
Discovering the Intrinsic Cardinality and Dimensionality of
Time Series using MDL

Bing Hu Thanawin Rakthanmanon Yuan Hao Scott Evans1 Stefano Lonardi Eamonn Keogh
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521, USA

1GE Global Research
{bhu002, rakthant, yhao002}@ucr.edu, 1evans@ge.com, {stelo, eamonn}@cs.ucr.edu

Abstract—Most algorithms for mining or indexing time series
data do not operate directly on the original data, but instead
they consider alternative representations that include
transforms, quantization, approximation, and multi-
resolution abstractions. Choosing the best representation and
abstraction level for a given task/dataset is arguably the most
critical step in time series data mining. In this paper, we
investigate techniques to discover the natural intrinsic
representation model, dimensionality and alphabet
cardinality of a time series. The ability to discover these
intrinsic features has implications beyond selecting the best
parameters for particular algorithms, as characterizing data
in such a manner is useful in its own right and an important
sub-routine in algorithms for classification, clustering and
outlier discovery. We will frame the discovery of these
intrinsic features in the Minimal Description Length (MDL)
framework. Extensive empirical tests show that our method is
simpler, more general and significantly more accurate than
previous methods, and has the important advantage of being
essentially parameter-free.

Keywords: Time Series, MDL, Dimensionality Reduction

I. INTRODUCTION
Most algorithms for indexing or mining time series data

operate on higher-level representations of the data, which
include transforms, quantization, approximations and
multi-resolution approaches. For instance, Discrete Fourier
Transform (DFT), Discrete Wavelet Transform (DWT),
Adaptive Piecewise Constant Approximation (APCA) and
Piecewise Linear Approximation (PLA) are models that all
have their advocates for various data mining tasks, and
each has been used extensively [5]. However the question
of choosing the best abstraction level and/or representation
of the data for a given task/dataset still remains open. In
this work, we investigate this problem by discovering the
natural intrinsic model, dimensionality and (alphabet)
cardinality of a time series. We will frame the discovery of
these intrinsic features in the Minimal Description Length
(MDL) framework [7][11][18][21]. MDL is the
cornerstone of many bioinformatics algorithms [6][20], but
it is arguably underutilized in time series data mining
[8][17].

The ability to discover the intrinsic dimensionality and
cardinality of time series has implications beyond setting
the best parameters for data mining algorithms, as
characterizing data in such a manner is useful in its own

right to understand/describe the data and an important sub-
routine in algorithms for classification, clustering and
outlier discovery [19][26]. To illustrate this, consider the
three unrelated datasets in Figure 1.

Figure 1. Three unrelated industrial time series with low intrinsic
cardinality. I) Evaporator (channel one). II) Winding (channel five). III)
Dryer (channel one).

The number of unique values in each time series is,
from top to bottom, 14, 500 and 62. However, we might
reasonably claim, that the intrinsic alphabet cardinality is
instead 2, 2, and 12 respectively. As it happens, an
understanding of the processes that produced these data
would perhaps support this claim [10]. In these datasets,
and indeed in many real-world datasets, there is a
significant difference between the actual and intrinsic
cardinality. Similar remarks apply to dimensionality.

Before we define more precisely what we mean by
actual versus intrinsic cardinality, we should elaborate on
the motivations behind our considerations. Our objective is
generally not simply to save memory1: if we are wastefully
using eight bytes per time point instead of using the mere
three bytes made necessary by the intrinsic cardinality, the
memory space saved is significant, but memory is getting
cheaper every day, and is rarely a bottleneck in data
mining tasks. There are instead many other reasons why
we may wish to find the true intrinsic model, cardinality
and dimensionality of the data, for example:
• There is an increasing interest in using specialized

hardware for data mining [22]. However, the
complexity of implementing data mining algorithms in
hardware typically grows super linearly with the
cardinality. For example, FPGAs usually cannot
handle cardinalities greater than 256 [22].

