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OMGS: Optical Map-Based Genome Scaffolding

WEIHUA PAN, TAO JIANG, and STEFANO LONARDI

ABSTRACT

Due to the current limitations of sequencing technologies, de novo genome assembly is typ-
ically carried out in two stages, namely contig (sequence) assembly and scaffolding. While
scaffolding is computationally easier than sequence assembly, the scaffolding problem can
be challenging due to the high repetitive content of eukaryotic genomes, possible mis-joins in
assembled contigs, and inaccuracies in the linkage information. Genome scaffolding tools
either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physical,
or genetic) as linkage information. Optical maps (in particular Bionano Genomics maps)
have been extensively used in many recent large-scale genome assembly projects (e.g., goat,
apple, barley, maize, quinoa, sea bass, among others). However, the most commonly used
scaffolding tools have a serious limitation: they can only deal with one optical map at a time,
forcing users to alternate or iterate over multiple maps. In this article, we introduce a novel
scaffolding algorithm called OMGS (Optical Map-based Genome Scaffolding) that for the
first time can take advantages of multiple optical maps. OMGS solves several optimization
problems to generate scaffolds with optimal contiguity and correctness. Extensive experi-
mental results demonstrate that our tool outperforms existing methods when multiple op-
tical maps are available and produces comparable scaffolds using a single optical map.

Keywords: combinatorial optimization, de novo genome assembly, optical maps, scaffolding.

1. INTRODUCTION

Genome assembly is a fundamental problem in genomics and computational biology. Due to the

current limitations of sequencing technologies, the assembly is typically carried out in two stages,

namely contig (sequence) assembly and scaffolding. Scaffolds are arrangements of oriented contigs with

gaps representing the estimated distance separating them. The scaffolding process can vastly improve the

assembly contiguity and can produce chromosome-level assemblies. Despite significant algorithmic prog-

ress, the scaffolding problem can be challenging due to the high repetitive content of eukaryotic genomes,

possible mis-joins in assembled contigs, and the inaccuracies of the linkage information.

Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps. The

first group includes scaffolding tools for second generation sequencing data, such as Bambus (Pop et al.,

2004; Koren et al., 2011), GRASS (Gritsenko et al., 2012), MIP (Salmela et al., 2011), Opera (Gao et al.,

2011), SCARPA (Donmez and Brudno, 2012), SOPRA (Dayarian et al., 2010), and SSPACE (Boetzer

et al., 2010) and the scaffolding modules from assemblers ABySS (Simpson et al., 2009), SGA (Simpson
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and Durbin, 2012), and SOAPdenovo2 (Luo et al., 2012). Since the relative orientation and approximate

distance between paired-end/mate-pair/linked/Hi-C reads are known, the consistent alignment of a suffi-

cient number of reads to two contigs can indicate their relative order, their orientation, and the distance

between them. An extensive comparison of scaffolding methods in this first group of tools can be found in

Hunt et al. (2014).

The second group uses genome-wide maps such as genetic maps (Tang et al., 2015), physical maps, or

optical maps. According to the markers provided by these maps, contigs can be anchored to specific po-

sitions so that their order and orientations can be determined. The distance between contigs can also be

estimated with varying degree of accuracy depending on the density of the map.

The optical mapping technologies currently on the market (e.g., BioNano Genomics Irys systems and

OpGen Argus) allow computational biologists to produce genome-wide maps by fingerprinting long DNA

molecules (up to 1 Mb), using nicking restriction enzymes (Samad et al., 1995). Linear DNA fragments are

stretched on a glass surface or in a nanochannel array, and then the locations of restriction sites are

identified with the help of dyes or fluorescent labels. The results are imaged and aligned to each other to

map the locations of the restriction sites relative to each other. While the assembly process for optical

molecules is highly reliable, there is clear evidence that a small fraction of the optical molecules is chimeric

( Jiao et al., 2017).

A few scaffolding algorithms that use optical maps are available. SOMA appears to be the first published

tool that can take advantage of optical maps, but it can only deal with a nonfragmented optical map

(Nagarajan et al., 2008). The scaffolding tool proposed in Saha and Rajasekaran (2014) was used for two

bacterial genomes Yersinia pestis and Yersinia enterocolitica, but the software is no longer publicly

available. In the last few years, Bionano optical maps have become very popular and have been used to

improve the assembly contiguity in many large-scale de novo genome assembly projects (e.g., goat, apple,

barley, maize, quinoa, and sea bass) (Pendleton et al., 2015; Bickhart et al., 2017; Daccord et al., 2017;

Mascher et al., 2017). To the best of our knowledge, the main tools used to generate scaffolds using

Bionano optical maps are SewingMachine from KSU (Shelton et al., 2015) and HybridScaffold from

Bionano Genomics (unpublished, 2016). SewingMachine seems to be favored by practitioners over

HybridScaffold.

Both HybridScaffold and SewingMachine have, however, a serious limitation: they can only deal

with one optical map at a time, forcing users to alternate or iterate over optical maps when multiple maps

are available. In this article, we introduce a novel scaffolding algorithm called OMGS (Optical Map-based

Genome Scaffolding) that for the first time can take advantage of any number of optical maps. OMGS

solves several optimization problems to generate scaffolds with optimal contiguity and correctness.

