Volume 17, Number 1, 2010 © Mary Ann Liebert, Inc.

Pp. 21–37

DOI: 10.1089/cmb.2007.0228

Efficient Genome-Wide TagSNP Selection Across Populations via the Linkage Disequilibrium Criterion

LAN LIU, 1,2 YONGHUI WU, 1,2 STEFANO LONARDI, 1 and TAO JIANG 1

ABSTRACT

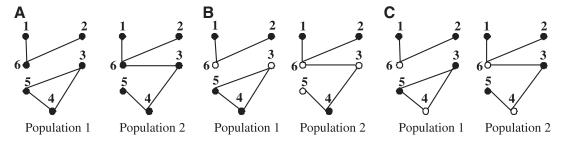
In this article, we studied the tag single-nucleotide polymorphism (tagSNP) selection problem on multiple populations using the pairwise r^2 linkage disequilibrium criterion. We proposed a novel combinatorial optimization model for the tagSNP selection problem, called the minimum common tagSNP selection (MCTS) problem, and presented efficient solutions for MCTS. Our approach consists of the following three main steps: (i) partitioning the SNP markers into small disjoint components, (ii) applying some data reduction rules to simplify the problem, and (iii) applying either a fast greedy algorithm or a Lagrangian relaxation algorithm to solve the remaining (general) MCTS. These algorithms also provide lower bounds on tagging (i.e., the minimum number of tagSNPs needed). The lower bounds allow us to evaluate how far our solution is from the optimum. To the best of our knowledge, it is the first time the tagging lower bounds are discussed in the literature. We assessed the performance of our algorithms on real HapMap data for genome-wide tagging. The experiments demonstrated that our algorithms run 3-4 orders of magnitude faster than the existing singlepopulation tagging programs such as FESTA, LD-Select, and the multiple-population tagging method MultiPop-TagSelect. Our method also greatly reduced the required tagSNPs compared with LD-Select on a single population and MultiPop-TagSelect on multiple populations. Moreover, the numbers of tagSNPs selected by our algorithms are almost optimal because they are very close to the corresponding lower bounds obtained by our method.

Key words: genome-wide tagSNP selection, greedy algorithm, HapMap, Lagrangian relaxation, linkage disequilibrium, multiple populations.

1. INTRODUCTION

The rapid development of high-throughput genotyping technologies has recently enabled genome-wide association studies to detect connections between genetic variants and human diseases. Single-nucleotide polymorphism (SNP) is the most frequent form of polymorphism in the human genome. Common SNPs with minor-allele frequency (MAF) of 5% have been estimated to occur once every ~600 bp (Kruglyak and Nickerson, 2001), and there are more than 10 million verified SNPs in dbSNP (The International SNP Working Group, 2001). Given these numbers, it is currently infeasible to take into account

¹Department of Computer Science and Engineering, University of California, Riverside, California.


²Google, Inc., Mountain View, California.

all the available SNPs to carry out association studies. This motivates the selection of a *subset* of informative SNPs, called *tagSNPs*.

The selection of tagSNPs in silico is a well-studied research topic. Existing computational methods for tagSNP selection can be classified into the following two categories: haplotype-based methods (Johnson et al., 2001; Patil et al., 2001; Gabriel et al., 2002; Wang et al., 2002; Zhang et al., 2002, 2005; Avi-Itzhak et al., 2003; Ke and Cardon, 2003; Sebastiani et al., 2003) and haplotype-independent methods (Carlson et al., 2004; Halperin et al., 2005; Hampe et al., 2003; Lin et al., 2004; Liu et al., 2006; Magi et al., 2006; Phuong et al., 2005; Stram et al., 2003; Qin et al., 2006). The haplotype-based methods require phased multilocus haplotypes, whereas the haplotype-independent methods do not require haplotype information. The main shortcoming of haplotype-based methods is that the preprocessing step (i.e., the inference of haplotypes from genotypes) is computationally demanding. In addition, as there is not an authoritative inference method, the haplotypes generated by the existing haplotype inference methods are often quite different (Zhang et al., 2002; Ding et al., 2005; Zeggini et al., 2005). Consequently, the tagSNPs selected by the haplotype-based methods would be quite different. Recently, Carlson et al. (2004) proposed a haplotypeindependent method that employs the r^2 linkage disequilibrium (LD) statistical criterion to measure the association between SNPs. The tagSNPs selected by this method are shown to be effective in disease association mapping studies, because the measure r^2 is directly related to the statistical power of association mapping. Because this method has comparable performance at a lower computational cost than many other methods (Stram et al., 2003; Zhang and Jin, 2003), tagging approaches based on r^2 LD statistics have gained popularity among researchers in the SNP community (Zhang and Jin, 2003; Carlson et al., 2004; Hinds et al., 2005; Bakker et al, 2006; Magi et al., 2006; Qin et al., 2006).

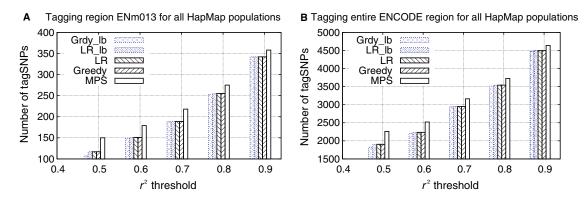
Most approaches using the r^2 criterion require that tagSNPs be defined within a single population, because LD patterns (see the caption of Fig. 1A for a definition) are quite susceptible to population stratification (Carlson et al., 2004). In two populations with different evolutionary histories, a pair of SNPs having remarkably different allele frequencies and very weak LD may show strong LD in the admixed population (see such an example in Table 1). Recent study (Conrad et al., 2006) showed that the LD patterns and allele frequencies across populations are very different (Sawyer et al., 2005; Conrad et al., 2006) in fact. For example, among the populations collected in the HapMap project (*i.e.*, YRI: Yoruba in Ibadan, Nigeria; CEU: Utah residents with Northern and Western European ancestry; CHB: Han Chinese in Beijing, China; and JPT: Japanese in Tokyo, Japan), 81% of the SNPs in YRI population have a near perfect proxy (*i.e.*, SNPs that have $r^2 \ge 0.8$ with other SNPs), whereas in the other three populations, 91% of the SNPs have a near perfect proxy (International HapMap Consortium, 2005). Therefore, tagSNPs picked from the combined populations or one of the populations might not be sufficient to capture the variations in all populations. To maintain the power of association mapping, we need to generate a common (or universal) tagSNP set to type all the populations with sufficient accuracy.

A simple approach to select a universal tagSNP set is to tag one population first and then select a supplementary set for each of the other populations one by one (Bakker et al., 2006; Magi et al., 2006; Need and Goldstein, 2006). For instance, we can select a tagSNP set for non-African populations and a supplement for populations with significant African ancestry (Need and Goldstein, 2006). However, this sequential approach might not give a satisfactory solution, as the tagSNP set selected for one population

FIG. 1. (A) Linkage disequilibrium (LD) patterns in two populations. The vertices denote the SNP markers and the edges denote pairs of markers with strong LD (*i.e.*, the r^2 measure between the markers is greater than a given threshold). (B) Tagging results of the above simple sequential approach. We first chose markers 3 and 6 to tag population 1 and then chose an additional marker 5 to tag population 2. Three markers were selected in total to tag both populations. (C) Tagging results of an improved approach. We selected markers 4 and 6, considering both populations simultaneously. Only two markers were selected in total to tag both populations. SNP, single-nucleotide polymorphism.

· ·	Pop	ulation 1		Population 2					Population 3			
	В	b			В	b			В	b		
\overline{A}	0.9025	0.0475	0.95	A	0.0025	0.0475	0.05	A	0.4525	0.0475	0.5	
a	0.0475	0.0025	0.05	a	0.0475	0.9025	0.95	a	0.0475	0.4525	0.5	
	0.95	0.05	$r^2 = 0$		0.05	0.95	$r^2 = 0$		0.5	0.5	$r^2 = 0.6561$	

Table 1. r² Statistics for a Pair of SNP Markers in a Single and Admixed Populations


One SNP has alleles denoted as A and a while the other SNP has alleles denoted as B and b. Population 3 is an even mixture of populations 1 and 2.

might be far from being adequate to type the SNPs of the remaining populations. As a result, the supplementary tagSNP sets are large and the total number of tagSNPs chosen is far from the optimum. Moreover, the performance of the approach is sensitive to the specific order of the input populations. To generate the smallest set of tagSNPs on K populations, one would have to execute the tagging procedure K! times considering all possible orderings, which would be extremely inefficient for genome-wide tagging. We can improve the performance of the tagging approach by evaluating multiple populations at the same time. When choosing tagSNPs, we prefer those with "good properties" with respect to the collection of populations as a whole. An example of our tagging strategy is given in Figure 2.

1.1 Previous work on tagSNP selection based on the LD criterion

There is a large body of scientific literature on the problem of selecting tagSNPs based on the r^2 LD criterion. Carlson *et al.* (2004) suggested a greedy procedure called LD-Select, which works as follows: (i) select the SNP with the maximum number of proxies, (ii) remove the SNP and its proxies from consideration, and (iii) repeat the above two steps until all SNPs have been tagged. This algorithm is very simple; however, it may miss solutions with the smallest number of tagSNPs in general, as pointed out by Qin et al. (2006). More recently, Qin *et al.* (2006) implemented a comprehensive search algorithm called FESTA, which first breaks down a large set of markers into disjoint pieces (called *precincts*) and then performs an exhaustive search on each piece if the estimated computational cost is below a certain threshold. FESTA usually gives a better solution than LD-Select, but because of the fact that it employs exhaustive search, it is too slow to be practical for genome-wide tagSNP selection.