1 Although Section I.A shows an example where this is useful.

20 40 60 80 100

-1

0

1

100 200 300 400 500

-1

0

1

0

0

0 300 600 900-8
-4
0
4

I

II

III

2011 11th IEEE International Conference on Data Mining

1550-4786/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDM.2011.54

1086

• Some data mining algorithms benefit from having the
data represented in the lowest meaningful cardinality.
As a trivial example, in the stream: ����� ��� ��� ��� ��� ��� ���
��� �, we can easily find the rule that a ‘�’ follows two
appearances of ‘�’. However, notice that this rule is
not apparent in this string: ����� ��� �������� �������� ��� ���
�������������� even though it is essentially the same.

• Most time series indexing algorithms critically depend
on the ability to reduce the dimensionality [5] or the
cardinality [13] of the time series (or both [1] [2]), and
searching over the compacted representation in main
memory. However, setting the best level of
representation remains a black art.

• In resource-limited devices, it may be helpful to
remove the spurious precision induced by a
cardinality/dimensionally that is too high. We
elaborate on this issue below.

• Knowing the intrinsic model, cardinality and
dimensionality of a dataset allows us to create very
simple outlier detection models. We simply look for
data where the parameters discovered in new data
differ from our expectations learned on training data.
This is a simple idea, but it can be very effective.

To enhance our appreciation of the potential utility of
knowing the intrinsic cardinality and dimensionality of the
data, we briefly consider an application in classification.

A. A CONCRETE EXAMPLE
For concreteness we present a simple scenario that

shows the utility of understanding the intrinsic
cardinality/dimensionality of data. Suppose we wish to
build a time series classifier into a device with a limited
memory footprint such as a cell phone or pacemaker [23].
Let us suppose we have only 20kB available for the
classifier, and that (as is the case with the benchmark
dataset, TwoPat [10]) each time series exemplar has a
dimensionality of 128 and takes 4 bytes per value.

One could choose decision trees or Bayesian classifiers
because they are space efficient, however it is well known
that nearest neighbor classifiers are very difficult to beat
for time series problems [5]. If we had simply stored forty
random samples in the memory for our nearest neighbor
classifier, the average error rate over fifty runs would be a
respectable 58.7% for a four-class problem. However, we
could also down-sample the dimensionality by a factor of
two, either by skipping every second point, or by averaging
pairs of points (as in SAX [13]), and place eighty reduced
quality samples in memory. Or perhaps we could instead
reduce the alphabet cardinality, by reducing the precision
of the original four bytes to just one byte, thus allowing
160 reduced-fidelity objects to be placed in memory. Many
other combinations of dimensionality and cardinality
reduction could be tested, which would trade reduced
fidelity to the original data for more exemplars stored in
memory. In this case, a dimensionality of 32 and a
cardinality of 6 allow us to place 852 objects in memory
and achieve an error rate of about 90.75%, a remarkable
accuracy improvement given the limited resources. As we

shall see, we found this combination of parameters using
our MDL technique.

In general, testing all the combinations of parameters is
computationally infeasible. Furthermore, while in this case
we have class labels to guide us through the search of
parameter space, this would not be the case for other
unsupervised data mining algorithms, such as clustering,
motif discovery [14], outlier discovery [3][24][26], and etc.

As we shall show, our MDL framework allows us to
automatically discover the parameters that reflect the
intrinsic model/cardinality/dimensionally of the data
without requiring external information or expensive cross
validation search.

II. DEFINITIONS AND NOTATION
We begin with the definition of a time series:

Definition 1: A time series T is an ordered list of numbers.
T=t1,t2,...,tm. Each value ti is a finite precision number and m is
the length of time series T.

Before continuing we must justify the decision of
(slightly) quantizing the time series. MDL is only defined
for discrete values2, but most time series are real-valued.
The obvious solution is to reduce the original number of
possible values to a manageable amount. However the
reader may object that such a drastic reduction in precision
must surely lose some significant information. However
this is not the case. To illustrate this point, we performed a
simple experiment. From each of the twenty diverse
datasets in the UCR archive [10] we randomly extracted
one hundred pairs of time series. For each pair of time
series we measured their Euclidean distance in the original
high dimensional space, and then in the quantized 256-
cardinality space, and used these pairs of distances to plot a
point in a scatter plot. Figure 2 shows the results.