2. PROBLEM DEFINITION

The input to the problem is the genome assembly to be scaffolded (represented by a set of assembled

contigs) and one or more optical maps (represented by a set of sets of genomic distances). We use

C = fciji = 1‚ . . . ‚ lg to denote the set of contigs in the genome assembly, where each ci is a string over the

alphabet fA‚ C‚ G‚ Tg. Henceforth, we assume that the contigs in C are chimera free.

An optical map is composed by a set of optical molecules, each of which is represented by an or-

dered set of positions for the restriction enzyme sites. As said, optical molecules are obtained by an

assembly process similar to sequence assembly, but we will reserve the term contig for sequenced contigs.

We use M = fmiji = 1‚ . . . ‚ ng to denote the optical map, where each optical molecule mi is an ordered set

of integers, corresponding to the distances in base pairs between two adjacent restriction enzyme sites

on molecule mi. By digesting in silico the contigs in C using the same restriction enzyme used to produce

the optical map and matching the sequence of adjacent distances between sites, one can align the contigs

in C to the optical map M. If one is given multiple optical maps obtained using different restriction

enzymes, M will be the union of the molecules from all optical maps. In this case, each genomic location is

expected to be covered by multiple molecules in M. As said, high quality alignments allow one to anchor

and orient contigs to specific coordinates on the optical map. When multiple contigs align to the same

optical map molecule, one can order them and estimate the distance between them. By filling these gaps

with a number of N’s equal to the estimated distance, longer DNA sequences called scaffolds can be

obtained.
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A series of practical factors make the problem of scaffolding nontrivial. These factors include impre-

cisions in optical maps (e.g., mis-joins introduced during the assembly of the optical map) ( Jiao et al.,

2017), unreliable alignments between contigs and optical molecules, and multiple inconsistent anchoring

positions for the same contigs. As a consequence, it is appropriate to frame this scaffolding problem as an

optimization problem.

We are now ready to define the problem. We are given an assembly represented by a set of contigs C, a

set of optical map molecules M, and a set of alignments A = fa1‚ 1‚ a1‚ 2‚ . . . al‚ ng of C to M, where ai‚ j is the

alignment of contig ci to optical map molecule oj. The problem is to obtain a set of scaffolds

S = fs1‚ s2‚ . . . skg where each si is a string over the alphabet fA‚ C‚ G‚ T‚ Ng, such that (i) each contig ci is

contained/assigned to exactly one scaffold, (ii) the contiguity of S is maximized, and (iii) the conflicts of S

with respect to A are minimized. This optimization problem is not rigorously defined unless one defines

precisely the concepts of contiguity and conflict, but this description captures the spirit of what we want to

accomplish. In genome assembly, the assembly contiguity is usually captured by statistical measures like

the N50/L50 or the NG50/LG50. The notion of conflict is not easily quantified, and even if it was made

precise, this multi-objective optimization problem would be hard to solve. We decompose this problem into

two separate steps, namely (1) scaffold detection and (2) gap estimation, as explained below.

3. METHODS

As said, our proposed method is composed of two phases: scaffold detection and gap estimation. In the

first phase, contigs are grouped into scaffolds, and the order of contigs in each scaffold is determined. In the

second phase, distances between neighboring contigs assigned to scaffolds are estimated. The pipeline of

the proposed algorithm is illustrated in Figure 1.

3.1. Phase 1: detecting scaffolds

Phase 1 has three major steps. In Step 1, we align in silico-digested chimeric-free contigs to the optical

maps (e.g., for a Bionano optical map, we use RefAligner), but not all alignments are used in Step 2. We

only consider alignments that (i) exceed a minimum confidence level (e.g., confidence 15 in the case of

RefAligner); (ii) do not overlap each other more than a given genomic distance (e.g., 20 kbp); and (iii) do

not create conflict with each other. The method we use here to select conflict-free alignments was intro-

duced in our previous work (Pan et al., 2018). In Step 2, we compute candidate scaffolds by building the

order graph and formulating an optimization problem on it. In Step 3, either the exhaustive algorithm or a

log n-approximation algorithm is used to solve the optimization problem (depending on the size of the

graph) and produce the final scaffolds.

FIG. 1. Pipeline of the proposed algorithm.
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3.1.1. Building the order graph. The order graph O is a directed weighted graph, in which each vertex

represents a contig. Given two contigs ci and cj aligned to an optical molecule o with alignments ai and aj, we

create a directed edge (ci‚ cj) in O if (i) the starting coordinate of alignment ai (that we call ai: start henceforth)

is smaller than the starting coordinate of alignment aj (that we call aj: start henceforth), (ii) there is no other

alignment ak such that ak: start is between ai: start and aj: start, and (iii) there are no conflict sites between

ai: end and aj: start on the optical molecule, as defined below. For each alignment a between optical molecule

o and contig c, we compute the left overhang lo and right overhang ro from o and the left overhang lc and right

overhang rc from c. The left end of alignment a is declared a conflict site if (i) both lo and lc are longer than

some minimum length (e.g., 50 kbp) and (ii) at least one restriction enzyme site appears in both lo and lc. A

symmetric argument applies to the right end of the alignment, which determines the values for ro and rc.

