15% of the training set reserved for validation. The
learning rate was 5 × 10−5, and gradient clipping was applied
with a max gradient norm of 1.0. A masking rate of 0.3 was
applied to the input sequences.
Training to Predict Binding and Neutralizing Proper-

ties. The final architecture for predicting antibody−antigen
binding or neutralizing is shown in Figure 1B. It is composed
of two pretrained language models that independently encode
the heavy chain sequence (VH) and the light chain sequence
(VL) of antibodies, combined with one ESM2 pretrained
model for the sequence of the specific antigen. The
concatenated embeddings produced by the three LLMs were
processed through one classification layer, which mapped the
combined embedding vector of dimension (2 × antibody
embedding dimension + antigen embedding dimension) to
single scalar output. These scalars were transformed using a
sigmoid function to yield a probability representing the
predicted likelihood of a binding or neutralizing event. We
selected the smallest ESM-2 model (t6_8M_UR50D) to
encode antigen sequences (n = 14), as training a larger
model on such a limited data set would be unreasonable. As
shown in Supporting Figure S1, the model produced distinct
embeddings for each of the antigen sequences despite its
compact size. The cross-entropy loss function CE used to
train the classifiers is defined as follows

N
y y1

log( )
i

N

c

C

i c i cCE
1 1

, ,=
= =

where N is the number of samples, C is the number of classes,
yi,c is the class label, and ŷi,c is the predicted probability for the
ith sample and class c.

To establish a baseline for comparison, we utilized a basic
architecture (hereafter referred to as ESM2) pretrained on the
UniRef database. This baseline employs separate pretrained
ESM2 models to independently represent the heavy chain, the
light chain, and the antigen sequences. Additionally, we
evaluated and compared four antibody-specific classifiers,
namely BERT + MLM, BERT + MLM + Structure, ESM2 +
MLM, and ESM2 + MLM + Structure. Each classifier was built
upon one of our pretrained antibody-specific language models
(LLMs), augmented with a feed-forward layer to classify
antibodies according to their binding or neutralizing proper-
ties. These classifiers were chosen to assess how antibody-
specific pretraining and inclusion of structural information
impact the prediction of antibody binding and neutralizing
properties compared to a general protein baseline. We used
two model configurations for training these classifiers, namely

1. Frozen Configuration: In this case, both the heavy chain
LLM and light chain LLM were frozen. Only the feed-
forward layer was trained.
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2. Finetuned Configuration: In this case, the entire
architecture was fine-tuned, with the exception of the
LLM encoding the antigen (which was kept frozen).

The two configurations (Frozen and Finetuned) were
chosen to evaluate the trade-off between computational
efficiency and model adaptability. The Frozen configuration
offers faster training and prevents overfitting but may limit
model adaptability, whereas the Finetuned configuration
enhances model flexibility at the cost of increased computa-
tional resources and potential overfitting. An ensemble of two
pretrained models using the ESM2 + MLM + Structure
architecture, was also employed to separately predict the
binding and neutralizing properties of antibody−antigen pairs.
Based on these predictions, combined labels were assigned to
each pair according to the rules described in the Data Set
section.

The training data set for this step consisted of (1) the heavy
chain sequence, (2) the light chain sequence, (3) the antigen
sequence, and (4) the binding/neutralizing labels. Antibody
sequences were tokenized using the same tokenizer used in the
pretraining phase. Antigen embeddings were precomputed.
Training was carried out using the binary cross-entropy with
logits loss function, which is well-suited for binary classification
tasks. For the prediction of the combined label (multiclass),
the cross-entropy loss function was used. The model was
optimized using the Adam optimizer with a learning rate of 1 ×

10−5, providing stability and efficient convergence. The input
sequences were divided into 80% training and 20% test sets,
with 15% of the training set reserved for validation. Each
model was trained for 30 epochs on an NVIDIA A100 GPU.
The model checkpoint with the highest validation accuracy was
saved to avoid overfitting and to preserve the best-performing
parameters.