The above two methods are only applicable to single-population tagSNP selection. Recently, Howie *et al.* presented an algorithm for multiple populations by extending LD-Select, called MultiPop-TagSelect. MultiPop-TagSelect combines the tagSNPs selected for each population by LD-Select to produce a universal tagSNP set for a collection of populations (Howie et al., 2006). The algorithm works reliably, and it could in principle be used with any tagSNP selection method for single populations. However, its accuracy highly depends on the performance of the single-population tagSNP selection method. Magi *et al.* (2006) also designed a software tool called REAPER which is rather similar to LD-Select if applied to a single

FIG. 2. (A) Tagging for HapMap populations on region ENm013 with 783 markers. (B) Tagging for HapMap populations on all ENCODE regions with 10,859 markers. Here, "Grdy_lb" stands for "Greedy-Tag_lb," "LRTag_lb" stands for "LRTag_lb," "LR" stands for "LRTag," "Greedy" stands for "GreedyTag," and "MPS" stands for "MultiPopTagSelect."

population. To select a universal tagSNP set for several populations, it first selects a tagSNP set for one population, and then it selects a supplement for the remaining populations one by one. As above mentioned, the performance of the method crucially depends on the choice of the initial tagSNP set and the ordering of the populations. It is not clear, moreover, how one should select tagSNPs for the first population so as to minimize the size of the final solution.

1.2 Our contribution on tagSNP section based on the LD criterion

In this article, we took a different approach to the multipopulation tagSNP selection problem. Contrary to the previous methods, we do not generate a tagSNP set for each individual population separately, but rather we evaluate all the populations at the same time. The method that we proposed could be used to generate a universal or cosmopolitan tagSNP set for multiethnic, ethic-unknown, or admixed populations (Howie et al., 2006).

The main idea of our approach is to transform a multipopulation tagSNP selection problem, called the *minimum common tagSNP selection* (MCTS) problem (will be defined more precisely later in the article), into a minimum common dominating vertex set problem on multiple graphs. Each graph corresponds to one of the populations under consideration. The vertices in a graph correspond to the SNP markers of the population, and there is an edge between two markers when they are in strong LD (according to some given threshold). To find an optimal solution MCTS, we first decomposed it into disjoint subproblems, each of which is essentially a connected component of the union graph¹ and represents a precinct as defined by Qin et al. (2006). Then, for each precinct, we apply three data reduction rules repeatedly to further reduce the size of the subproblem, until none of the rules can be applied anymore. Finally, the reduced subproblems are solved by either a simple greedy approach (similar to *cosmopolitan tagging*) (Bakker et al., 2006) or a more sophisticated Lagrangian relaxation heuristic. Both algorithms will be explained in detail later in the article. Along with the solution produced by our algorithm, we also obtained lower bounds on the minimum number of tagSNPs required, which allows us to quantitatively assess how close our solution is from the true optimum.

We evaluated the performance of our method on real HapMap data for genome-wide tagging. The experimental results demonstrate that our algorithms run 3–4 orders of magnitude faster than the existing single-population tagging programs such as FESTA, LD-Select, and the multiple-population tagging method MultiPop-TagSelect. Our method also greatly reduced the required tagSNPs compared with LD-Select on a single population and MultiPop-TagSelect on multiple populations. Moreover, the numbers of tagSNPs selected by our algorithms are almost optimal because they are very close to the corresponding lower bounds provided by our method. For example, the gap between our solution and the lower bound is 1061 SNPs with r^2 threshold being 0.5 and 142 SNPs with the r^2 threshold being 0.8 given the entire human genome with 2,862,454 SNPs (MAF being 5%).

The rest of the article is organized as follows: In Section 2, we first propose a combinatorial optimization model for the MCTS problem and then present a computational complexity result. In Section 3, we introduce three rules to reduce the size of the problem and devise a greedy tagging algorithm, called GreedyTag, and a Lagrangian relaxation heuristic, called LRTag. After showing the experimental results in Section 4, we conclude the article with some remarks about the performance of our tagging method in Section 5.

2. FORMULATION OF THE MCTS PROBLEM

Consider K distinct populations and a set V of biallelic SNP markers v_1, v_2, \ldots, v_n . For convenience, we label the markers in all populations uniformly and uniquely. As the r^2 coefficient is unreliable for rare SNPs when the sample size is small (Carlson et al., 2004), we will consider only SNPs with MAF $\geq 5\%$. The set of SNPs might be different from population to population. We use $V_i \subseteq V$ to denote the SNP set in population i. Clearly, we have $V = V_1 \cup V_2 \cup \cdots \cup V_k$.

For a pair of SNP markers v_{j_1} and v_{j_2} in a population i (for any $1 \le i \le K$), the r^2 coefficient between them is denoted by $r_i^2(v_{j_1}, v_{j_2})$. Markers v_{j_1} and v_{j_2} are said to be in $high\ LD$ in population i, if $r_i^2(v_{j_1}, v_{j_2}) \ge \gamma_0$, where γ_0 is a predefined threshold (γ_0 will be set to 0.5 or higher in our study). Moreover, v_{j_1} (or v_{j_2}) is considered being the tagSNP or proxy for v_{j_2} (or v_{j_1} , respectively) in population i. For convenience, we define E_i to be the set containing all the high-LD marker pairs in population i, i.e., $E_i = \{(v_{j_1}, v_{j_2}) | r_i^2(v_{j_1}, v_{j_2}) \ge \gamma_0, v_{j_1}, v_{j_2} \in E_i\}$. Now we can formally define the MCTS problem.

¹Given graphs $G_i = (V_i, E_i)(1 \le i \le k)$, the union graph is defined as G = (V, E), where $V = \bigcup_i V_i$ and $E = \bigcup_i E_i$.

MINIMUM COMMON TAGSNP SELECTION

Instance: A collection of K populations and a set V of biallelic SNP markers. Each population i $(1 \le i \le K)$ has its marker set $V_i \subseteq V$ and LD patterns $E_i = \{(v_{j_1}, v_{j_2}) | r_i^2(v_{j_1}, v_{j_2}) \ge \gamma_0, v_{j_1}, v_{j_2} \in V_i\}$ where γ_0 is a predefined threshold.

Feasible solution: A subset $T \subseteq V$ such that for any marker $v \in V_i$, $v \notin T$ from some population i, there exists a marker v' in $T \cap V_i$ with $(v, v') \in E_i$ (that is, $r_i^2(v, v') \ge \gamma_0$).

Objective: Minimize |T|.

A natural generalization of the above definition is to allow the predefined threshold γ_0 to vary across populations. As the techniques discussed for a fixed threshold in our article can be trivially extended to solve the general problem, to simplify the presentation, we will assume that the threshold is fixed for all populations below.

It is easy to observe that any feasible solution to the MCTS problem is a common dominating vertex set in the graphs $\{Gi|1 \le i \le K\}$, where $G_i = (V_i, E_i)$. In particular, the smallest set of tagSNPs for a single population is a minimum dominating vertex set of the corresponding graph. Obviously, the MCTS problem is NP-hard, because it is a generalization of the minimum dominating vertex set problem, which is known to be NP-hard (Bar-Yehuda and Moran, 1984).

Theorem 1. The MCTS problem is NP-hard.

We introduced some additional notations to be used later. To differentiate the occurrences of a marker in different populations, we used v_j^i to represent the occurrence of marker j in the i^{th} population (if the marker occurs). Given a marker $v_j \in V$, we defined the following two sets:

$$N^{i}(v_{j}) = \{v_{j'}^{i} | (v_{j}, v_{j'}) \in E_{i}, v_{j}, v_{j'} \in V_{i}\} \cup \{v_{j}^{i} | v_{j} \in V_{i}\}$$

$$N^{*}(v_{j}) = \bigcup_{1 \leq i \leq K} N^{i}(v_{j})$$
(1)

The set $N^{i}(v_{j})$ represents the subset of markers (actually, their occurrences) in population i that are in strong-LD with v_{j} , and the set $N^{*}(v_{j})$ represents the union of such subsets for all the populations. Note that $N^{i}(v_{j})$ is empty if $v_{j} \notin V_{i}$. Given a marker $v_{i} \in V_{i}$ from population i, we defined the following set:

$$C(v_j^i) = \{v_{j'} | (v_j, v_{j'}) \in E_i, v_j, v_{j'} \in V_i\} \cup \{v_j\}$$
(2)

The set $C(v_j^i)$ is the subset of markers each of which can tag the occurrence v_j^i , whereas $N^*(v_j)$ is the subset of occurrences that the marker v_j can tag.

Based on the above definitions, the MCTS problem can also be viewed as the following set cover problem. Given the universe $\mathcal{U} = \bigcup_{1 \leq i \leq K} \{v_j^i | v_j \in V_i\}$ and the collection $\mathcal{C} = \{N^*(v_j) | v_j \in V\}$, we found a subcollection of sets from \mathcal{C} to cover \mathcal{U} . Clearly, the number of sets in a minimum set cover is equal to the number of markers in a minimum tagSNP set.

As a consequence, approximation algorithms that solve set cover can be applied to the MCTS problem. In practice, greedy algorithms are commonly used for set cover because of their simplicity and effectiveness. The simplest greedy algorithm for set cover, which picks the set that covers the most number of uncovered elements each time, achieves an approximation ratio of $\log(m)$, where m is the number of elements to be covered (Vazirani, 2003). This implies a $\log(Kn)$ approximation algorithm for MCTS, $|\mathcal{U}| \leq Kn$. However, the approximation ratio of $\log(Kn)$ could be too large in practice, because of the fact that V may contain millions of markers and n = |V|. We thus hoped to design efficient heuristics to provide better solutions in this article. In fact, one of our results showed that a greedy algorithm augmented with some carefully designed heuristics can achieve a nearly optimal approximation ratio in practice.

3. OPTIMIZATION TECHNIQUES TO SOLVE THE MCTS PROBLEM

In principle, a minimum common tagSNP set can be found by exhaustive search. In reality, there are millions of SNP markers, and it is infeasible to conduct the exhaustive search. As human chromosomes consist of high-LD regions (*i.e.*, haplotype blocks) interspersed with *recombination hotspots*, we partition the markers into precincts such that markers in strong LD will belong in the same precinct. In this way, we could narrow down the search space and thus improve the efficiency of our algorithm.