Directed edge (ci‚ cj) is assigned a weight equal to qual(o‚ ai: end‚ aj: start) * (conf (ai) + conf (aj)),

where (i) qual(o‚ ai: end‚ aj: start) is the quality of the region between ai: end and aj: start on molecule o

(higher is better, defined next), and (ii) conf (a) is the confidence score provided by RefAligner alignment

a (higher is better). The quantity qual(o‚ s‚ t) is defined based on the length of a repetitive region between

coordinates (s‚ t). Based on our experience, assembly mis-joins on optical molecule almost always happen

in repetitive regions ( Jiao et al., 2017). Given the length of repetitive region len rep(o‚ s‚ t) in base pairs

(defined below), we define the quality of o in the interval (s‚ t) as qual(o‚ s‚ t) = e - len rep (o‚ s‚ t)=100‚ 000.

When ai and aj have a small overlap (e.g., shorter than 20 kbp), we set len rep(o‚ s‚ t) = 0.

We recognize repetitive regions in optical molecules based on the distribution of restriction enzyme sites.

For a molecule o with n sites, let mi be the coordinate of the ith site for i = 1‚ . . . ‚ n. As said, molecule o can

be represented as a list of positions fmiji = 1‚ . . . ‚ ng. To determine the repetitive regions in o, we slide a

window that covers k sites (e.g., k = 10 sites). At each position j = 1‚ . . . ‚ n - k + 1, we select window

wj = fmj‚ . . . ‚ mj + k - 1g. While repetitive regions in genome can be highly complex (Zheng and Lonardi,

2005), we observed only two types of repetitive regions in optical molecules, namely single-site repeti-

tive region (Fig. 2A) and two-site repetitive region (Fig. 2B). It is entirely possible that more com-

plex repetitive regions exist: if they do, they seem rare. Based on this observation, to decide whether

window wj is repetitive, we first compute two lists of pairwise distances between sites, namely Dj‚ 1 =
fmj + l - mj + l - 1jl = 1‚ . . . ‚ k - 1g and Dj‚ 2 = fmj + l + 1 - mj + l - 1jl = 1‚ . . . ‚ k - 2g that we call distance lists,

then we apply the statistical test described next.

In our statistical test we assume that the values in the distance lists that belong to repetitive regions are

independent and identically distributed as a Gaussian. We further assume that each specific distance list

(Dj‚ 1 or Dj‚ 2) is associated with a Gaussian with a specific mean lj‚ q (q 2 f1‚ 2g). Finally, we assume that

the variance r2 is globally shared by all molecules. An estimator of the meanlj‚ q is l̂j‚ q =
Pk - q

i = 1 di=(k - q),

where di 2 Dj‚ q and k are the window sizes. To estimate r2, we first get an initial (rough) estimate of

the repetitive regions on all molecules. Given a particular Dj‚ q, let dmax and dmin be the maximum

and minimum distance in Dj‚ q. We declare a distance list Dj‚ q to be estimated repetitive if dmax - dmin is

smaller than a given distance (e.g., 1.5 kbp). We collect all estimated repetitive lists in set

R = fDp is estimated repetitive jp = 1‚ . . . ‚ Pg and the estimated mean l̂p for each distance list Dp in the

set R, where P is the total number of estimated repetitive lists. Then, we define the log likelihood function L

as follows (additional details can be found in Section 1.2 of Appendix 1)

log L(r2) = -
log r2

2

XP

p = 1

jDpj -
1

2r2

XP

p = 1

X
di2Dp

(di - l̂p)2:

FIG. 2. Examples of single-site repetitive region (A) and two-site repetitive region (B) in optical maps. Observe the

small variations in the repetitive patterns in (B).
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By maximizing log L(r2), the estimator for the variance becomes

r̂2 =
XP

p = 1

X
di2Dp

(di - l̂p)2=
XP

p = 1

jDpj:

Then, we carry out the test on the statistic dmax - dmin for each Dj‚ q. The joint density function of

(dmax‚ dmin) is

fdmax‚ dmin
(u‚ v) = n(n - 1)fdi

(u)fdi
(v)[Fdi

(v) - Fdi
(u)]n - 2

for -1 < u < v < +1, where Fdi
and fdi

are the distribution function and density function of

di*N(l̂j‚ q‚ r̂2), respectively. The density function of dmax - dmin is

fdmax - dmin
(x) =

Z +1

-1
n(n - 1)fdi

(y)fdi
(x + y)[Fdi

(x + y) - Fdi
(y)]n - 2dy‚

defined when x � 0 (additional details can be found in Section 1.3 of Appendix 1). Let now X be a random

variable associated with the distribution fdmax - dmin
. If the p-value p(X > dmax - dmin) is greater than a pre-

defined threshold (e.g., 0.001), we accept the null hypothesis and declare that window wj is repetitive. The

repetitive regions for the entire molecule o are the union of all the windows wj’s recognized as repetitive

according to the test above.