■ RESULTS
Structure-Aware LLMs Outperform Sequence-Only

LLMs. We evaluated the classifiers on their ability to predict
binding, neutralizing, and combined labels for held-out test
samples, under both frozen and finetuned configurations.
Figure 3 summarizes the classification performance in terms of
accuracy, precision, recall, and F1-score. Observe that the
ESM2 + MLM + Structure classifier achieved the best results for
binding classification, with Accuracy, Precision, Recall, and F1-
score reaching 0.8740, 0.8712, 0.8684, and 0.8697 respectively.
Similar observations can be made for the neutralizing
classification. Also, observe that finetuning consistently
improved the performance of the classifiers across all tasks.
Without finetuning, ESM2 + MLM + Structure outperformed
others, with the highest F1-score across tasks. BERT + MLM
and BERT + MLM + Structure had modest performance, with
significant gains after finetuning. However, it is clear from
these experimental results that structure-aware LLMs (i.e.,

Figure 3. Performance evaluation of the five classifiers listed in the legend on all three predictive tasks (binding, neutralizing and combined); in the
frozen configuration both the heavy chain LLM and light chain LLM were frozen and only the feed-forward layer was trained; in the finetuned
configuration, the entire architecture was fine-tuned, with the exception of the LLM encoding the antigen (which was kept frozen); A: accuracy, B:
precision, C: recall, and D: F1-Score (numerical values are available in Supporting Information).
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BERT + MLM + Structure, ESM2 + MLM + Structure)
performed better across all tasks than sequence-based LLMs
(i.e., ESM2, BERT + MLM, ESM2 + MLM).

On the multiclass prediction of the combined class labels,
the ESM2 classifier performed very well when it was finetuned.
Otherwise, our trained LLMs have better performance.
However, when we used an ensemble of the finetuned ESM2
+ MLM + Structure binding classifier and the ESM2 + MLM +
Structure neutralizing classifier, we obtained the best perform-
ance. The ensemble of these two classifiers achieved an
accuracy of 0.8310 and an F1-score of 0.8126 (as shown in
Figure 3).

Figure 4A shows the Receiver Operating Characteristic
(ROC) curves comparing the performance of five classifiers on
binding and neutralizing prediction tasks, evaluated on held-
out test samples in both frozen and fine-tuned configurations.
Figure 4B shows the corresponding area under the curve
(AUC) scores. Across both tasks, finetuned classifiers
consistently outperformed their frozen counterparts. The
finetuned ESM2 + MLM + Structure classifier achieved the
highest AUC in both tasks (0.9342 for binding and 0.9538 for
neutralizing) and the highest ROC curve.

We further evaluated the performance of these classifiers
across variants of the target antigen. Figure 5 shows the
classification F1-score for various choices of the antigen.
Observe that the ESM2 + MLM + Structure classifier
performed well on all variants except (i) SARS-Cov-1, which
has low sequence similarity to other variants,51 and (ii) SARS-
Cov2-omicron-xbb1, which has highly distinguished function-
alities compared to other variants.52,53

Finally, we compared the ESM2 + MLM + Structure
classifiers against other deep learning and LLM-based binding
prediction methods in the literature, namely DeepAIR,54

Dynamic Masking LLM,55 Ens-Grad,56 ESM-F,23 AntiBER-
Ta,23 AbMap,57 and A2Binder.23 DeepAIR uses a feature-
encoding backbone and multiple task-specific prediction layers,
and it was trained on curated experimental data sets. Other
methods include Dynamic Masking LLM, which employs
preferential masking of the CDR3 regions rather than uniform
masking across the entire sequence and was pretrained on a
large data set of natively paired antibody sequences. Ens-Grad
utilizes a CNN-based architecture trained on sequences
derived from phage display experiments. ESM-F and
AntiBERTa are LLMs trained specifically on antibody

Figure 4. (A) ROC curve for binding and neutralizing classification tasks for all the classifiers in this study in both frozen and finetuned
configurations; (B) AUC values for both classification tasks for all the classifiers in this study in both frozen and finetuned configurations
(numerical values are available in Supporting Information).
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sequence data sets. AbMap fine-tunes foundation models using
antibody structure and binding specificity data. Lastly,
A2Binder integrates a complex CNN and feed-forward module
built upon an LLM and was trained on the CoV-AbDab data
set. All these methods were evaluated on held-out test samples
from CovAbDab similar to our approach. Table 2 shows that
the ESM2 + MLM + Structure classifier performed better than
all the other approaches with an AUC of 0.9342. Table 2
summarizes the performance comparison of various methods
using the area under the Receiver Operating Characteristic
curve (ROC AUC), the area under the Precision-Recall curve
(PR AUC), and accuracy. We used the metrics for A2Binder
from the corresponding paper23 to ensure a consistent
comparison. The trained models was tested on five non-
overlapping subsets of the data (5-fold cross-validation); Table
2 reports the average and the standard deviation of all metrics
over five independent tests. Observe that our ESM2+MLM
+Struct achieved the best performance across all metrics.
Structure-Aware LLM Capture More Meaningful