Figure 2. Each point on this plot corresponds to a pair of time series: the
x-axis corresponds to their Euclidean distance, while the y-axis
corresponds to the Euclidean distance between the 8-bit quantized
representation of the same pair.

The figure illustrates that all the points fall close to the
diagonal, thus the quantization makes no perceptible
difference. Beyond this subjective visual test, we also
reproduced the heavily cited UCR time series classification
benchmark experiments [10], replacing the original data

2 The closely related technique of MML (Minimum Message Length [25])

does allow for continuous real-valued data. However, here we stick
with the more familiar MDL formulation.

0 10 20 30 40
0

10

20

30

40

Euclidean dist of real-valued pairs

Eu
cl

id
ea

n
di

st
 o

f r
ed

uc
ed

ca

rd
in

al
ity

pa
irs

1087

with the 256-cardinality version. In no case did it make
more than one tenth of one percent difference to
classification accuracy (full details are at [28]). Given this,
we simply reduce all the time series data to its 256
cardinality version in this work, by using discretization:

Definition 2: Discretization is a function used to normalize a
real-valued time series T into b-bit discrete values in the
range [-2b-1, 2b-1-1]. It is defined as following:

��	
��
���
������� � ������ � � � ���
��� ����� � ��

� � �� � �� !
where min and max are the minimum and maximum value in T,
respectively3.

For any time series T, we are interested in determining
how many bits it takes to represent it. We can thus define
the description length of a time series.

Definition 3: A description length DL of a time series T is
the total number of bits required to represent it. When
Huffman coding is used to compress the time series T, the
description length of time series T is defined by:

DL (T) = | HuffmanCoding(T) |

In the current literature, the number of bits required to
store the time series depends on the idiosyncrasies of the
data format or hardware device, not on any intrinsic
properties of the data or domain. However we are really
interested in knowing the minimum number of bits to
exactly represent the data, the intrinsic amount of
information in the time series. Unfortunately, in the general
case this is not calculable, as it is the Kolmogorov
complexity of the time series [12]. However, we can
approximate the Kolmogorov complexity by compressing
the data, using say Huffman coding [7][24][27]. The
(lossless) compressed file size is clearly an upper bound to
the DL of the time series [4].

One of the key steps in finding the intrinsic cardinality
and/or dimensionality is converting a given time series to
other representation or model, e.g., by using DFT or DWT.
We call that representation, a hypothesis:

Definition 4: A hypothesis H is a representation of a discrete
time series T after applying a transformation M.

In general, there are many possible transforms M.
Examples include the Discrete Wavelet Transform (DWT),
the Discrete Fourier transform (DFT), the Adaptive
Piecewise Linear Approximation (APCA), the Piecewise
Linear Approximation (PLA), etc.[5]. Figure 6 shows
three illustrative examples, DFT, APCA, and PLA. In this
paper, we demonstrate our ideas using these three the most
commonly used representations (two are relegated to the
expanded version in [28]). Note however that our ideas
apply to all time series models (see [5] for a survey of time
series representations).

Note that we use the term model interchangeably with
the term hypothesis in this work.

3 This slightly awkward formula is necessary because we use the
symmetric range [-128,127]. If we use range [1, 256] instead we get a
more elegant: ��	
��
���
������ � ������" �����

�������# �� "�$ � �#% �� .

Definition 5: A reduced description length of a time series T
given hypothesis H is the number of bits used for encoding
time series T, exploiting information in the hypothesis H, i.e.,
DL (T�H), and the number of bits used for encoding H, i.e., DL
(H). Thus, the reduced description length is defined as:

DL (T, H) = DL (H) + DL (T�H)
The first term, DL (H), called the model cost, is the

number of bits required to store the hypothesis H. In brief,
the model cost for say the piecewise linear approximation
would include the bits needed to encode the mean, slope
and length of each linear segment.

The second term, DL (T�H), called the correction cost
(in some works it is called the description cost or error
term) is the number of bits required to rebuild the entire
time series T from the given hypothesis H.

There are many possible ways to encode T using H.
However, if we just simply store the differences (i.e. the
difference vector) between T and H, we can easily re-
generate a whole time series T from the information we
have. Thus, we simply use DL (T�H) = DL (T-H).