To deal with multiple populations, we extend the concept of precinct defined originally by Qin et al. (2006). We say that two markers are in the same *precinct* if and only if they are in strong LD in some

population. Based on the simple observation that no marker in a precinct can tag a marker in another precinct, we can obtain a minimum tagSNP set for the combining the minimum tagSNP sets for each precinct. The precincts can be easily identified by running a breath first search in the union graph *G*. By partitioning the markers into precincts, we decompose the original problem into a set of disjoint subproblems of much smaller sizes. We then select tagSNPs for each precinct independently, which could save a lot of running time.

3.1. Data reduction rules

To further reduce the subproblem sizes and improve efficiency, we introduced three simple data reduction rules.

- Rule 1: Pick all irreplaceable markers. If a marker v_j has no proxy from population i (that is, v_j is a singleton in $G_i = (V_i E_i)$), then marker v_i must be in the minimum tagSNP set.
- Rule 2: Remove less informative markers. Given two markers $v_{j'}$ and v_j , if $N^*(v_{j'}) \subseteq N^*(v_j)$, we say that v_j is more informative than $v_{j'}$. Similarly, given a set of markers $v_{j_1}, v_{j_1}, \ldots, v_{j_k}$ if $N^*(v_{j_1}) \subseteq N^*(v_{j_2}) \subseteq \ldots \subseteq N^*(v_{j_k})$, v_{j_k} is called the maximally informative SNP marker in the set. It is clear that we can discard less informative SNPs and only keep those maximally informative ones without degrading the quality of the solution.
- Rule 3: Remove less stringent occurrences. Given two occurrences $v_{j}^{i'}$ and v_{j}^{i} , if $C_{j}^{i} \subseteq C_{j'}^{i'}$, we say that $v_{j'}^{i'}$ is less stringent than v_{j}^{i} . Similarly, given a set of occurrences $v_{j_1}^{i_1}, v_{j_2}^{i_2}, \ldots, v_{j_k}^{i_k}$ if $C_{j_k}^{i_k} \subseteq \ldots \subseteq C_{j_2}^{i_2} \subseteq C_{j_1}^{i_1}$, the occurrence $v_{j_k}^{i_k}$ is called the most stringent occurrence in the set. We observed that the markers selected to tag the most stringent occurrences will also tag the less stringent occurrences. Therefore, we considered only the most stringent occurrences and discard the others.

The above rules can also be viewed as data reduction rules applied to a 0/1 matrix obtained as follows: Given the notations of the occurrence set \mathcal{U} , the marker set V and the neighborhood collections C introduced in the previous section, the rows in the matrix represent \mathcal{U} , the columns denote V, and each cell (i, j) indicates whether the marker corresponding to column j can tag the occurrence corresponding to row i (i.e., the value of a cell is set to 1 if the marker can tag the occurrence, and 0 otherwise). Thus, rule 2 is equivalent to redundant column deletion, and rule 3 is equivalent to redundant row deletion.

The above rules can be applied repeatedly and in any combination whenever applicable. The reduced problem obtained after the application of the above data reduction rules will be subject to our greedy algorithm or Lagrangian relaxation algorithm, as explained next.

3.2. A greedy algorithm for MCTS

Greedy algorithms are often desirable because of their simplicity and efficiency. The greedy algorithm, *GreedyTag*, below is adapted from the greedy algorithm for the set cover problem as presented by Vazirani (2003). By first applying the above data reduction rules, we will show later in the article that GreedyTag greatly outperforms the other greedy algorithms such as LD-Select and MultiPop-TagSelect. Moreover, a lower bound, called *GreedyTag_lb*, is produced by GreedyTag, which is equal to the number of tagSNPs selected by data reduction rule 1. Even though the lower bound is is somewhat loose because we consider only rule 1, it turned out to be pretty tight in our experiments on real data (see Section 4 for more details). We present the pseudo-code of GreedyTag in the following Algorithm 1.

3.3. A Lagrangian relaxation algorithm for MCTS

A subset T of SNPs can be denoted by its characteristic vector $t = t_1 t_2 \dots t_n$, where $t_i = 1$ if $v_i \in T$, and $t_i = 0$ otherwise. It is thus easy to formulate the following integer linear program for MCTS.

Minimize
$$|T| = \sum_{1 \le j \le n} t_j$$

subject to $\sum_{v_{j'} \in C(v_j^i)} t_{j'} \ge 1$ $1 \le i \le K$ and $1 \le j \le n$ (3)
 $t_j \in \{0, 1\}, 1 \le j \le n$

Our second algorithm for MCTS is based on the Lagrangian relaxation framework. We assigned a non negative vector $\lambda = \lambda_{11}\lambda_{12}\dots\lambda_{K,n}$ of Lagrangian multipliers to the inequalities and obtained the following relaxed integer program:

Algorithm 1 (GreedyTag: Greedy Algorithm for TagSNP Selection in Multiple Populations)

```
Input: A set V of biallelic single-nucleotide polymorphism (SNP) markers and their pairwise r^2 linkage
   disequilibrium (LD) statistics in K distinct populations. A predefined threshold \gamma_0 for r^2 LD statistics.
Output: A feasible tagSNP set T \subseteq V, and a lower bound LB.
Begin
   Partition markers into precincts. Let the set of precincts be \mathcal{P}.
   For each precinct p \in \mathcal{P} {the following will be executed in parallel on a multi-processor machine}
      Let U be the set of SNPs and W the set of marker occurrences in p.
      Step 1: Apply the three data reduction rules.
      T_p \Leftarrow \emptyset; LB_p \Leftarrow 0; UPDATED \Leftarrow true;
      While UPDATED {execute the optimal rules iteratively}
         UPDATED \Leftarrow false;
         If there exists an irreplaceable marker v_i \in U {Rule 1}
            U \Leftarrow U - \{v_j\}; \quad W \Leftarrow W - N^*(v_j);
            T_p \Leftarrow T_p \cup \{v_j\}; LB_p \Leftarrow LB_p + 1; UPDATED \Leftarrow true;
         If there exists a less informative marker v_j \in U {Rule 2}
            U \Leftarrow U - \{v_i\}; UPDATED \Leftarrow true;
         If there exists a less stringent occurrence v_i^i \in W {Rule 3}
            W \Leftarrow W - \{v_i^i\}; \text{ UPDATED} \Leftarrow \text{ true};
      For each v_i \in U
         D(v_i) \Leftarrow N^*(v_i) \cap W;
      Step 2: Select tagSNPs greedily.
      While W is non-empty {there are markers to be tagged}
         Let v_{j_0} \Leftarrow argmax_{v_j \in U} |D(v_j)|;
         T_p \Leftarrow T_p \cup \{v_{i_0}\}; \quad U \Leftarrow U - \{v_{i_0}\}; \quad W \Leftarrow W - N^*(v_{i_0});
         For each v_i \in U
         D(v_i) \Leftarrow D(v_i) \cap W;
   T \Leftarrow \bigcup_{p \in \mathcal{P}} T_p; LB \Leftarrow \sum_{p \in \mathcal{P}} LB_p
Output T, LB {output the solution and lower bound}
End
```

Minimize
$$L(\mathbf{t}, \lambda) = \sum_{1 \le j \le n} t_j + \sum_{1 \le i \le K, 1 \le j \le n} \lambda_{i,j} \left(1 - \sum_{v_j \in C(v_j^i)} t_{j^i} \right)$$

subject to $t_j \in \{0, 1\}, \lambda_{i,j} \ge 0, 1 \le i \le K, 1 \le j \le n$ (4)

For a given λ , define $L(\lambda) = \min L(t, \lambda)$. We observed that the size of any feasible tagSNP set T would be an upper bound for $L(\lambda)$ in (4), and any $L(\lambda)$ would be a lower bound for |T|. Hence, we looked for $\max L(\lambda)$, which gives the best lower bound for $\min |T|$.

For any given λ , we can easily obtain $L(\lambda)$ in (4) as follows: For convenience, we define $s(t_i)$ $(1 \le i \le n)$ as

$$s(t_j) = 1 - \sum_{1 \le i \le K, \ v_{j'} \in C(v_j^i)} \lambda_{i,j'} = 1 - \sum_{v_{j'}^i \in N^*(v_j)} \lambda_{i,j'}, \tag{5}$$

which are the *Lagrangian costs* associated with t_j in Equation 4. Rearranging the terms in Equation 4, we have the objective function $L(\mathbf{t}, \lambda) = \sum_{1 \leq i \leq K, 1 \leq j \leq n} \lambda_{i,j} + \sum_{1 \leq j \leq n} s(t_j) \cdot t_j$. To minimize the objective function, we have to set $t_j = 0$ if $s(t_j) > 0$, $t_j = 1$ if $s(t_j) < 0$, and t_j an arbitrary value if $s(t_j) = 0$.

The vector t obtained above may not be a feasible solution to Equation 3. In other words, some occurrence might not be tagged by any marker in $T = \{v_j | t_j = 1, 1 \le j \le n\}$ induced by the characteristic vector t. We will adopt a strategy called the *reduced cost heuristic* introduced by Balas and Carrera (1996) to deal with this issue.