Antibody−Antigen Properties. To determine whether our
classifiers can provide meaningful latent-space representations
of antibody−antigen interactions, we projected the antibody−
antigen embeddings produced by the encoder of our classifiers
into a 2D space using t-SNE. Figure 6 shows the t-SNE plots
for the antibody−antigen embeddings produced by ESM2 +
MLM from binding and neutralizing classifiers (Figure 6A,B,
respectively), and ESM2 + MLM + Structure from binding and

neutralizing classifiers (Figure 6C,D, respectively). Points are
colored by the binding/neutralizing labels (yellow means not
binding or not neutralizing; green means binding or
neutralizing). The figure also reports the silhouette score,
which measures how similar an object is to its own cluster
compared to other clusters. The silhouette score was calculated
using the entire embedding vectors. It measures how well data
points are clustered, with higher values indicating better
separation between groups and more compact clustering
within groups. Observe that the structure-aware ESM2 +
MLM + Structure classifier generates antibody−antigen
embeddings which have a stronger separation (i.e., better
silhouette score) compared to the sequence-based ESM2 +
MLM classifier.

Next, we evaluated the ability of our classifiers to capture the
impact of antigenic variations on antibody−antigen inter-
actions. To assess this, (i) we collected the subset of antibodies
interacting with all 14 distinct antigen variants, (ii) we
produced embeddings for each antibody−antigen pair using
the encoder of ESM2 + MLM + Structure classifier, (iii) we
computed the Euclidean (L2) distance between the embed-
dings over all pairs of antigens. We collected these values in a
14 × 14 matrix, where position (i, j) in the matrix represented
the average distance between the embedding for antibody A
when the input was antigen i and the embedding of A when the
input was antigen j. Figure 7A shows the heat map of this
matrix, along with a hierarchical clustering of the columns.
Observe that antibody−antigen pairs exhibit distinct differ-
ences in their embeddings when paired with different antigens.
Figure 7B instead illustrates the sequence dissimilarity over all
pairs of antigens. Observe that while some of the antigen pairs
have highly similar sequences in Figure 7B, the corresponding
embeddings are not necessarily similar in Figure 7A. This is
because the embeddings have to reflect the functional and
structural characteristics of the antibodies interacting with
these antigens, which may not be reflected in the sequence
similarity. Notably, the embedding differences are significantly
larger for SARS-CoV-1, consistent with its distinct functional
characteristics compared to SARS-CoV-2.51 A similar obser-
vation can be made for SARS-CoV-2 Omicron XBB.1, which
has unique interaction properties with antibodies compared to
other SARS-CoV-2 variants.52,53 Notably, the hierarchical
clustering of the embeddings in Figure 7A resembles closely
the hierarchical clustering in Figure 7B. SARS-CoV-2 Omicron
XBB.1 exhibits high sequence similarity with other variants,
positioning itself within the same cluster (red cluster) in Figure
7B. However, despite this sequence similarity, XBB.1
demonstrates a distinct functional response compared to

Figure 5. Classification performance of the ESM2 + MLM + Structure
classifier over all the 14 variants of SARS spike protein (numerical
values are available in Supporting Information).

Table 2. Performance of Dynamic Masking LLM, Ens-Grad, ESM-F, AntiBERTa, AbMap, A2Binder, and our ESM2 + MLM +
Structure on the Antibody-Antigen Binding Prediction Problem Using ROC AUC, Precision-Recall AUC and Accuracya

aEach value is reported as mean (standard deviation) (bold numbers indicate the best score, and underlined numbers indicate the second best
score).
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other Omicron BA variants, which is reflected in its separate
clustering within the embeddings.
Trained Models Learned to Distinguish Neutralizing