We will demonstrate how to calculate the reduced
description length more in detail in the next section.

III. MDL MODELING OF TIME SERIES

A. AN INTUITIVE EXAMPLE OF OUR BASIC IDEA
For concreteness, we will consider a simple worked

example comparing two possible dimensionalities of data.
Note that here we are assuming a cardinality of 16, and a
model of APCA. However, more generally we do not need
to make such assumptions. Let us consider a sample time
series T of length 24:

T = 1 1 1 2 3 4 5 6 7 8 9 10 11 11 12 12 12 12 11 11 10 10 9 7

In Figure 3 we show a plot of this data.

Figure 3. A sample time series T.

We can attempt to model this data with a single
constant line, a special case of APCA. We begin by
finding the mean of all the data, which (rounding in our
integer space) is eight. We can create a hypothesis H1 to
model this data, which as shown in Figure 4. It is simply a
constant line with a mean of eight. There are 16 possible
values this model could have had. Thus DL (H1) = 4 bits.

Figure 4. Time series T (blue/fine), approximated by a one-dimensional
APCA approximation H1 (red/bold). The error for this model is
represented by the vertical lines.

1 2 4 6 8 10 12 14 16 18 20 22 24

1 2 4 6 8 10 12 14 16 18 20 22 24

1088

 This model H1 has an error modeling T, and we must
account for it. The errors e1, represented by the length of
the vertical lines in Figure 4 are:

e1 = 7 7 7 6 5 4 3 2 1 0 -1 -2 -3 -3 -4 -4 -4 -4 -3 -3 -2 -2 -1 1

As noted in Definition 5, the cost to represent these
errors is the correction cost, the number of bits encoding e1
using Huffman coding, which is 82 bits. Thus the overall
cost to represent T with a one-dimensional model or its
reduced description length is:

�&���'!� � �&��('!� % �&�'!��
�&��� '!� � $� %) � $*�+,-.

We can now test to see if hypothesis H2, which models
the data with two constant lines could reduce the
description length. Figure 5 shows the two segment
approximation lines created by APCA.

Figure 5. Time series T (blue/fine), approximated by a two-dimensional
APCA approximation H2 (red/bold). Vertical lines represent the error.

As we expect, the error e2 shown as the vertical lines in
Figure 5 is smaller than the error e1. In particular, the error
e2 is:

e2 = 2 2 2 1 0 -1 -2 -3 3 2 1 0 -1 -1 -2 -2 -2 -2 -1 -1 0 0 1 3

The number of bits encoding e2 using Huffman coding
or the correction cost to generate the time series T given
the hypothesis H2, DL (T�H2), is 65 bits. Although the
correction cost is smaller than one-dimensional APCA, the
model cost is larger. In order to store two constant lines,
two constant numbers corresponding to the height of each
line and a pointer indicating the end position of the first
line are required. Thus, the reduced description length of
model H2 is:

�&��� '/� � �&��('/� % �&�'/��
�&���'/� � �*0� % �� � 1�2/��*� % 31�2/��)�4 � 5$�+,-.
Because we have��&��� '/� 6 ��&��� '!��, we prefer

H2 as a proper number of segments for our data.
Clearly we are not done yet, we should also test H3, H4,

H5, etc., corresponding to 3, 4, 5, etc. piecewise constant
segments. Moreover, we can also test alterative models
corresponding to different levels of DFT or PLA
representation. In addition, we can also test different
cardinalities, because it is possible that the 16-value
cardinality was unnecessary for this domain. For example,
suppose we had been given T2 instead:

T2 = 0 0 0 0 4 4 4 4 4 0 0 0 0 8 8 8 8 8 8 12 12 12 12 12

Here, if we tested multiple hypotheses as to the
cardinality of this data, we would hope to find that the
hypothesis '78� that attempts to encode the data with a
cardinality of just 4 would result in the smallest model.

We have shown a detailed example for APCA;
however, essentially all the time series representations can
be encoded in a similar way. As shown with three
representative examples in Figure 6, essentially all the
time series models consist of a set of basic functions (i.e.,
coefficients) that are linearly combined to produce an
approximation of the data.