Next we need to find a good multiplier vector λ , *i.e.*, one that gives a near optimal lower bound. We utilized a standard optimization technique called *subgradient optimization* (Balas and Carrera, 1996), which iteratively updates the solution toward the subgradient direction to reach the optimum. We can define

$$S(\lambda_{i,j}) = 1 - \sum_{\nu_{j'} \in C(\nu_{j}^{i})} t_{j'} \tag{6}$$

which simplifies $L(\mathbf{t}, \lambda) = \sum_{1 \leq j \leq n} t_j + \sum_{1 \leq i \leq K, 1 \leq j \leq n} S(\lambda_{i,j}) \cdot \lambda_{i,j}$. Obviously, $\nabla \lambda = (\nabla \lambda_{11}, \nabla \lambda_{12}, \dots, \nabla \lambda_{K,n})$, where $\nabla \lambda_{i,j} = S(\lambda_{i,j})$. Starting from a initial setting λ^0 , we sequentially generated $\lambda^1, \lambda^2, \lambda^3, \dots$, based on the following formula:

$$\boldsymbol{\lambda}^{k+1} = \max\{\boldsymbol{0}, \boldsymbol{\lambda}^k + \alpha_k \frac{|T^*| - L^*}{||\nabla \boldsymbol{\lambda}^k||^2} \nabla \boldsymbol{\lambda}^k\},\tag{7}$$

where T^* is the smallest feasible tagSNP set found so far (*i.e.*, the best upper bound for $max\ L(t)$), L^* is the largest of $max\ L(t)$ found so far (*i.e.*, the best lower bound for $max\ L(t)$), and $\{\alpha_0, \alpha_1, \alpha_1, \dots\}$ is a decreasing sequence of predefined scalars.

The pseudo-code for the Lagrangian relaxation algorithm, LRTag, is given in Algorithm 2. In the algorithm, we started from an initial setting of λ^0 , generated a solution to t^0 , and extended it to a valid tagSNP set as above mentioned. Then we updated λ^0 into λ^1 according to formula 7. We repeated the process until we were not able to improve λ or a predefined number of maximum iterations was reached. Over the entire iterative process, the smallest feasible set of tagSNPs found by LRTag would be output as a solution to the MCTS problem, and the largest L(t) would be a lower bound for tagSNP selection, called $LRTag_lb$.

Both of our algorithms calculated lower bounds on the minimum number of required tagSNPs, one of which was found by GreedyTag (*i.e.*, GreedyTag_lb) and the other by LRTag (*i.e.*, LRTag_lb). We define "gap" as the difference between the highest lower bound and the cardinality of the smallest tagSNP set found by our algorithms, which will be used to measure the quality of the solutions.

4. EXPERIMENTAL RESULTS

In our experiments, we tested the algorithms GreedyTag and LRTag on the HapMap populations and compared their performance and efficiency with single-population tagging programs LD-Select and FESTA, and a multiple-population tagging program MultiPop-TagSelect. For convenience, we also denoted by GreedyTag the cardinality of a feasible tagSNP set obtained by the GreedyTag algorithm. We used similar notations for LRTag, LD-Select, FESTA, and MultiPop-TagSelect.

Both of our algorithms calculated lower bounds on the minimum number of required tagSNPs, one of which was found by GreedyTag (*i.e.*, GreedyTag_lb) and the other by LRTag (*i.e.*, LRTag_lb). We define "gap" as the difference between the highest lower bound and the cardinality of the smallest tagSNP set found by our algorithms, which will be used to measure the quality of the solutions.

We applied all the methods on the entire human genome data involving chromosomes 1 through 22 and on all ENCODE regions (ENm010, ENm013, ENm014, ENr112, ENr113, ENr123, ENr131, ENr213, ENr232, and ENr321) genotyped by the HapMap project (release no. 19, NCBI build 34, October 2005). For the ENCODE data, we estimated the r^2 statistics by using a two-marker expectation maximization (EM) algorithm to compute the maximum-likelihood values of the four gamete frequencies, which is also commonly adopted by LD-Select and HaploView (Bakker et al, 2006). For the entire human genome data, we directly download the r^2 statistics from the HapMap website (Hapmap LD Data, 2005), generated by HaploView to save computational cost. Note that HaploView only calculates LD for markers up to 250 kbps apart, which is reasonable because the LD for markers that are farther than 250 kbp would normally be very weak anyway, and high LD in such a case can happen only purely by chance. To save running time for dealing with the entire human genome data, we pruned the LD pattern data downloaded from the HapMap website by keeping only entries with r^2 greater than or equal to 0.5.

We ran all the programs on a 32-processor SGI Altix 4700 supercomputer system with 1.6 GHz CPU and 64 GB shared memory in the Computer Science Department, University of California, Riverside, CA. Our GreedyTag and LRTag algorithms used up to 15 threads in parallel, while each of the other programs is single threaded.²

 $^{^{2}}$ Note that if a program runs in time of t with 15 threads, then its running time with one thread would be 15t. This transformation can be used to compare the running times of our programs and those of the other programs on a single-thread mode.

Algorithm 2 (LRTag: Lagrangian Relaxation Algorithm for TagSNP Selection in Multiple Populations)

Input: A set V of n biallelic SNP markers and their pairwise r^2 LD statistics in K distinct populations. A pre-defined threshold γ_0 for r^2 LD statistics. A pre-defined initial scalar α_0 and threshold α_{min} for subgradient optimization. A predefined maximum number $Iter_{max}$ of iterations and a pre-defined threshold K_{max} of maximum trials. **Output**: A feasible tagSNP set $T \subseteq V$, and a lower bound LB. Partition markers into precincts. Let the set of precincts be \mathcal{P} **For each** precinct $p \in \mathcal{P}$ {the following will be executed in parallel on a multi-processor machine} Let U be the set of SNPs and W be the set of marker occurrences in p. Step 1: Apply the three data reduction rules and obtain a temporary tagSNP set T_p and a lower bound LB_p . {The same as the rules in GreedyTag algorithm (see Algorithm 1 for details)}. Step 2: Select tagSNPs under a Lagrangian relaxation framework. Generate Lagrangian relaxation formula. $k \Leftarrow 0$; $\alpha \Leftarrow \alpha_0$; Iter $\Leftarrow 0$; Initialize λ being an arbitrary non-negative vector; $LB_{p1} \Leftarrow 0$; $T_{p1} \Leftarrow U$; **While** $(\alpha > \alpha_{min})$ and $(Iter < Iter_{max})$ $\textit{Iter} \Leftarrow \textit{Iter} + 1; \quad \textit{new} \bot \textit{LB} \Leftarrow \sum_{1 \leq i \leq K, \, 1 \leq j \leq n} \lambda_{i,j}; \quad \textit{new} \bot \textit{T} \Leftarrow \emptyset;$ {Calculate a new lower bound new_LB} For each $v_i \in U$ $s_j \Leftarrow 1 - \sum_{\substack{v_j' \in N^*(v_j) \\ \text{if } s_j \le 0}} \lambda_{i,j'};$ If $s_j \le 0$ $t_j \Leftarrow 1$; Else $t_j \Leftarrow 0$; $new_LB \Leftarrow new_LB + s_i \cdot t_i$; {Obtain a feasible tagSNP set new_T by the reduced cost heuristic (RCH) method} For each $v_i \in U$ $RCH_s_i \Leftarrow s_i$; For each $v_i^i \in W$ $RCH_{\lambda_{i,j}} \Leftarrow \lambda_{i,j}$; For each $v_i^i \in W$ If $\sum_{v_{i'} \in C(v_i^i)} t_{j'} < 1$ $RCH_s_m \Leftarrow min\{RCH_s_{i'} : v_{i'} \in C(v_i^i)\};$ $RCH \perp \lambda_{i,j} \Leftarrow RCH \perp \lambda_{i,j} + RCH \rfloor s_m;$ For each $v_{i'} \in C(v_i^i)$ $RCH_s_{i'} \Leftarrow RCH_s_{i'} - RCH_s_m;$ **If** $RCH_s_{i'} \leq 0$ $t_{i'} \Leftarrow 1$; For each $v_i \in U$ **If** $t_i = 1$ $new_T \Leftarrow new_T \cup \{v_i\};$ {Update the lower bound LB_{pl} and the tagSNP set T_{pl} } **If** $new_LB \le LB_{p1}$ $k \Leftarrow k+1$; If $(k \ge K_{max})$ $\alpha \Leftarrow \alpha/2$; $k \Leftarrow 0$; **Else** $LB_{p1} \Leftarrow new_LB$; $k \Leftarrow 0$; **If** $|new_T| < |T_{p1}|$ $T_{p1} \Leftarrow new_T$; {Update the Lagrangian multipliers λ by the subgradient optimization method} For each $v_j^i \in W \nabla \lambda_{i,j} \Leftarrow 1 - \sum_{v_f \in C(v_j^i)} t_{j^*};$ $\lambda \Leftarrow max\{0, \lambda + \alpha \frac{|T_{p1}| - LB_{p1}}{||\nabla \lambda||^2} \nabla \lambda\};$ {Combine the solutions from step 1 and step 2} $T_p \Leftarrow T_p \cup T_{p1}; \quad LB_p \Leftarrow LB_p + LB_{p1};$ $T \Leftarrow \bigcup_{p \in \mathcal{P}} T_p; LB \Leftarrow \sum_{p \in \mathcal{P}} LB_p$ **Output** T, LB {output the solution and the lower bound}

4.1. Tagging the ENCODE regions

End

A dense set of SNPs across 10 large genomic regions have been produced by the HapMap ENCODE project. These regions serve as the foundation to evaluate the development of methodologies and technologies for detecting functional elements in human DNA. Each region is about 500 kb in length and has an SNP density about 1 SNP per 600 bp.

4.1.1. Tagging ENCODE regions for a single population. We tag each HapMap population separately by LD-Select, FESTA, and our new algorithms GreedyTag and LRTag. For illustration purposes,

	TABLE 2. SO AND LR'	UMMARY OF ΓAG FOR A				- /	- ,		AG,
egion	ENm010	ENm013	ENm014	ENr112	ENr113	ENr123	ENr131	ENr213	ENi
		ć0. a	004	0.4=	1000	0.54	000		

Region	ENm010	ENm013	ENm014	ENr112	ENr113	ENr123	ENr131	ENr213	ENr232	ENr321
No. of SNP	525	692	904	947	1080	864	990	612	457	544
$r^2 \ge 0.5$										
No. of precinct	39	27	47	52	40	30	83	42	64	52
No. of tagSNP (u	pper boun	d)								
LD-Select	62	38	65	84	77	69	112	62	72	68
FESTA	57	35	63	76	73	65	107	61	70	65
GreedyTag	56	35	63	76	73	62	107	61	70	64
LRTag	56	35	63	76	73	62	107	61	70	64
No. of tagSNP (le	ower boun	d)								
LRTag_lb	55	35	63	76	73	62	107	60	70	64
GreedyTag_lb	50	33	63	72	69	54	101	55	70	62
Gap	1	0	0	0	0	0	0	1	0	0
$r^2 \ge 0.8$										
No. of precinct	116	69	121	139	131	129	175	105	106	107
No. of tagSNP (u	pper boun	d)								
LD-Select	123	82	129	152	146	139	189	110	115	109
FESTA	122	79	129	152	143	139	186	110	114	109
GreedyTag	122	79	129	152	143	139	186	110	114	109
LRTag	122	79	129	152	143	139	186	110	114	109
No. of tagSNP (le	ower boun	d)								
GreedyTag_lb	122	79	129	152	143	139	186	110	114	109
LRTag_lb	122	79	129	150	143	139	186	107	110	109
Gap	0	0	0	0	0	0	0	0	0	0

we only showed the results for tagging the CEU population and compared the performance of the above algorithms in Table 2.

