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Abstract—Most algorithms for mining or indexing time series 
data do not operate directly on the original data, but instead 
they consider alternative representations that include 
transforms, quantization, approximation, and multi-
resolution abstractions. Choosing the best representation and 
abstraction level for a given task/dataset is arguably the most 
critical step in time series data mining. In this paper, we 
investigate techniques to discover the natural intrinsic 
representation model, dimensionality and alphabet 
cardinality of a time series.  The ability to discover these 
intrinsic features has implications beyond selecting the best 
parameters for particular algorithms, as characterizing data 
in such a manner is useful in its own right and an important 
sub-routine in algorithms for classification, clustering and 
outlier discovery. We will frame the discovery of these 
intrinsic features in the Minimal Description Length (MDL) 
framework. Extensive empirical tests show that our method is 
simpler, more general and significantly more accurate than 
previous methods, and has the important advantage of being 
essentially parameter-free.   

Keywords: Time Series, MDL, Dimensionality Reduction  

I. INTRODUCTION 
Most algorithms for indexing or mining time series data 

operate on higher-level representations of the data, which 
include transforms, quantization, approximations and 
multi-resolution approaches. For instance, Discrete Fourier 
Transform (DFT), Discrete Wavelet Transform (DWT), 
Adaptive Piecewise Constant Approximation (APCA) and 
Piecewise Linear Approximation (PLA) are models that all 
have their advocates for various data mining tasks, and 
each has been used extensively [5]. However the question 
of choosing the best abstraction level and/or representation 
of the data for a given task/dataset still remains open. In 
this work, we investigate this problem by discovering the 
natural intrinsic model, dimensionality and (alphabet) 
cardinality of a time series. We will frame the discovery of 
these intrinsic features in the Minimal Description Length 
(MDL) framework [7][11][18][21]. MDL is the 
cornerstone of many bioinformatics algorithms [6][20], but 
it is arguably underutilized in time series data mining 
[8][17]. 

The ability to discover the intrinsic dimensionality and 
cardinality of time series has implications beyond setting 
the best parameters for data mining algorithms, as 
characterizing data in such a manner is useful in its own 

right to understand/describe the data and an important sub-
routine in algorithms for classification, clustering and 
outlier discovery [19][26]. To illustrate this, consider the 
three unrelated datasets in Figure 1. 

Figure 1. Three unrelated industrial time series with low intrinsic 
cardinality. I) Evaporator (channel one). II) Winding (channel five).  III) 
Dryer (channel one). 

The number of unique values in each time series is, 
from top to bottom, 14, 500 and 62. However, we might 
reasonably claim, that the intrinsic alphabet cardinality is 
instead 2, 2, and 12 respectively.  As it happens, an 
understanding of the processes that produced these data 
would perhaps support this claim [10].  In these datasets, 
and indeed in many real-world datasets, there is a 
significant difference between the actual and intrinsic 
cardinality. Similar remarks apply to dimensionality. 

Before we define more precisely what we mean by 
actual versus intrinsic cardinality, we should elaborate on 
the motivations behind our considerations. Our objective is 
generally not simply to save memory1: if we are wastefully 
using eight bytes per time point instead of using the mere 
three bytes made necessary by the intrinsic cardinality, the 
memory space saved is significant, but memory is getting 
cheaper every day, and is rarely a bottleneck in data 
mining tasks. There are instead many other reasons why 
we may wish to find the true intrinsic model, cardinality 
and dimensionality of the data, for example: 
• There is an increasing interest in using specialized 

hardware for data mining [22]. However, the 
complexity of implementing data mining algorithms in 
hardware typically grows super linearly with the 
cardinality. For example, FPGAs usually cannot 
handle cardinalities greater than 256 [22]. 

                                                                 
1 Although Section I.A shows an example where this is useful. 
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• Some data mining algorithms benefit from having the 
data represented in the lowest meaningful cardinality. 
As a trivial example, in the stream: ����� ��� ��� ��� ��� ��� ���
��� �, we can easily find the rule that a ‘�’ follows two 
appearances of ‘�’.  However, notice that this rule is 
not apparent in this string: ����� ��� �������� �������� ��� ���
�������������� even though it is essentially the same. 

• Most time series indexing algorithms critically depend 
on the ability to reduce the dimensionality [5] or the 
cardinality [13] of the time series (or both [1] [2]), and 
searching over the compacted representation in main 
memory. However, setting the best level of 
representation remains a black art. 

• In resource-limited devices, it may be helpful to 
remove the spurious precision induced by a 
cardinality/dimensionally that is too high. We 
elaborate on this issue below. 

• Knowing the intrinsic model, cardinality and 
dimensionality of a dataset allows us to create very 
simple outlier detection models. We simply look for 
data where the parameters discovered in new data 
differ from our expectations learned on training data. 
This is a simple idea, but it can be very effective.     