Features. Here we dissected the trained models to get some
insights on their ability to distinguish between neutralizing and

non-neutralizing antibodies that bind to a target antigen. We
chose the Omicron-BA-2 variant as the antigen because it had
a smallest set of test antibodies (13 neutralizing and 45 non-
neutralizing). Our aim was to understand how the models
capture neutralizing-specific features, since binding is necessary

Figure 6. t-SNE 2D projections of the antibody−antigen embeddings produced by ESM2 + MLM and ESM2 + MLM + Structure; points are
colored by the binding/neutralizing labels; silhouette score are reported for clustering; (A) t-SNE projection of the embeddings from the binding
classifier ESM2 + MLM (finetuned), points colored by binding labels; (B) t-SNE projection of the embeddings from the neutralizing classifier
ESM2 + MLM (finetuned), points colored by neutralizing labels; (C) t-SNE projection of the embeddings from the binding classifier ESM2 + MLM
+ Structure (finetuned), points colored by binding labels; (D) t-SNE projection of the embeddings from neutralizing classifier ESM2 + MLM +
Structure (finetuned), points colored by neutralizing labels.

Figure 7. (A) L2 distance between the embeddings produced by ESM2 + MLM + Structure for different choices of the antigens (SARS spike
proteins); (B) Sequence dissimilarity between all pairs of SARS spike-proteins variants.
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but not sufficient for an antibody to neutralize the antigen. It
was a natural choice to focus on the attention heads of our
architectures. After collecting the values of the attention layers
(160 in total) for the heavy chain and the light chain classifiers,
we computed the differences in average attention between
neutralizing and non-neutralizing antibodies. Figure 8 shows a
heat map for the top three most significant attention matrices
for the heavy chain classifier. In each heatmap, position (q,k)
reports the difference in average attention weight between non-
neutralizing and neutralizing antibodies. A red value means the
residue at position q has stronger attention to position k in
non-neutralizing antibodies, while blue means the opposite.
Hollow circles mark (q,k) pairs whose attention differences are
statistically significant (p-value p < 0.05). Observe that Layer
24 Head 4 shows a strong red signal from FR1 (q ∈ [1, 25])
and FR3 (q ∈ [66, 104]) into CDR1 (k ∈ [26, 38]),
suggesting that non-neutralizing antibodies anchor scaffold
residues onto CDR1. In contrast, blue shading across CDR3
keys (k ∈ [96, 107]) indicates that neutralizing antibodies
broadly target CDR3. Layer 11 Head 3 displays alternating red
and blue patches along the main diagonal (q ≈ k), reflecting
class-specific modulation of local, neighbor-level attention.
Layer 20 Head 5 reveals a long-range blue signal connecting
CDR1 queries (q ∈ [26, 38]) to FR3/CDR3 keys (k ∈ [80,
111]), highlighting a neutralizer-specific dependency between
CDR and the framework regions. Together, these patterns
show that the model differentiates neutralizing from non-
neutralizing antibodies through distinct short- and long-range
interactions: non-neutralizers rely on CDR1-based scaffolding,
whereas neutralizers center CDR3 as a key hub for high-affinity
binding. We also observed significant differences between these
two groups of antibodies in the light chain classifier. All the
differences in attention heads are presented in the Supporting
Information.

■ DISCUSSION
In this work, we studied whether it is advantageous to
incorporate the 3D structure of antibodies into LLMs, making
them “structure-aware” while retaining their ability to learn the
“protein language”. We evaluated the performance of our
structure-aware LLMs against traditional sequence-based
LLMs. We also compared the performance of antibody−
antigen interaction classifiers using task-specific finetuned
versions of these LLMs. To the best of our knowledge, we
are the first to address the problem of predicting neutralizing
properties of antibodies against the SARS-CoV-2 spike protein.