Once the order graph of each optical molecule is built, we connect all the order graphs, which share the

same contigs using the association graph introduced in Pan et al. (2018). The association graph is an

undirected graph in which each vertex represents an optical molecule, and an edge indicates that the two

molecules share at least one contig aligned to both of them. We use depth first search (DFS) to first build a

spanning forest of the association graph. Then, we traverse each spanning tree and connect the corre-

sponding order subgraph to the final order graph. Every time we add a new graph, new vertices and new

edges might be added. If an edge already exist, the weights of the new edges are added to the weights of

existing edges.

3.1.2. Generating scaffolds. Once the order graph O is finalized, we generate the ordered sequence

of contigs in each scaffold. In the ideal case, each connected component Oi of O is a directed acyclic graph

(DAG) because the genome is one-dimensional and the order of any pair of contigs is unique. In practice

however, Oi may contain cycles caused by the inaccuracy of the alignments and mis-joins in optical

molecules. To convert each cyclic component Oi into a DAG, we solve the Minimum Feedback Arc Set

problem on Oi. In this problem, the objective is to find the minimum subset of edges (called feedback arc

set) containing at least one edge of every cycle in the input graph. Since the minimum feedback edge set

problem is APX hard, we use the greedy local heuristics introduced in Baharev et al. (2015) to solve it.

We then break each DAG Gi of connected component Oi into subgraphs as follows. In each subgraph, we

require the order of every pair of vertices to be uniquely determined by the directed edges. This allows us to

uniquely determine the order of the contigs for each scaffold. The formal definition of this optimization

problem is as follows.

Definition 1 (Minimum Edge Unique Linearization problem). Input: A weighted DAG G = (V‚ E).

Output: A subset of edges E0 � E such that (i) in each connected component G0i of the graph

G0 = (V‚ E - E0) obtained after removing E0, the order of all vertices can be uniquely determined, and (ii) the

total weights of the edges in E0 are the minimum among all the subset of edges satisfying (i).

In Theorem 1 below, we show that the Minimum Edge Unique Linearization (Min-EUL) problem is NP-

hard by proving that it is equivalent to the Minimum Edge Clique Partition (Min-ECP) problem, which is

known to be NP-hard (Dessmark et al., 2007). In Min-ECP, we are given a general undirected graph, and

we need to partition its vertices into disjoint clusters such that each cluster forms a clique and the total

weight of the edges between clusters is minimized.

Theorem 1 Min-EUL is equivalent to Min-ECP.

Proof. First, we show that Min-EUL polynomially reduces to Min-ECP. Given an instance G = (V‚ E) of

Min-EUL, we build an instance G0 = (V 0‚ E0) of Min-ECP as follows. Let V 0 = V . For each pair of vertices

OMGS: OPTICAL MAP-BASED GENOME SCAFFOLDING 5
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u‚ v 2 V 0 where v is reachable from u, we define an undirected edge between u and v in E0. For each

directed edge (u‚ v) 2 E, set the weight of the corresponding undirected edge (u‚ v) 2 E0 as 1. Set the

weights of the other edges in E0 as 0. Then it is easy to see that a Min-EUL solution to G0 is equivalent to a

Min-ECP solution to G and vice versa.

Now we show that Min-ECP polynomially reduces to Min-EUL. Given an instance G0 = (V 0‚ E0) (as-

suming G0 is connected) of Min-ECP, we build an instance G = (V‚ E) of Min-EUL as follows. Let V = V 0.
Pick any total linear order O of all vertices in V 0. For each undirected edge (u‚ v) 2 E0 where rank(u) <
rank(v) in O, we define a directed edge from u to v in E and set its weight to be the same as its

corresponding undirected edge in E0. For any two vertices u‚ v 2 V , where rank(u) < rank(v) and

(u‚ v) 62 Eprime, add a new vertex xuv 2 V with rank(xuv) = rank(v) and a directed edge u to xuv of weight 1

in E. Now for each pair of vertices u‚ v 2 V where rank(u) < rank(v) and (u‚ v) 62 E, add a directed edge u

to v with weight zero in E. Then it is easy to see that a Min-EUL solution to G corresponds to a Min-ECP

solution to G0 and vice versa.

Given the complexity of Min-EUL, we propose an exponential time exact algorithm and a polynomial

time log n-approximation algorithm for solving it. To describe the exact algorithm, we need to introduce

some notations. A conjunction vertex in a DAG is a vertex which has more than one incoming edge or

outgoing edge. A candidate edge is an edge which connects at least one conjunction vertex. In Theorem 2

below, we prove that the optimal solution E0 of Min-EUL must only contain candidate edges. Let Ec be the

set of all candidate edges in the DAG G; for each subset E0j of Ec, we check whether the graph

G0 = (V‚ E - E0j) satisfies requirement (i) in Definition 1 after removing E0j from G. Among all the feasible

E0j, we produce the set of edges with minimum total weights. To check whether E0j is feasible, we use a

variant of topological sorting, which requires one to produce a unique topological ordering. To do so, we

require that in every iteration of topological sorting, the candidate node to be added to sorted graph is

always unique. Details of this algorithm are shown as Algorithm 1 in Section 1.1 of Appendix 1.

Theorem 2 The optimal solution E0 of Min-EUL only contains candidate edges.