Figure 6. A time series T shown in bold/blue and three different models
of it shown in fine/red: from left to right: DFT, APCA, and PLA.

As we apply our ideas to each representation, we must
be careful to correctly “charge” each model for its
approximation level. For example, each APCA segment
requires two numbers, to encode its mean value and its
length. However, PLA segments require three numbers,
mean value, segment length and slope. Each DFT
coefficient requires two numbers to encode the amplitude
and phase of each sine wave, however, because of the
complex conjugate property, we get a “free” coefficient for
each one we record [2][5]. In previous comparisons of the
indexing performance of various time series
representations, many authors [9] have given an unfair
advantage to one representation by the counting cost to
represent an approximation incorrectly. The ideas in this
work do explicitly assume a fair comparison. Fortunately,
the community seems more aware of this problem in recent
years [2] [16].

In the next section we give both the generic version of
the MDL model discovery for time series algorithm, and a
concrete instantiations for APCA. Other two instantiations
for DFT and PLA are explained in [28].

B. GENERIC MDL FOR TIME SERIES ALGORITHM
In the last section, we use a toy example for

demonstrating how to compute the reduced description
length of a time series with competing hypothesis. In this
section, we will show a detailed generic version of our
algorithm, and then explain our algorithm in detail for the
three most commonly used time series representations.

Our algorithm can not only discover the intrinsic
cardinality and dimensionality of an input time series, but
can also be used to find the right model or data
representation for the given time series. TABLE I shows a
high-level view of our algorithm for discovering the best
model, cardinality, and dimensionality which will
minimize the total number of bits required to store the
input time series.

Because MDL is a heart of our algorithm, the first step
in our algorithm is to quantize a real-value time series into

1 2 4 6 8 10 12 14 16 18 20 22 24

0 40 80 120 0 40 80 120 0 40 80 120

1089

a discrete-value (but still fine-grained) time series, T (line
1). Next, we consider each model, cardinality, and
dimensionality one by one (line 3-5). Then a hypothesis H
is created based on the selected model and parameters (line
6). For example, a hypothesis H shown in Figure 5 is
created when the model M=APCA, cardinality c=16, and
dimensionality d=2; note that, in that case, the length of
input time series was m=24.

The reduced description length defined in Definition 5
is then calculated (line 7), and our algorithm returns the
model and parameters which minimized the reduced
description length for encoding T (line 8-13).

TABLE I. GENERIC MDL FOR TIME SERIES ALGORITHM

Input: TS : time series
Output: best_model : best model
 best_card : best cardinality
 best_dim : best dimensionality
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

T = Discretization(TS)
bsf = �
for all M in {APCA,PLA,DFT}
 for all cardinality c
 for all dimensionality d
 H = ModelRespresentation(T,M,c,d)
 toal_cost = DL(H)+ DL(T|H)
 if (bsf > toal_cost)
 bsf = toal_cost
 best_model = M
 best_card = c
 best_dim = d
 end if
 end for
 end for
end for

For concreteness we will now consider specific
versions of our generic algorithm. See [28] for more details.

C. ADAPTIVE PIECEWISE CONSTANT APPROXIMATION
As we have seen in a previous section, an APCA model

is simple; it contains only constant lines. The pseudo code
for APCA shown in TABLE II is very similar to the
generic algorithm. First of all, we do quantization on the
input time series (line 1). Then, we evaluate all
cardinalities from 2 to 256 and dimensionalities from 2 to
the maximum possible number, which is a half of the
length of input time series TS (line 3-4).

TABLE II. OUR ALGORITHM SPECIFIC TO APCA

Algorithm: IntrinsicDiscovery for APCA
1
2
3
4
5
6
7
8
9
10
11
12
13
14

T = Discretization(TS)
bsf = �
for c = 2 to 256
 for d = 2 to m/2
 H = APCA(T,c,d)
 model_cost =d*log2(c)+(d-1)*log2(m)
 total_cost = model_cost + DL(T-H)
 if (bsf > total_cost)
 bsf = total_cost
 best_card = c
 best_dim = d
 end if
 end for
end for

Note that if the dimensionality was more than m/2,
some segments will contain only one point. Then, a
hypothesis H is created using the values of cardinality c and
dimensionality d, as shown in Figure 5 when c=16 and
d=2. The model contains d constant segments so the model

cost is the number of bits required for storing d constant
numbers, and d-1 pointers to indicate the offset of the end
of each segment (line 6). The difference between T and H
is also required to rebuild T. The correction cost
(Definition 5) is computed; then the reduced description
length is the combination of the model cost and the
correction cost (line 7). Finally, the hypothesis which
minimized this value is returned as an output of the
algorithm (line 8-13).