When the r^2 threshold is set as 0.5, the number of tagSNPs selected by our algorithm is on the average 9.3% of the total number of markers (the actual percentage number ranges from 5.1% to 15.3%). With a more stringent r^2 threshold of 0.8, the average number of tagSNPs rises to 17.6% of the total number of markers (ranging from 11.4% to 24.9%). The same trend was observed when applying our algorithms on the other populations (results are not shown because of space constraint).

On each ENCODE region, we observed that the gap between LRTag_lb and LRTag is at most one with the r^2 threshold being 0.5, and there is no gap when the r^2 threshold is set as 0.8. This demonstrates that our algorithm LRTag found near-optimal solutions in all test cases. In general, LRTag and GreedyTag always generated the smallest sets of tagSNPs, FESTA selected at most three more tagSNP, and LD-Select might select up to eight more tagSNPs.

As our algorithms and FESTA are all near-optimal, we compared the time efficiency of these programs in Table 3. Because LD-Select takes genotype data as input and the other programs take pairwise LD data as input, we do not compare LD-Select's running times directly with those of the others here (generally speaking, it takes LD-Select from 30 m in to 2 h on an ENCODE region). From Table 3, we can see that the running time of FESTA varied widely from 1 s to 64 h on different regions, while our algorithms GreedyTag and LRTag consistently took 1–2 s on all regions. In conclusion, our algorithms were 3–4 orders of magnitude faster than FESTA in most of the cases, and our algorithms found slightly smaller sets of tagSNPs

4.1.2. Tagging ENCODE regions for multiple populations. We tagged each and the entire ENCODE regions for all four HapMap populations by MultiPop-TagSelect, GreedyTag, and LRTag. The tagging results of these methods on each ENCODE region are summarized in Table 4. We also highlighted the results for region ENm013 and for the entire ENCODE region in Figure 1.

With the r^2 threshold set as 0.5, the number of tagSNPs selected by our algorithms is on the average 18.3% of the total number of markers (the actual percentage number ranges from 11.0% to 34.5%). With a more stringent r^2 threshold of 0.8, the average number of tagSNPs increases to 33.7% (ranging from 24.0%)

Region	ENm010	ENm013	ENm014	ENr112	ENr113	ENr123	ENr131	ENr213	ENr232	ENr321
$r^2 > 0.5$										
FESTA	3 h,	3 h,	4 h,	3 h,	14 h,	64 h,	5 h,	2 h,	1 h,	45 min,
	14 min	16 min	51 min	18 min	24 min	4 min	13 min	24 min	38 min	19 s
GreedyTag	1 s	1 s	1 s	1 s	1 s	1 s	1 s	1 s	1 s	1 s
LRTag	1 s	1 s	1 s	2 s	1 s	2 s	1 s	1 s	1 s	1 s
$r^2 \ge 0.8$										
FESTA	1 s	3 s	28 min,	44 min,	12 min,	50 min,	3 s	1 s	2 s	1 s
			20 s	6 s	8 s	16 s				
GreedyTag	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s
LRTag	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s	<1 s

Table 3. The Time Efficiency of FESTA, GreedyTag, and LRTag for Selecting TagSNPs from a Single Population, CEU, on All ENCODE Regions

The running times are obtained on a 32-processor SGI Altix 4700 supercomputer system.

to 50.5%). We observed that LRTag always performs the best in these tests, followed by the GreedyTag algorithm, and MultiPop-TagSelect always performs worst. When r^2 threshold is set as 0.5, LRTag requires 16.4% fewer markers on the average than MultiPop-TagSelect. When the r^2 threshold is 0.8, LRTag usually requires 5.1% fewer markers on the average than MultiPop-TagSelect.

The gap between LRTag_lb and LRTag is at most two for each ENCODE region and totally six for all ENCODE regions with the r^2 threshold being 0.5. There is no gap with the r^2 threshold being 0.8.

4.2. Genome-wide tagging

Because both LD-Select and MultiPop-TagSelect (written in Perl) took more than 20 h to tag a single chromosome, we reimplemented their algorithms in C++, called *LD-Select** and *MultiPop-TagSelect**, respectively, to give a fair comparison of the programs. As FESTA's "greedy-exhaustive hybrid search" is very computational demanding and hard to emulate, we excluded FESTA from the following comparative study.

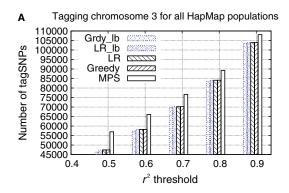
Table 4. Summary of TagSNPs Identified by MultiPop-TagSelect, GreedyTag, and LRTag for All HapMap Populations on ENCODE Regions

Region	ENm010	ENm013	ENm014	ENr112	ENr113	ENr123	ENr131	ENr213	ENr232	ENr321
No. of SNP	783	1063	1261	1158	1485	1221	1186	900	777	1025
$r^2 \ge 0.5$										
No. of precinct	65	38	48	44	67	38	73	56	126	53
No. of tagSNP (upper	bound)									
MultiPop-TagSelect	206	150	201	238	260	181	306	200	286	233
GreedyTag	179	117	164	184	228	141	257	173	268	193
LRTag	179	117	164	184	228	141	257	173	268	193
No. of tagSNP (lower	bound)									
LRTag_lb	178	117	162	182	226	141	256	173	268	193
GreedyTag_lb	169	107	149	168	218	139	250	173	264	189
Gap	1	0	2	2	0	0	1	0	0	0
$r^2 \ge 0.8$										
No. of precinct	156	111	146	101	209	106	194	170	210	191
No. of tagSNP (upper	bound)									
MultiPop-TagSelect	338	275	321	425	454	329	462	324	402	396
GreedyTag	322	255	305	391	437	300	445	318	392	377
LRTag	322	255	305	389	437	300	445	318	392	377
No. of tagSNP (lower	bound)									
LRTag_lb	322	255	305	389	437	300	445	318	392	377
GreedyTag_lb	319	253	303	374	435	300	443	318	392	377
Gap	0	0	0	0	0	0	0	0	0	0

Table 5. Summary of the Tag SNPs Selected by LD-Select, GreedyTag, and LRTag for a Single Population, CEU, on Each Human Chromosome

	I^a	2	3	4	5	6	7	8	9	10	11
No. of SNP				130 823		149,514					
$r^2 \ge 0.5$	151,175	101,177	113,172	150,025	150,017	11,,511	113,057	122,010	100,552	110,512	101,001
No. of precinct	15,752	29,426	12 001	11 006	11 000	11 021	10.512	0.000	0.429	10 152	9,979
No. of tagSNP	,		12,901	11,906	11,998	11,831	10,512	9,900	9,438	10,153	9,979
LD-Select*	21,865	36,238	19,063	17,212	17,765	17,921	15,418	15,140	13,800	14,882	14,307
	20,806	35,083	17,984	16,295	16,769	16,815	14,584		13,066	14,041	13,600
GreedyTag LRTag	20,800	35,065	17,964	16,286	16,756	16,798	14,577	14,203 14,196	13,058	14,038	13,589
No. of tagSNP			17,977	10,200	10,730	10,796	14,377	14,190	13,036	14,036	13,369
LRTag-lb	20,793	35,059	17,958	16,279	16,736	16,784	14,569	14,182	13,049	14,031	13,578
GreedyTag-lb	20,793	34,202	17,958	15,675	15,965	16,784	14,021	13,568	12,530	13,477	13,089
	20,123	54,202	17,133	13,673	13,903	10,080	14,021	13,308	12,330	13,477	13,089
Gap	,	U	19	,	20	14	o	14	7	,	11
$r^2 \ge 0.8$											
No.of precinct	35,990		31,916	28,650	29,931	30,632	26,181	26,120	23,739	25,186	23,544
No. of tagSNP											
LD-Select*	38,944	54,612	35,092	31,590	32,978	33,723	28,754	28,822	26,008	27,698	25,826
GreedyTag	38,534	54,081	34,602	31,124	32,502	33,229	28,362	28,394	25,666	27,302	25,485
LRTag	38,534	54,080	34,601	31,123	32,501	33,227	28,362	28,393	25,665	27,302	25,484
No. of tagSNP											
LRTag-lb	38,534	54,080	34,600	31,123	32,501	33,225	28,361	28,391	25,664	27,301	25,483
GreedyTag-lb	38,269	53,687	34,310	30,824	32,189	32,962	28,083	28,110	25,396	27,077	25,276
Gap	0	0	1	0	0	2	1	2	1	1	1
	12 ^a	13	14	15	16	17	18	19	20	21	22
No. of SNP	100,437	84,184	68,485	58,491	57,083	47,505	62,666	29,341	51,206	27,955	26,996
$r^2 \ge 0.5$											
No. of precinct	9,960	7,476	6,751	6,740	7,184	6,764	6,534	5,291	5,874	3,270	3,829
No. of tagSNP	(upper bo	ound)									
LD-Select*	14,243	10,996	9,703	9,364	9,962	8,656	9,115	6,464	7,972	4,470	5,029
GreedyTag	13,554	10,374	9,215	8,930	9,503	8,355	8,652	6,286	7,637	4,258	4,831
LRTag	13,548	10,370	9,212	8,923	9,500	8,354	8,649	6,284	7,634	4,257	4,831
No. of tagSNP	(lower bo	ound)									
LRTag-lb	13,539	10,363	9,203	8,920	9,500	8,353	8,646	6,283	7,630	4,256	4,830
GreedyTag-lb	13,048	9,988	8,867	8,589	9,241	8,180	8,332	6,190	7,380	4,125	4,714
Gap	9	7	9	3	0	1	3	1	4	1	1
$r^2 > 0.8$											
No. of tagSNP	(upper bo	ound)									
No. of precinct			16,391	15,629	16,869	13,942	15,262	10,019	13,177	7,390	8,240
LD-Select*	25,887		17,723	16,908	18,194	14,778	16,498	10,494	,	7,912	8,727
GreedyTag	25,579	19,967	17,546	16,722	18,012	14,670	16,299	10,420		7,844	8,652
LRTag	25,579	19,967	17,545	16,722	18,012	14,669	16,299	10,420		7,844	8,652
No. of tagSNP	-		,	,	,012	,007	,	, .20	,002	.,	2,022
LRTag-lb	25,578	19,966	17,545	16,722	18,012	14,668	16,299	10,420	14,051	7,844	8,652
GreedyTag-lb	25,387	19,778	17,405	16,608	17,836	14,588	16,181	10,382	13,943	7,774	8,601
Gap	1	1	0	0	0	1	0	0		0	0