Proof. For sake of contradiction, we assume that E0 contains noncandidate edges (u‚ v). Since E0 is op-

timal, G0 = (V‚ E - E0) satisfies condition (i) in Definition 1. Since both u and v are conjunction vertices,

u has only one incoming edge and v has only one outgoing edge. Therefore, by adding (u‚ v) to G0 =
(V‚ E - E0), we still satisfy condition (i) in Definition 1. Since the weight of (u‚ v) is positive, the total

weight of E - E0 + f(u‚ v)g is larger than E - E0. Therefore E0 - f(u‚ v)g is optimal, contradicting the opti-

mality of E0.
As said, Min-EUL is equivalent to Min-ECP (Theorem 1). In addition, the authors of Dessmark et al.

(2007) showed that for any instance of Min-ECP one can find an equivalent instance of the Minimum

Disagreement Correlation Clustering problem. As a consequence, any algorithm for the Minimum

Disagreement Correlation Clustering problem could be used to solve Min-EUL. In our tool OMGS, we

implemented a O( log n)-approximation algorithm based on linear programming, originally proposed in

Demaine and Immorlica (2003). Standard linear programming packages (e.g., GLPK or CPLEX) are used

to solve the linear program. We use the exact algorithm for DAGs with no more than 20 candidate edges

and the approximation algorithm for larger DAGs. -

3.2. Phase 2: estimating gaps

Let s = fciji = 1‚ . . . ‚ hg be one of the scaffolds generated in Phase 1 where each ci is a contig. In Phase 2,

we estimate the length li of the gap between each pair ci and ci + 1 of adjacent contigs. We estimate all gap

lengths L = fliji = 1‚ . . . ‚ h - 1g at the same time using the distances between the contigs provided by the

alignments and the corresponding order subgraphs. We assume that each li is chi-square distributed with ai

degrees of freedom. The choice of chi-square distribution is due to its additive properties, namely the sum

of independent chi-squared variables is also chi-squared distributed. Recall that each order subgraph Ok

provides an unique ordering xk = fcjjj = 1‚ . . . ‚ rg of the contigs aligned to molecule ok, while the coor-

dinates of the alignment provide the distances between all pairs of adjacent contigs cj and cj + 1 as

yk = fdjjj = 1‚ . . . ‚ r - 1g. We use the distances dj as samples to estimate gap lengths li. If edge (cj‚ cj + 1) in

Ok is removed in the order graph O when solving Min-EUL in Phase 1, dj will be considered not reliable

and removed from yk.
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In the ideal case, dj should be a sample of a single li (i.e., cjcj + 1 in xk corresponds to cpcp + 1 in s). In

practice, however, cjcj + 1 in xk will correspond to a different pair cpcq in s where q > p + 1 (i.e.,

cp + 1 . . . cq - 1 are missing from the order subgraph because some alignments with low confidence were

removed in Step 1 of Phase 1). In this situation, after subtracting the length of missing contigs from dj,

dj -
Pcq - 1

c = cp + 1
jcj is a sample of

Pq - 1
i = p li where jcj represents the length of contig c. Since lp‚ . . . ‚ lq - 1 are

independent chi-square random variables,
Pq - 1

i = p li is chi-square distributed with degree of freedomPq - 1
i = p ai, so that the log likelihood of this sample is

log l = (b - 1) log c -
c
2

- b log 2 - logG(b):

Where b =
Pq - 1

i = p
ai

2
, c = dj -

Pcq - 1

c = cp + 1
jcj and G is the gamma function (additional details can be found in

Section 1.4 of Appendix 1). The total log likelihood is the sum of the log likelihoods across all samples. To

find the ai maximizing the total log likelihood, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm (Avriel, 2003). Since the mean of a chi-square distribution equals its degree of freedom, we

obtain the estimated gaps l̂i = âi. For the case in which the li is pre-estimated as negative in the first step, the

second and third steps are ignored and the pre-estimated distances are used as final estimates.

Finally, we add Øl̂iø nucleotides (represented by Ns) between each pair of contigs ci and ci + 1. When

l̂i < 0, we add exactly 100 Ns between ci and ci + 1, which is the convention for a gap of unknown length.

4. EXPERIMENTAL RESULTS

We compared OMGS against KSU SewingMachine (version 1.0.6, released in 2015) and Bionano

HybridScaffold (version 4741, released in 2016) which, to the best of our knowledge, are the only

available scaffolding tools for Bionano Genomics optical maps. All tools were run with default parame-

ters, unless otherwise specified. We collected experimental results on scaffolds of (i) cowpea (Vigna

unguiculata) and (ii) fruit fly (Drosophila melanogaster).

4.1. Experimental results on cowpea

Cowpea is a diploid with a chromosome number 2n = 22 and an estimated genome size of 620 Mb. We

sequenced the cowpea genome using single-molecule real-time sequencing (Pacific Biosciences RSII). A

total of 87 single molecule real time (SMRT) cells yielded about 6 M reads for a total of 56.84 Gbp

(91.7 · genome equivalent). We tested the three scaffolding tools on a high-quality assembly produced by

Canu (Berlin et al., 2015; Koren et al., 2017) with parameters corMhapSensitivity = high and cor-

OutCoverage = 100, then polished it with QUIVER. We used Chimericognizer to detect and break chi-

meric contigs, using seven other assemblies generated by Canu, Falcon (Chin et al., 2016), and ABruijn

(Lin et al., 2016) as explained in Pan and Lonardi (2019).