The algorithms for Piecewise Linear Approximation
and DFT are similar and are relegated to the extended
version of this paper [28].

IV. EXPERIMENTAL EVALUATION
To ensure that our experiments are easily reproducible,

we have built a website which contains all data and code,
together with the raw spreadsheets for the results [28]. In
addition this website contains additional experiments that
are omitted here for brevity.

A. AN EXAMPLE APPLICATION IN PHYSIOLOGY
The Muscle dataset studied by Mörchen and Ultsch [15]

describes the muscle activation of a professional inline
speed skater. The authors calculated the muscle activation
from the original EMG (Electromyography) measurements
by taking the logarithm of the energy derived from a
wavelet analysis. Figure 7.top shows an excerpt. At first
glance it seems to have two states, which correspond to our
(perhaps) naive intuitions about skating and muscle
physiology.

Figure 7. top) An excerpt from the Muscle dataset. bottom) A zoomed-in
section of the Muscle dataset which had its model, dimensionality and
cardinality set by MDL.

We can test this binary assumption by using MDL to
find the model, dimensionality and cardinality. The results
for model and dimensionality are objectively correct, as we
might have expected given the results in the previous
section, but the results for cardinality, shown in Figure
8.left are worth examining.

Figure 8. left) The description length of the muscle activation time series
is minimized with a cardinality of three, which is the correct answer.
right) The PERSIST algorithm, [15] predicts a value of four.

0 1000 2000 3000 4000

0 10000 20000

stroke stroke

glide glide glide

push offpush off

DL(H)

0 10 20 30 40 50 60

0
2000
4000

DL(T |H)

DL(T |H) + DL(H)

The minimum is at 3
2 3 4 5 6 70

0.2

0.4

0.6

0.8

P
er

si
st

en
ce

1090

Our MDL method suggests a cardinality of three.
Glancing back at Figure 7.bottom shows why. At the end
of the stroke there is an additional level corresponding to
an additional push-off by the athlete. This feature was
noted by physiologists that worked with Mörchen and
Ultsch [15]. However, their algorithm weakly predicts a
value of four4. Here once again we find the MDL can beat
rival approaches, even though the rival approach attempted
the most favorable parameter tuning.

V. CONCLUSIONS
We have shown that a simple methodology based on

MDL can robustly specify the intrinsic model, cardinality
and dimensionality of time series data from a wide variety
of domains. Our method has significant advantages over
revival methods in that it is more general and is essentially
parameter-free. We have further shown applications of our
ideas to resource-limited classification and anomaly
detection. We have given away all our (admittedly very
simple) code and datasets so that others can confirm and
build on our results [28].

ACKNOWLEDGEMENTS AND NOTES

This project was supported by the Department of the
United States Air Force, Air Force Research Laboratory
under Contract FA8750-10-C-0160, and by NSF grants
0803410/ 0808770. The first two authors contributed
equally and did the bulk of the work, and should be
consider joint first authors.

REFERENCES
[1] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The TS-Tree:

Efficient Time Series Search and Retrieval. EDBT, 2008.
[2] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. iSAX 2.0:

Indexing and Mining One Billion Time Series, International
Conference on Data Mining. 2010.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey, ACM Comput. Surv. 41, 3, 2009.

[4] S. De Rooij and P. Vitányi. Approximating Rate-Distortion
Graphs of Individual Data: Experiments in Lossy
Compression and Denoising. IEEE Trans’ on Computers.

[5] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E.
Keogh. Querying and mining of time series data:
experimental comparison of representations and distance
measures. VLDB, pp. 1542-1552, 2008.

[6] S.C. Evans et al. MicroRNA target detection and analysis for
genes related to breast cancer using MDL compress.
EURASIP J. Bioinform. Syst. Biol., pp. 1-16, 2007.