^aThe numbers 1–11 and 12–22 denote chromosome numbers.


4.2.1. Tagging the human genome for a single population. We applied LD-Select*, GreedyTag, and LRTag on each HapMap population separately. For illustration purposes, we only discussed the results for tagging the CEU population and compared the performance of the above three algorithms. The details can be found in Table 5.

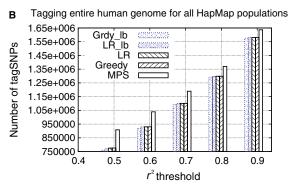

With the r^2 threshold set as 0.5, the number of tagSNPs selected by our algorithms is 14.4% of the total number of markers on the average (the actual percentage ranges from 11.2% to 21.4%). With a more stringent r^2 threshold of 0.8, the average number of tagSNPs increases to 26.6% (ranging from 22.2% to

Table 6. Summary of the Tag SNPs Selected by MultiPop-TagSelect, GreedyTag, and LRTag for all HapMap Populations on Each Human Chromosome

	I^a	2	3	4	5	6	7	8	9	10	11
No. of SNP	216,357	249,136	196,535	182,273	187,924	205,496	155,224	170,136	138,047	156,089	144,083
$r^2 \ge 0.5$											
No. of precinct	16 234	26,836	12,835	12,251	12,414	11,862	10,332	10,101	9,254	10,220	9,568
No. of tagSNP			12,033	12,231	12, 11 1	11,002	10,332	10,101	,,23 1	10,220	,,500
MultiPop-	· 11	126,408	56,978	52,828	54,087	54,454	45,943	46,927	41,341	45,226	41,556
TagSelect*	0.,0>2	120,.00	20,570	02,020	<i>c</i> .,	0 ., .0 .	.0,> .0	.0,>=.	.1,0.1	.0,220	.1,000
GreedyTag	59.126	122,372	51,266	47,650	48,661	48,817	41,169	42,206	37,289	40,713	37,365
LRTag	-	117,537	47,450	44,223	45,186	44,987	38,150	39,149	34,439	37,554	34,590
No. of tagSNP	-	,	,	,	,	,,,	,	,	- 1, 1-2		- 1,- 2
LRTag-lb		117,511	47,362	44,141	45,102	44,878	38,090	39,076	34,381	37,486	34,537
GreedyTag-lb		117,155	46,330	43,239	44,145		37,280	38,161	33,534	36,713	33,778
Gap	74	26	88	82	84	109	60	73	58	68	53
$r^2 \ge 0.8$											
No. of precinct	42.450	56,135	35,192	33,434	33,211	33,228	28,543	28,948	25,485	28,277	25,428
No. of tagSNP			33,192	33,434	33,211	33,226	26,343	20,540	23,463	20,211	23,420
MultiPop-		155,505	89,195	82,835	84,998	86,313	72,024	74,934	65,442	70,817	64,679
TagSelect*	100,002	155,505	69,193	02,033	04,990	60,515	72,024	74,934	05,442	70,617	04,079
GreedyTag	04 707	150,664	84,091	78,077	80,188	80,981	67,818	70,678	61,708	66,676	60,721
LRTag		150,664	84,090	78,077	80,186	80,980	67,817	70,677	61,706	66,674	60,721
No. of tagSNP			04,090	76,070	60,160	60,960	07,017	70,077	01,700	00,074	00,716
LRTag-lb		150,660	84,079	78,072	80,174	80,964	67,808	70,667	61,699	66,663	60,705
GreedyTag-lb		150,393	83,585	77,674	79,663	80,507	67,461	70,007	61,321	66,291	60,294
	94,302	150,595	11	77,074	19,003	16	9	10,283	7	11	13
Gap	,		11		12	10	, , , , , , , , , , , , , , , , , , ,	10		11	13
	12 ^a	13	14	15	16	17	18	19	20	21	22
No. of SNP	1.41.042										
	141,943	119,080	94,528	81,687	79,898	64,645	89,024	40,549	70,877	39,400	39,523
$r^2 \ge 0.5$	141,943	119,080	94,528	81,687	79,898	64,645	89,024	40,549	70,877	39,400	39,523
$r^2 \ge 0.5$ No. of precinct		7,810	94,528 6,532	81,687 6,667	79,898 7,328	64,645	89,024 6,875	40,549 5,127	70,877 6,139	39,400 3,290	39,523 3,884
No. of precinct	10,086	7,810								,	,
No. of precinct No. of tagSNP	10,086	7,810 ound)								,	,
No. of precinct	10,086 (upper bo	7,810 ound)	6,532	6,667	7,328	6,952	6,875	5,127	6,139	3,290	3,884
No. of precinct No. of tagSNP MultiPop-	10,086 (upper bo	7,810 ound)	6,532	6,667	7,328	6,952	6,875	5,127	6,139	3,290	3,884
No. of precinct No. of tagSNP MultiPop- TagSelect*	10,086 (upper bo 42,362	7,810 bund) 33,477	6,532 28,465	6,667 27,847	7,328 28,987	6,952 23,601	6,875 27,109	5,127 15,768	6,139 23,243	3,290 13,100	3,884 13,895
No. of precinct No. of tagSNP MultiPop- TagSelect* GreedyTag	10,086 (upper be 42,362 38,563 35,493	7,810 bund) 33,477 30,183 27,927	6,532 28,465 25,706	6,667 27,847 25,408	7,328 28,987 26,432	6,952 23,601 21,931	6,875 27,109 24,789	5,127 15,768 14,785	6,139 23,243 21,319	3,290 13,100 12,010	3,884 13,895 12,980
No. of precinct No. of tagSNP MultiPop- TagSelect* GreedyTag LRTag	10,086 (upper be 42,362 38,563 35,493	7,810 bund) 33,477 30,183 27,927 bund)	6,532 28,465 25,706	6,667 27,847 25,408	7,328 28,987 26,432	6,952 23,601 21,931	6,875 27,109 24,789	5,127 15,768 14,785	6,139 23,243 21,319	3,290 13,100 12,010	3,884 13,895 12,980
No. of precinct No. of tagSNP MultiPop- TagSelect* GreedyTag LRTag No. of tagSNP	10,086 (upper be 42,362 38,563 35,493 (lower be	7,810 bund) 33,477 30,183 27,927 bund)	6,532 28,465 25,706 23,932	6,667 27,847 25,408 23,721	7,328 28,987 26,432 24,791	6,952 23,601 21,931 20,647	6,875 27,109 24,789 23,174	5,127 15,768 14,785 14,007	6,139 23,243 21,319 19,994	3,290 13,100 12,010 11,253	3,884 13,895 12,980 12,174
No. of precinct No. of tagSNP MultiPop- TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449	7,810 bund) 33,477 30,183 27,927 bund) 27,881	6,532 28,465 25,706 23,932 23,903	6,667 27,847 25,408 23,721 23,686	7,328 28,987 26,432 24,791 24,761	6,952 23,601 21,931 20,647 20,636	6,875 27,109 24,789 23,174 23,141	5,127 15,768 14,785 14,007	6,139 23,243 21,319 19,994 19,971	3,290 13,100 12,010 11,253 11,238	3,884 13,895 12,980 12,174 12,160
No. of precinct No. of tagSNP MultiPop- TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306	6,532 28,465 25,706 23,932 23,903 23,440	6,667 27,847 25,408 23,721 23,686 23,229	7,328 28,987 26,432 24,791 24,761 24,294	6,952 23,601 21,931 20,647 20,636 20,366	6,875 27,109 24,789 23,174 23,141 22,697	5,127 15,768 14,785 14,007 14,001 13,814	6,139 23,243 21,319 19,994 19,971 19,601	3,290 13,100 12,010 11,253 11,238 11,035	3,884 13,895 12,980 12,174 12,160 12,017
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46	6,532 28,465 25,706 23,932 23,903 23,440 29	6,667 27,847 25,408 23,721 23,686 23,229 35	7,328 28,987 26,432 24,791 24,761 24,294 30	6,952 23,601 21,931 20,647 20,636 20,366 11	6,875 27,109 24,789 23,174 23,141 22,697 33	5,127 15,768 14,785 14,007 14,001 13,814 6	6,139 23,243 21,319 19,994 19,971 19,601 23	3,290 13,100 12,010 11,253 11,238 11,035 15	3,884 13,895 12,980 12,174 12,160 12,017 14
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46 21,084	6,532 28,465 25,706 23,932 23,903 23,440	6,667 27,847 25,408 23,721 23,686 23,229	7,328 28,987 26,432 24,791 24,761 24,294 30	6,952 23,601 21,931 20,647 20,636 20,366	6,875 27,109 24,789 23,174 23,141 22,697	5,127 15,768 14,785 14,007 14,001 13,814	6,139 23,243 21,319 19,994 19,971 19,601	3,290 13,100 12,010 11,253 11,238 11,035	3,884 13,895 12,980 12,174 12,160 12,017
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct No. of tagSNP No. of tagSNP	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be	7,810 ound) 33,477 30,183 27,927 ound) 27,881 27,306 46 21,084 ound)	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866	5,127 15,768 14,785 14,007 14,001 13,814 6	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct No. of tagSNP MultiPop-	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46 21,084	6,532 28,465 25,706 23,932 23,903 23,440 29	6,667 27,847 25,408 23,721 23,686 23,229 35	7,328 28,987 26,432 24,791 24,761 24,294 30	6,952 23,601 21,931 20,647 20,636 20,366 11	6,875 27,109 24,789 23,174 23,141 22,697 33	5,127 15,768 14,785 14,007 14,001 13,814 6	6,139 23,243 21,319 19,994 19,971 19,601 23	3,290 13,100 12,010 11,253 11,238 11,035 15	3,884 13,895 12,980 12,174 12,160 12,017 14
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct No. of tagSNP MultiPop-TagSelect*	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be 65,521	7,810 ound) 33,477 30,183 27,927 ound) 27,881 27,306 46 21,084 ound) 52,863	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723 44,226	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526 42,380	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943 43,913	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278 34,289	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866 41,893	5,127 15,768 14,785 14,007 14,001 13,814 6 11,289 22,274	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438 35,251	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366 19,990	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480 20,624
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \geq 0.8$ No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag-lb	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be 65,521 61,828	7,810 ound) 33,477 30,183 27,927 ound) 27,881 27,306 46 21,084 ound) 52,863 49,797	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723 44,226 41,867	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526 42,380 40,250	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943 43,913 41,726	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278 34,289 32,862	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866 41,893 39,833	5,127 15,768 14,785 14,007 14,001 13,814 6 11,289 22,274 21,465	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438 35,251 33,676	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366 19,990 19,060	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480 20,624 19,742
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag-lb LRTag-lb	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be 65,521 61,828 61,826	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46 21,084 bund) 52,863 49,797 49,796	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723 44,226	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526 42,380	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943 43,913	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278 34,289	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866 41,893	5,127 15,768 14,785 14,007 14,001 13,814 6 11,289 22,274	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438 35,251	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366 19,990	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480 20,624
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag-lb LRTag-lb No. of tagSNP	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be 65,521 61,828 61,826 (lower be	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46 21,084 bund) 52,863 49,797 49,796 bund)	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723 44,226 41,867 41,867	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526 42,380 40,250 40,250	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943 43,913 41,726 41,724	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278 34,289 32,862 32,862	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866 41,893 39,833 39,833	5,127 15,768 14,785 14,007 14,001 13,814 6 11,289 22,274 21,465 21,464	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438 35,251 33,676 33,675	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366 19,990 19,060 19,060	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480 20,624 19,742 19,741
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \ge 0.8$ No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag-lb LRTag-lb No. of tagSNP LRTag-lb	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be 65,521 61,828 61,826 (lower be 61,816	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46 21,084 bund) 52,863 49,797 49,796 bund) 49,791	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723 44,226 41,867 41,867	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526 42,380 40,250 40,250 40,247	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943 43,913 41,726 41,724 41,721	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278 34,289 32,862 32,862 32,862	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866 41,893 39,833 39,833 39,833	5,127 15,768 14,785 14,007 14,001 13,814 6 11,289 22,274 21,465 21,464 21,464	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438 35,251 33,676 33,675 33,673	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366 19,990 19,060 19,060 19,059	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480 20,624 19,742 19,741 19,739
No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag LRTag No. of tagSNP LRTag-lb GreedyTag lb Gap $r^2 \geq 0.8$ No. of precinct No. of tagSNP MultiPop-TagSelect* GreedyTag-lb LRTag-lb No. of tagSNP	10,086 (upper be 42,362 38,563 35,493 (lower be 35,449 34,833 44 27,027 (upper be 65,521 61,828 61,826 (lower be	7,810 bund) 33,477 30,183 27,927 bund) 27,881 27,306 46 21,084 bund) 52,863 49,797 49,796 bund)	6,532 28,465 25,706 23,932 23,903 23,440 29 17,723 44,226 41,867 41,867	6,667 27,847 25,408 23,721 23,686 23,229 35 17,526 42,380 40,250 40,250	7,328 28,987 26,432 24,791 24,761 24,294 30 18,943 43,913 41,726 41,724	6,952 23,601 21,931 20,647 20,636 20,366 11 16,278 34,289 32,862 32,862	6,875 27,109 24,789 23,174 23,141 22,697 33 17,866 41,893 39,833 39,833	5,127 15,768 14,785 14,007 14,001 13,814 6 11,289 22,274 21,465 21,464	6,139 23,243 21,319 19,994 19,971 19,601 23 15,438 35,251 33,676 33,675	3,290 13,100 12,010 11,253 11,238 11,035 15 8,366 19,990 19,060 19,060	3,884 13,895 12,980 12,174 12,160 12,017 14 9,480 20,624 19,742 19,741