In addition to standard contiguity statistics (N50*, L50{), total assembled size, and scaffold length

distribution, we determined incorrect/chimeric scaffolds by comparing them against the high-density ge-

netic map available from Muñoz-Amatriaı́n et al. (2017). We BLASTed 121-bp long design sequence for

the 51,128 genome-wide single nucleotide polymorphisms (SNPs) described in Muñoz-Amatriaı́n et al.

(2017) against each assembly, then we identified which contigs had SNPs mapped to them, and what

linkage group (chromosome) of the genetic map those mapped SNPs belonged to. Chimeric contigs were

revealed when their mapped SNPs belonged to more than one linkage group. The last line of Tables 1 and 2

reports the total size of contigs in each assembly for which (i) they have at least one SNP mapped to it and

(ii) all SNPs belong to the same linkage group (i.e., likely to be nonchimeric).

As said, the three scaffolding tools were run on a chimera-free assembly of cowpea described above using

two available Bionano Genomics optical maps (the first obtained using the BspQI nicking enzyme, and the

second obtained with the BssSI nicking enzyme). Since SewingMachine can only use a single optical map,

we alternated the optical maps in input (BspQI map first, then BssSI and vice versa). SewingMachine

provides two outputs depending on the minimum allowed alignment confidence, namely ‘‘default’’ and

*Length for which the set of contigs/scaffolds of that length or longer accounts for at least half of the assembly size.
{Minimum number of contigs/scaffolds accounting for at least half of the assembly.
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‘‘relax.’’ Mode ‘‘relax’’ considers more alignments than ‘‘default,’’ but it has a higher chance of introducing

mis-joins. HybridScaffold failed on the BssSI map, so we could not test it on alternating maps.

Table 1 shows that when using a single optical map, OMGS can generate comparable or better scaffolds

than SewingMachine and HybridScaffold. With two optical maps, OMGS’ correctness (‘‘contigs/

scaffolds with 100% consistent LG’’) and contiguity (N50) are significantly better than other two tools.

Observe that OMGS’ correctness (‘‘contigs/scaffolds with 100% consistent LG’’) is even better than the

input assembly. This can happen when contigs with SNPs belonging to same linkage group are scaffolded

with contigs that have no SNP.

We also compared the performance of OMGS, SewingMachine, and HybridScaffold when using

optical maps corrected by Chimericognizer (on the same cowpea assembly). Observe in Table 2 that

OMGS, SewingMachine, and HybridScaffold increased the correctness but decreased the contiguity

when the corrected BspQI optical map was used. The results on the corrected BssSI optical map or both

corrected optical maps did not change significantly. But again, OMGS produced better scaffolds than

SewingMachine and HybridScaffold.

4.2. Experimental results on D. melanogaster

D. melanogaster has four pairs of chromosomes: three autosomes and one pair of sex chromosomes. The

fruit fly’s genome is about 139.5 Mb. We downloaded three D. melanogaster assemblies generated in

Solares et al. (2018) (https://github.com/danrdanny/Nanopore_ISO1). The first assembly (295 contigs, total

size 141 Mb, N50 = 3 Mb) was generated using Canu (Berlin et al., 2015; Koren et al., 2017) on Oxford

Nanopore (ONT) reads longer than 1 kb. The second assembly (208 contigs, total size 132 Mb, N50 = 3.9

Mb) was generated using MiniMap and MiniAsm (Li, 2016) using only ONT reads. The third assembly

(339 contigs, total size 134 Mb, N50 = 10 Mb) was generated by Platanus (Kajitani et al., 2014) and

Dbg2Olc (Ye et al., 2016) using 67.4 · of Illumina paired-end reads and the longest 30 · ONT reads. The

first and third assemblies were polished using nanopolish (Loman et al., 2015) and Pilon (Walker et al.,

2014). The Bionano optical for D. melanogaster map was provided by the authors of Solares et al. (2018).

This BspQI optical map (363 molecules, total size = 246 Mb, N50 = 841 kb) was created using IrysSolve

2.1 from 78,397 raw Bionano molecules (19.9 Gb of data with a mean read length of 253 kb).

As said, all tools were run with default parameters, with the exception of OMGS’ minimum confi-

dence, which was set at 20 (default is 15). To evaluate the performance of OMGS, HybridScaffold,

and SewingMachine, we compared their output scaffolds to the high-quality reference genome of

D. melanogaster (release 6.21, downloaded from FlyBase). We reported the total length of correct/non-

chimeric scaffolds as a measure of the overall correctness. To determine which scaffolds were incorrect/

chimeric we first selected BLAST alignments of the scaffolds against the reference genome which had an

e-value lower than 1e-50 and an alignment length higher than 30 kbp. We defined a scaffold S to be

chimeric if S had at least two high-quality alignments, which satisfied one or more of the following

conditions: (i) S aligned to different chromosomes; (ii) the orientation of S’s alignments was different; or

(iii) the difference between the distance of alignments on the scaffold and the distance of alignments on the

reference sequence was larger than 100 kbp.