[7] P.D. Grünwald, I.J. Myung, and M.A. Pitt, Advances in
Minimum Description Length: Theory and Applications, MIT
Press, 2005.

[8] I. Jonyer, L. B. Holder, and D. J. Cook, Attribute-Value
Selection Based on Minimum Description Length.
International Conference on Artificial Intelligence, 2004.

[9] E. Keogh and M. J. Pazzani, A Simple Dimensionality
Reduction Technique for Fast Similarity Search in Large
Time Series Databases. PAKDD, pp.122-133, 2000.

4 The values for k = 3, 4 or 5 do not differ by more than 1%.

[10] E. Keogh, Q. Zhu, B. Hu, Y. Hao , X. Xi, L. Wei, and C. A.
Ratanamahatana. The UCR Time Series Classification
/Clustering Homepage:
www.cs.ucr.edu/~eamonn/time_series_data/, 2011.

[11] P. Kontkanen and P. Myllym. MDL histogram density
estimation. Proceedings of the Eleventh International
Workshop on Artificial Intelligence and Statistics, 2007.

[12] M. Li and P. Vitanyi. An Introduction to Kolmogorov
Complexity and Its Applications. 2nd Ed, Springer, 1997.

[13] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX:
a novel symbolic representation of time series. Journal of
DMKD 15, 2, pp. 107-144, 2007.

[14] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in
time series. In Proc. of 2nd Workshop on Temporal Data
Mining, 2002.

[15] F. Mörchen and A. Ultsch. Optimizing time series
discretization for knowledge discovery. KDD, 2005.

[16] T. Palpanas, M. Vlachos, E. Keogh, and D. Gunopulos.
Streaming Time Series Summarization Using User-Defined
Amnesic Functions. IEEE Trans. Knowl. Data Eng. 20, 7, pp.
992-1006, 2008.

[17] S. Papadimitriou, A. Gionis, P. Tsaparas, A. Väisänen , H.
Mannila and C. Faloutsos . Parameter-free spatial data
mining using MDL. ICDM, 2005

[18] E.P.D. Pednault. Some Experiments in Applying Inductive
Inference Principles to Surface Reconstruction. IJCAI, pp.
1603-1609, 1989.

[19] P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R.
Dave, and C. Alcock. Finding outlier light-curves in catalogs
of periodic variable stars. Monthly Notices of the Royal
Astronomical Society, 369, pp. 677–696, 2006.

[20] J. Rissanen. Stochastic Complexity in Statistical Inquiry.
World Scientific, Singapore, 1989.

[21] J. Rissanen, T. Speed and B. Yu. Density estimation by
stochastic complexity. IEEE Trans. On Information Theory,
38, 315-323, 1992.

[22] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E.
Keogh. Accelerating Dynamic Time Warping Subsequence
Search with GPUs and FPGAs. IEEE International
Conference on Data Mining, pp. 1001- 1006, 2010.

[23] A. Vahdatpour and M. Sarrafzadeh. Unsupervised Discovery
of Abnormal Activity Occurrences in Multi-dimensional
Time Series, with Applications in Wearable Systems. SIAM
International Conference on Data Mining, 2010.

[24] N. Vereshchagin and P. Vitanyi. Rate distortion and
denoising of individual data using Kolmogorov complexity.
IEEE Trans. Information Theory 56, 7, pp. 3438–3454, 2010.

[25] C.S. Wallace and D. M. Boulton. An information measure for
classification. Computer Journal 11, 2, pp.185-194, 1968.

[26] D. Yankov, E. Keogh, and U. Rebbapragada. Disk aware
discord discovery: finding unusual time series in terabyte
sized datasets. Knowl. Inf. Syst. 17, 2, pp. 241-262, 2008.

[27] H.J. Zwally and P. Gloersen. Passive microwave images of
the polar regions and research applications. Polar Records 18,
pp. 431-450, 1977.

[28] Project URL: www.cs.ucr.edu/~bhu002/MDL/MDL.html
This URL contains all data and code used in this paper. In
addition it contains many additional experiments omitted for
brevity.

1091