^aThe numbers 1–11 and 12–22 denote chromosome numbers.

FIG. 3. (**A**) Tagging chromosome 3 for all HapMap populations with 196,535 markers. (**B**) Tagging the entire human genome for all HapMap populations with 2,862,454 markers. See the caption of Figure 1 for the definitions of the algorithm names.

35.5%). Similar trends were observed when applying our algorithms to the other populations (the results are not shown because of space limitation).

We observed that LRTag always performs the best, followed by the GreedyTag algorithm, and LD-Select* always performs the worst. With the r^2 threshold set as 0.5, LRTag usually requires 4.9% fewer tagSNPs (the actual percentage number ranges from 2.8% to 6.3%) on average than LD-Select* on each chromosome. When the r^2 threshold is increased to 0.8, LRTag usually requires 1.2% fewer tagSNPs (ranging from 0.07% to 1.5%) on average than LD-Select*.

We can see that, on each chromosome, the gap between the lower bound from LRTag_lb and the upper bound obtained by LRTag is on the average 7 (the actual number ranges from 1 to 20) with the r^2 threshold set as 0.5, and less than 1 (ranging from 0 to 2) with the r^2 threshold set being 0.8. This demonstrates that LRTag finds near-optimal solutions in all test cases even for genome-wide tagging on a single population. In fact, the performance of GreedyTag is not bad either.

4.2.2. Tagging the human genome for multiple populations. Finally, we tagged the entire human genome for all four HapMap populations by MultiPop-TagSelect, GreedyTag, and LRTag. We summarized the tagging results of these methods on each chromosome in Table 6, and then highlighted the results for chromosome 3 and all chromosomes in Figure 3.

With the r^2 threshold set as 0.5, the number of tagSNPs selected by our methods is on the average 27.3% of the total number of markers (the actual percentage ranges from 21.9% to 47.2%). With a more stringent r^2 threshold of 0.8, the average number of tagSNPs increases to 46.0% (ranging from 29.4% to 60.4%). Based on Table 6, we observed that LRTag always performs slightly better than GreedyTag and significantly better than MultiPop-TagSelect*. With the r^2 threshold set as 0.5, LRTag requires 6.8% fewer tagSNPs on average (the actual number ranges from 4.0% to 8.0%) than MultiPop-TagSelect* on each chromosome. With the r^2 threshold set as 0.8, LRTag requires 3.6% fewer markers on average (ranging from 2.7% to 4.3%) than MultiPop-TagSelect*.

The gap between the lower bound from LRTag_lb and upper bound of LRTag is on the average 48 for each chromosome (the actual number ranges from 6 to 109) with the r^2 threshold set as 0.5, and 6.5 (ranging from 0 to 16) with the r^2 threshold set being 0.8, as shown in Table 6.

Table 7. The speeds of GreedyTag and LRTag for Tagging the Entire ENCODE Region for All HapMap Populations with the r^2 Threshold Being 0.5

Region	ENm010	ENm013	ENm014	ENr112	ENr113	ENr123	ENr131	ENr213	ENr232	ENr321
LRTag	1 s	4 s	3 s	5 s	7 s	5 s	1 s	1 s	1 s	2 s
GreedyTag	1 s	4 s	4 s	5 s	7 s	6 s	1 s	1 s	1 s	2 s

The running time was evaluated on a 32-processor SGI Altix 4700 supercomputer system.

	I^a	2	3	4	5	6	7	8	9	10	11
LRTag	1 min, 18 s	1 min, 44 s	1 min, 28 s	1 min, 12 s	1 min, 27 s	3 min, 7 s	1 min, 3 s	1 min, 15 s	57 s	1 min, 6 s	1 min, 8 s
GreedyTag	1 min, 17 s	1 min, 41 s	1 min, 16 s	1 min, 15 s	1 min, 24 s	3 min, 11 s	58 s	1 min, 16 s	57 s	1 min, 6 s	1 min, 10 s
	12 ^a	13	14	15	16	17	18	19	20	21	22
LRTag GreedyTag	56 s 56 s	50 s 50 s	34 s 37 s	28 s 27 s	23 s 20 s	46 s 47 s	31 s 31 s	9 s 10 s	23 s 22 s	11 s 11 s	10 s 9 s

Table 8. The Speeds of GreedyTag and LRTag for Tagging the Human Genome for a Single Population, CEU, with the r^2 Threshold Being 0.5

The running time was evaluated on a 32-processor SGI Altix 4700 supercomputer system.