Table 3 reports the main statistics for the three D. melanogaster scaffolded assemblies. Even with one

map, OMGS’ scaffolds are better than SewingMachine and HybridScaffold.

5. CONCLUSIONS

We presented a scaffolding tool called OMGS for improving the contiguity of de novo genome assembly

using one or multiple optical maps. OMGS solves several optimization problems to generate scaffolds with

optimal contiguity and correctness. Experimental results on V. unguiculata and D. melanogaster clearly

demonstrate that OMGS outperforms SewingMachine and HybridScaffold both in contiguity and

correctness using multiple optical maps.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no competing financial interests.

OMGS: OPTICAL MAP-BASED GENOME SCAFFOLDING 11

D
ow

nl
oa

de
d 

by
 U

c 
R

iv
er

si
de

 L
ib

ra
ri

es
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

R
iv

er
si

de
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
04

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://github.com/danrdanny/Nanopore_ISO1


FUNDING INFORMATION

This work was supported, in part, by National Science Foundation grants IIS-1814359, IOS-1543963,

IIS-1526742, and IIS-1646333, the Natural Science Foundation of China grant 61772197, and the National

Key Research and Development Program of China grant 2018YFC0910404.

REFERENCES

Avriel, M. 2003. Nonlinear Programming: Analysis and Methods. Courier Corporation.

Baharev, A., Schichl, H., Neumaier, A., et al. 2015. An exact method for the minimum feedback arc set problem. Univ.

Vienna 10, 35–60.

Berlin, K., Koren, S., Chin, C.-S., et al. 2015. Assembling large genomes with single-molecule sequencing and locality-

sensitive hashing. Nat. Biotechnol. 33, 623.

Bickhart, D.M., Rosen, B.D., Koren, S., et al. 2017. Single-molecule sequencing and chromatin conformation capture

enable de novo reference assembly of the domestic goat genome. Nat. Genet. 49, 643.

Boetzer, M., Henkel, C.V., Jansen, H.J., et al. 2010. Scaffolding pre-assembled contigs using sspace. Bioinformatics 27,

578–579.

Chin, C.-S., Peluso, P., Sedlazeck, F.J., et al. 2016. Phased diploid genome assembly with single-molecule real-time

sequencing. Nat. Methods. 13, 1050.

Daccord, N., Celton, J.-M., Linsmith, G., et al. 2017. High-quality de novo assembly of the apple genome and

methylome dynamics of early fruit development. Nat. Genet. 49, 1099.

Dayarian, A., Michael, T.P., and Sengupta, A.M. 2010. Sopra: Scaffolding algorithm for paired reads via statistical

optimization. BMC Bioinformatics. 11, 345.

Demaine, E.D., and Immorlica, N. 2003. Correlation clustering with partial information, 1–13. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer.

Dessmark, A., Jansson, J., Lingas, A., et al. 2007. On the approximability of maximum and minimum edge clique

partition problems. Int. J. Found. Comput. Sci. 18, 217–226.

Donmez, N., and Brudno, M. 2012. Scarpa: Scaffolding reads with practical algorithms. Bioinformatics 29, 428–434.

Gao, S., Nagarajan, N., and Sung, W.-K. 2011. Opera: Reconstructing optimal genomic scaffolds with high-throughput

paired-end sequences, 437–451. In International Conference on Research in Computational Molecular Biology.

Springer.

Gritsenko, A.A., Nijkamp, J.F., Reinders, M.J., et al. 2012. Grass: A generic algorithm for scaffolding next-generation

sequencing assemblies. Bioinformatics 28, 1429–1437.

Hunt, M., Newbold, C., Berriman, M., et al. 2014. A comprehensive evaluation of assembly scaffolding tools. Genome

Biol. 15, R42.

Jiao, W.-B., Accinelli, G.G., Hartwig, B., et al. 2017. Improving and correcting the contiguity of long-read genome assemblies

of three plant species using optical mapping and chromosome conformation capture data. Genome Res. 27, 778–786.

Kajitani, R., Toshimoto, K., Noguchi, H., et al. 2014. Efficient de novo assembly of highly heterozygous genomes from

whole-genome shotgun short reads. Genome Res. 24, 1384–1395.

Koren, S., Treangen, T.J., and Pop, M. 2011. Bambus 2: Scaffolding metagenomes. Bioinformatics 27, 2964–2971.

Koren, S., Walenz, B.P., Berlin, K., et al. 2017. Canu: Scalable and accurate long-read assembly via adaptive k-mer

weighting and repeat separation. Genome Res. 27, 722–736.

Li, H. 2016. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32,

2103–2110.

Lin, Y., Yuan, J., Kolmogorov, M., et al. 2016. Assembly of long error-prone reads using de bruijn graphs. Proc. Natl.

Acad. Sci. U.S.A. 113, E8396–E8405.

Loman, N.J., Quick, J., and Simpson, J.T. 2015. A complete bacterial genome assembled de novo using only nanopore

sequencing data. Nat. Methods 12, 733.