Our findings demonstrate the superior performance of
structure-aware LLMs in antibody−antigen interaction pre-
dictions, in particular when finetuned from the pretrained
protein language model ESM2. We showed that while ESM2
was designed as a foundational model to capture the general
“protein language”, it can be significantly improved for
antibody−antigen interaction prediction by refining it using
target specific antibody sequences and structures. In the fine-
tuned configuration, the AUC for the binding prediction task
improved from 0.8417 (ESM2 + MLM) to 0.9342 (ESM2 +
MLM + Structure). Similarly, for the neutralizing prediction
task, the AUC increased from 0.8757 (ESM2 + MLM) to
0.9538 (ESM2 + MLM + Structure). Our results indicate that
the finetuned configuration consistently outperforms the
frozen configuration, demonstrating the importance of
allowing antibody-specific LLMs to adapt their parameters
for improved prediction accuracy in binding and neutralization
tasks. Finetuning enables the model parameters to specialize,
capturing detailed, task-specific features critical for antibody−
antigen interactions. Conversely, the frozen configuration relies
solely on general, pretrained features, limiting the model’s
ability to adapt to nuanced structural and functional character-
istics necessary for accurate predictions.

Our antibody-specific LLMs consistently outperformed both
pretrained and fine-tuned ESM2 on binary classification tasks
(binding or neutralization), emphasizing their strong capability

Figure 8. Visualizing the differences in self-attention between neutralizing and non-neutralizing antibodies for the heavy chain classifier; each panel
shows the attention difference map (neutralizing minus non-neutralizing) for three most significant attention heads, namely Layer 24 Head 4, Layer
11 Head 3, and Layer 20 Head 5; the x-axis indicates key amino acid positions, while the y-axis indicates query amino acid positions; red regions
indicate higher attention in non-neutralizing antibodies; blue regions indicate higher attention in neutralizing antibodies; hollow circles mark
residue pairs with statistically significant differences (pvalue p < 0.05); horizontal and vertical lines demarcate the complementarity-determining
regions (CDRs) and framework regions (FRs) along the sequence.
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to capture antibody-specific functional patterns. However, for
the multiclass prediction tasks (bind + neutralize, bind + no
neutralize, neither) the finetuned ESM2 slightly outperformed
our models. This is likely due to the fact that the finetuned
ESM2 model has a broader knowledge of protein sequence
diversity and enables it to identify subtle structural or
evolutionary differences critical for nuanced multiclass
predictions, which our specialized models may not fully
capture due to their narrower antibody-focused training.
Nevertheless, our ensemble model which combines the
binding and neutralizing prediction classifiers outperforms
ESM2 in this task.

Our ESM2 + MLM + Structure classifier outperformed
DeepAIR, Dynamic Masking LLM, Ens-Grad, ESM-F,
AntiBERTa, AbMap, and A2Binder on the binding prediction
problem. The key advantage of our approach is to incorporate
the structural information by training the model to predict the
contact map. This structure-aware learning enhances binding
and neutralization prediction, as antibody functionality is
inherently linked to its 3D structure. Although A2binder’s
performance is very close to ours, our classifier is much
simpler. We use only a basic feed-forward layer for
classification, whereas A2Binder incorporates a more complex
CNN and feed-forward module on top of the LLM. Pretrained
LLMs on antibody sequence data sets, such as ESM-F and
AntiBERTa, show similar performance. However, the superior
performance of A2Binder and ESM2 + MLM + Struct
indicates that pretraining LLMs on target-specific antibody
data sets enhances downstream task performance. We could
not find any published tool for predicting neutralizing
antibodies. We also showed that the ESM2 + MLM + Structure
classifier generates more meaningful antibody−antigen embed-
dings compared to the ESM2 + MLM classifier.

In the absence of experimentally determined antibody 3D
structures, we used ESMFold to generate structural predic-
tions. These predicted structures were used to enhance the
antibody language model. While ESMFold captures overall
structural topology with high efficiency, it lacks the atomic-
level precision of experimental methods such as X-ray
crystallography or cryo-EM. Despite these limitations,
incorporating ESMFold-derived structural features led to
consistent improvements in downstream model performance.
This suggests that even approximate structural context
provides meaningful biophysical cues, making the approach
both effective and scalable in scenarios where experimental
structures are unavailable.

Despite these encouraging results, there is still room for
improvement. A larger training data set is likely to further
enhance model performance by improving its ability to
generalize across diverse antibody−antigen interactions. Addi-
tionally, integrating residue-level details, such as solvent
accessibility, secondary structure, and protein−protein binding
interfaces, could provide a more comprehensive representation
of functional determinants. Features like proximity to key
binding sites, including the receptor-binding site and the furin-
binding site, may also improve the predictive accuracy. Future
work could explore these directions to refine antibody-specific
LLMs and extend their applications to broader antibody−
antigen interaction studies.
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