5. CONCLUSION

Our LRTag and GreedyTag algorithms run quickly on ENCODE regions and the entire human genome for both single and multiple populations. On an ENCODE region with the r^2 threshold being 0.5, it takes our algorithms no more than 2s to tag a single population (as shown in Table 3) and less than 7s to tag multiple populations (as displayed in Table 7). On a human chromosome, it takes no more than 4 min to tag a single population (as shown in Table 8) and less than 12 min to tag on multiple populations (as displayed in Table 9). For r^2 thresholds greater than 0.5, our algorithms run faster. Hence, for any given r^2 threshold, it takes our algorithms less than a minute to tag the entire ENCODE region and less than an hour to tag the entire human genome.

If the number of populations of interest increases, the genotyping density increases or the r^2 threshold increases, the number of required tagSNPs also increases. For example, on multiple HapMap populations with the r^2 threshold being 0.5, we need to tag one SNP for about every six SNPs on the densely genotyped ENCODE regions. We need to tag one SNP for about every four SNPs on sparsely genotyped HapMap chromosomes.

All the lower and upper bounds produced by the discussed methods are shown in Figures 2 and 3. In the figures, we tagged the ENCODE regions and human genome on the HapMap populations with the r^2 thresholds being 0.5, 0.6, 0.7, and 0.8 separately. From all these test cases, we observed that LRTag always chooses the smallest set of tagSNPs, closely followed by GreedyTag, whereas MultiPop-TagSelect chooses the largest set of tagSNPs.

LRTag_lb always provides the best lower bound and LRTag the best upper bound among all methods considered. The simple greedy algorithm, GreedyTag, chooses slightly more tagSNPs than LRTag and the

	FOR ALL HAPMAP TOPULATIONS WITH THE 7 THRESHOLD BEING U.S											
	I^a	2	3	4	5	6	7	8	9	10	11	
LRTag	3 min, 4 s	2 min, 2 s	3 min, 9 s	2 min, 51 s	3 min, 37 s	11 min, 4 s	2 min, 12 s	3 min, 45 s	2 min, 24 s	2 min, 49 s	2 min, 20 s	
GreedyTag	3 min, 11 s	1 min, 13 s	3 min, 43 s	2 min, 46 s	3 min, 20 s	10 min, 45 s	2 min, 25 s	2 min, 52 s	2 min, 18 s	2 min, 55 s	2 min, 16 s	
	12 ^a	13	14	15	16	17	18	19	20	21	22	
LRTag	2 min, 55 s	2 min, 11 s	1 min, 28 s	1 min	48 s	1 min, 10 s	1 min, 17 s	27 s	56 s	25 s	30 s	
GreedyTag	3 min	2 min, 27 s	1 min, 16 s	52 s	23 s	1 min, 9 s	1 min, 16 s	27 s	50 s	25 s	30 s	

Table 9. The Speeds of GreedyTag and LRTag for Tagging the Entire Human Genome for All HapMap Populations with the r^2 Threshold being 0.5

^aThe numbers 1–11 and 12–22 denote chromosome numbers.

The running time was evaluated on a 32-processor SGI Altix 4700 supercomputer system.

^aThe numbers 1–11 and 12–22 denote chromosome numbers.

lower bound GreedyTag_lb is slightly lower than LRTag_lb, which indicates that the data reduction rules in Section 3 are very powerful.

When the r^2 threshold increases, the size of the precincts decreases. Consequently, the gap between the lower bound and the upper bound decreases. For the entire human genome with 2,862,454 markers, the gap between LRTag and LRTag_lb is 1061 when the r^2 threshold is 0.5, and 142 when the r^2 threshold increases to 0.8. The small gap shows that LRTag finds near-optimal solutions for genome-wide tagging.

ACKNOWLEDGMENTS

We are grateful to the anonymous referee for several constructive comments. This research was supported in part by NSF grants IIS-0711129 and DBI-0321756, NIH grant 2R01LM008991, NSFC grant 60528001, NSF CAREER Award IIS-0447773, and a Changjiang Visiting Professorship at Tsinghua University. The programs (GreedyTag and LRTag) are for free to the public and are available upon request.*

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Avi-Itzhak, H., Su, X., and De La Vega, F.M. 2003. Selection of minimum subsets of single nucleotide polymorphisms to capture haplotype block diversity. *Proc. Pac. Symp. Biocomput.* 466–477.

Bakker, P., Burtt, N.P., Graham, R.R., *et al.* 2006. Transferability of tag SNPs in genetic association studies in multiple populations. *Nat. Genet.* 38, 1298–1303.

Balas, E., and Carrera, M.C. 1996. A dynamic subgradient-based branch-and-bound procedure for set covering. *Oper. Res.* 44, 875–890.

Bar-Yehuda, R., and Moran, S. 1984. On approximation problems related to the independent set and vertex cover problems. *Discov. Appl. Math.* 9, 1–10.

Carlson, C.S., Eberle, M.A., Rieder, M.J., et al. 2004. Selecting a maximally informative set of singlenucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74, 106–120.

Conrad, D.F., Jakobsson, M., Coop, G., et al. 2006. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome *Nat. Genet.* 38, 1251–1260.

Ding, K., Zhou, K., Zhang, J., *et al.* 2005. The effect of haplotype-block definitions on inference of haplotype-block structure and htSNPs selection. *Mol. Biol. Evol.* 22, 148–159.

Gabriel, S.B., Schaffner, S.F., Nguyen, H., *et al.* 2002. The structure of haplotype blocks in the human genome. *Science* 296, 2225–2229.

Halperin, E., Kimmel, G., and Shamir, R. 2005. Tag SNP selection in genotype data for maximizing SNP prediction accuracy. *Bioinformatics* 21(Suppl 1), i195–i203.

Hampe, J., Schreiber, S., and Krawczak, M. 2003. Entropy-based SNP selection for genetic association studies. Hum. Genet. 114, 36–43.

HapMap LD data. 2005. Available at: www.hapmap.ncbi.nlm.nih.gov/downloads/ld_data/2005-10/.

Hinds, D.A., Stuve, L.L., Nilsen, G.B., *et al.* 2005. Whole-genome patterns of common DNA variation in three human populations. *Science* 307, 1072–1079.

Howie, B.N., Carlson, C.S., Rieder, M.J. *et al.* 2006. Efficient selection of tagging single-nucleotide polymorphisms in multiple populations. *Hum. Genet.* 120, 58–68.

International HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437, 1299-1320.

Johnson, G.C., Esposito, L., Barratt, B.J., *et al.* 2001. Haplotype tagging for the identification of common disease genes. *Nat. Genet.* 29, 233–237.

Ke, X., and Cardon, L.R. 2003. Efficient selective screening of haplotype tag SNPs. Bioinformatics 19, 287-288.

^{*}An extended abstract of this article, entitled "Efficient Algorithms for Genome-Wide TagSNP Selection Across Populations via the Linkage Disequilibrium Criterion," has appeared in the Proceedings of Computational Systems Bioinformatics (CSB'2007), August 2007, San Diego, CA.

Kruglyak, L., and Nickerson, D. 2001. Variation is the spice of life. Nat. Genet. 27, 234-236.

Lin, Z., and Altman, R.B. 2004. Finding haplotype tagging SNPs by use of principal components analysis. *Am. J. Hum. Genet.* 75, 850–861.

Liu, Z., Lin, S., and Tan, M. 2006. Genome-wide tagging SNPs with entropy-based Monte Carlo method. *J. Comput. Biol.* 13, 1606–1614.

Magi, R., Kaplinski, L., and Remm, M. 2006. The whole genome tagSNP selection and transferability among HapMap populations. *Pac. Symp. Biocomput.* 11, 535–543.

Need, A.C., and Goldstein, D.B. 2006. Genome-wide tagging for everyone. Nat. Genet. 38, 1227–1228.

Patil, N., Berno, A.J., Hinds, D.A., *et al.* 2001. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. *Science* 294, 1719–1723.

Phuong, T.M., Lin, Z., and Altman, R.B. 2005. Choosing SNPs using feature selection. *Proc. IEEE Comput. Syst. Bioinform. Conf. (CSB)* 301–309.

Qin, Z.S., Gopalakrishnan, S., and Abecasis, G.R. 2006. An efficient comprehensive search algorithm for tagSNP selection using linkage disequilibrium criteria. *Bioinformatics* 22, 220–225.

Sawyer, S.L., Mukherjee, N., Pakstis, A.J., et al. 2005. Linkage disequilibrium patterns vary substantially among populations. Eur. J. Hum. Genet. 13, 677–686.

Sebastiani, P., Lazarus, R., Weiss, S.T., et al. 2003. Minimal haplotype tagging. Proc. Natl. Acad. Sci. USA 100, 9900–9905.

Stram, D.O., Haiman, C.A., Hirschhorn, J.N., *et al.* 2003. Choosing haplotype tagging SNPs based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the multiethnic cohort study. *Hum. Hered.* 55, 27–36.

The International SNP Working Group. 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. *Nature* 409, 928–933.

Vazirani, V.V. 2003. Approximation Algorithms. Springer-Verlag, New York, NY.

Wang, N., Akey, J.M., Zhang, K., *et al.* 2002. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. *Am. J. Hum. Genet.* 71, 1227–1234.

Zhang, K., Deng, M., Chen, T., et al. 2002. A dynamic programming algorithm for haplotype partitioning. *Proc. Natl. Acad. Sci. USA* 99, 7335–7339.

Zhang, K., Qin, Z., Chen, T., *et al.* 2005. HapBlock: haplo-type block partitioning and tag SNP selection software using a set of dynamic programming algorithms. *Bioinformatics* 21, 131–134.

Zhang, K., and Jin, L. 2003. HaploBlockFinder: haplotype block analyses. Bioinformatics 19, 1300-1301.

Zeggini, E., Barton, A., Eyre, S., et al. 2005. Characterisation of the genomic architecture of human chromosome 17q and evaluation of different methods for haplotype block definition. BMC Genet. 6, 21.

Address correspondence to:

Dr. Lan Liu

Department of Computer Science and Engineering

University of California

Riverside, CA 92507

E-mail: 1.liu@cs.ucr.edu