Luo, R., Liu, B., Xie, Y., et al. 2012. Soapdenovo2: An empirically improved memory-efficient short-read de novo

assembler. Gigascience 1, 18.

Mascher, M., Gundlach, H., Himmelbach, A., et al. 2017. A chromosome conformation capture ordered sequence of the

barley genome. Nature. 544, 427.
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Appendix 1

1.1. DIRECTED ACYCLIC GRAPH UNIQUE ORDERING

Algorithm 1 Sketch of the algorithm for checking whether a directed acyclic graph provides an unique ordering

1: procedure Order_Uniqueness_Check(G = (V‚ E))

2: S = nodes with no incoming edges

3: while S 6¼ ; do

4: if jSj > 1 then

5: return False

6: remove a node n from S

7: for each node m with an edge e = (n‚ m) do

8: remove edge e from the E

9: if m has no other incoming edges then

10: insert m into S

11: return True
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1.2. STATISTICAL TEST FOR REPETITIVE REGIONS

Here we provide additional details for the estimation of r2 during the analysis of repetitive regions.

Recall that we collect all estimated repetitive lists in set R = {Dp is estimated repetitivejp = 1‚ . . . ‚ P} and

the estimated mean l̂p for each distance list Dp in the set R, where P is the total number of estimated

repetitive lists. For each Dp, the distances di’s are distributed as a Gaussian with mean l̂p and variance r2.

According to the density function of Gaussian distribution, the log likelihood of one Dp is

-
jDpj

2
log (2p) -

jDpj
2

log r2 -
1

2r2

X
di2Dp

(di - l̂p)2:

The total log likelihood is the sum of the log likelihoods across all Dp’s in R, which is

log L(r2) = -

PP
p = 1

jDpj

2
log r2 -

1

2r2

XP

p = 1

X
di2Dp

(di - l̂p)2‚

after ignoring all terms not related to r2. To maximize log L(r2), we require that the derivative of total log

likelihood

@ log L(r2)

@r2
= 0‚

that is,

-
PP

p = 1 jDpj
2r2

+
1

2(r2)2

XP

p = 1

X
di2Dp

(di - l̂p)2 = 0:

After some simplification, the estimator for variance becomes

r̂2 =

PP
p = 1

P
di2Dp

(di - l̂p)2

PP
p = 1 jDpj

:

1.3. DENSITY FUNCTION OF dmax - dmin

Here we provide additional details for calculating the density function of dmax - dmin. It is well known

that the joint density function of order statistics is

fX(i)‚ X(j)(u‚ v) =
n!

(i - 1)!(j - 1 - i)!(n - j)!
fx(u)fx(v)[Fx(u)]i - 1[Fx(v) - Fx(u)]j - 1 - i[1 - Fx(v)]n - j (1)

for -1 < u < v < +1, where X(i) and X(j) are the ith and jth order statistics in X1‚ . . . ‚ Xn, and Fx and fx
are the distribution function and density function of each Xi, respectively. Using Equation (1), the joint

density function of (dmax,dmin) can be expressed as

fdmax‚ dmin
(u‚ v) = n(n - 1)fdi

(u)fdi
(v)[Fdi

(v) - Fdi
(u)]n - 2

for -1 < u < v < +1, where Fdi
and fdi

are the distribution function and density function of

di*N(l̂j‚ q‚ r̂2), respectively.

Now, let X = dmax - dmin and Y = dmin. Then dmax = X + Y and dmin = Y , and the corresponding Jacobian

determinant is

J = @dmax=@X @dmax=@Y

@dmin=@X @dmin=@Y

����
���� = 1 1

0 1

����
���� = 1:
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Thus, the joint density function of (X, Y) is given by

fX‚ Y (x‚ y) = fdmax‚ dmin
(x + y‚ y)jJj = n(n - 1)fdi

(y)fdi
(x + y)[Fdi

(x + y) - Fdi
(y)]n - 2‚

where x � 0 and -1 < y < +1. By integrating over Y, the density function of X = dmax - dmin becomes

fdmax - dmin
(x) =

Z +1

-1
n(n - 1)fdi

(y)fdi
(x + y)[Fdi

(x + y) - Fdi
(y)]n - 2dy‚ x � 0:

1.4. GAP ESTIMATION

Here we provide additional details for calculating the log likelihood function when estimating gaps.

Recall that lp‚ . . . ‚ lq - 1 are independent chi-square random variables, and
Pq - 1

i = p li is chi-square distributed

with degree of freedom
Pq - 1

i = p ai. Since the density function of a chi-square random variable X with degree

of freedom k is

fX(x) =
1

2k=2G(k=2)
xk=2 - 1e - x=2

where G is the gamma function, the likelihood of
Pq - 1

i = p li with observation

c = dj -
Xcq - 1

c = cp + 1

jcj

is

1

2bG(b)
cb - 1e - c=2‚

where b =
Pq - 1

i = p
ai

2
. Therefore, the log likelihood function for one sample is

log l = (b - 1) log c -
c
2

- b log 2 - logG(b):

The total log likelihood is the sum of the log likelihoods across all samples.
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