To enhance our appreciation of the potential utility of 
knowing the intrinsic cardinality and dimensionality of the 
data, we briefly consider an application in classification.  

A. A CONCRETE EXAMPLE 
For concreteness we present a simple scenario that 

shows the utility of understanding the intrinsic 
cardinality/dimensionality of data. Suppose we wish to 
build a time series classifier into a device with a limited 
memory footprint such as a cell phone or pacemaker [23]. 
Let us suppose we have only 20kB available for the 
classifier, and that (as is the case with the benchmark 
dataset, TwoPat [10]) each time series exemplar has a 
dimensionality of 128 and takes 4 bytes per value. 

One could choose decision trees or Bayesian classifiers 
because they are space efficient, however it is well known 
that nearest neighbor classifiers are very difficult to beat 
for time series problems [5]. If we had simply stored forty 
random samples in the memory for our nearest neighbor 
classifier, the average error rate over fifty runs would be a 
respectable 58.7% for a four-class problem. However, we 
could also down-sample the dimensionality by a factor of 
two, either by skipping every second point, or by averaging 
pairs of points (as in SAX [13]), and place eighty reduced 
quality samples in memory. Or perhaps we could instead 
reduce the alphabet cardinality, by reducing the precision 
of the original four bytes to just one byte, thus allowing 
160 reduced-fidelity objects to be placed in memory. Many 
other combinations of dimensionality and cardinality 
reduction could be tested, which would trade reduced 
fidelity to the original data for more exemplars stored in 
memory. In this case, a dimensionality of 32 and a 
cardinality of 6 allow us to place 852 objects in memory 
and achieve an error rate of about 90.75%, a remarkable 
accuracy improvement given the limited resources. As we 

shall see, we found this combination of parameters using 
our MDL technique.  

In general, testing all the combinations of parameters is 
computationally infeasible. Furthermore, while in this case 
we have class labels to guide us through the search of 
parameter space, this would not be the case for other 
unsupervised data mining algorithms, such as clustering, 
motif discovery [14], outlier discovery [3][24][26], and etc.  

As we shall show, our MDL framework allows us to 
automatically discover the parameters that reflect the 
intrinsic model/cardinality/dimensionally of the data 
without requiring external information or expensive cross 
validation search.  

II. DEFINITIONS AND NOTATION   
We begin with the definition of a time series:   

Definition 1: A time series T is an ordered list of numbers. 
T=t1,t2,...,tm. Each value ti is a finite precision number and m is 
the length of time series T.  

Before continuing we must justify the decision of 
(slightly) quantizing the time series. MDL is only defined 
for discrete values2, but most time series are real-valued. 
The obvious solution is to reduce the original number of 
possible values to a manageable amount. However the 
reader may object that such a drastic reduction in precision 
must surely lose some significant information. However 
this is not the case. To illustrate this point, we performed a 
simple experiment. From each of the twenty diverse 
datasets in the UCR archive [10] we randomly extracted 
one hundred pairs of time series. For each pair of time 
series we measured their Euclidean distance in the original 
high dimensional space, and then in the quantized 256-
cardinality space, and used these pairs of distances to plot a 
point in a scatter plot.  Figure 2 shows the results.  

 
Figure 2. Each point on this plot corresponds to a pair of time series: the 
x-axis corresponds to their Euclidean distance, while the y-axis 
corresponds to the Euclidean distance between the 8-bit quantized 
representation   of the same pair. 

The figure illustrates that all the points fall close to the 
diagonal, thus the quantization makes no perceptible 
difference. Beyond this subjective visual test, we also 
reproduced the heavily cited UCR time series classification 
benchmark experiments [10], replacing the original data 

                                                                 
2 The closely related technique of MML (Minimum Message Length [25]) 

does allow for continuous real-valued data. However, here we stick 
with the more familiar MDL formulation.   
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with the 256-cardinality version. In no case did it make 
more than one tenth of one percent difference to 
classification accuracy (full details are at [28]).  Given this, 
we simply reduce all the time series data to its 256 
cardinality version in this work, by using discretization: 

Definition 2: Discretization is a function used to normalize a 
real-valued time series T into b-bit discrete values in the 
range [-2b-1, 2b-1-1]. It is defined as following: 

��	
��
���
������� � ������ � � � ���
��� ����� � ��

� � �� � �� ! 
where min and max are the minimum and maximum value in T, 
respectively3. 

For any time series T, we are interested in determining 
how many bits it takes to represent it. We can thus define 
the description length of a time series.   

Definition 3: A description length DL of a time series T is 
the total number of bits required to represent it. When 
Huffman coding is used to compress the time series T, the 
description length of time series T is defined by: 

DL (T) = | HuffmanCoding(T) | 

In the current literature, the number of bits required to 
store the time series depends on the idiosyncrasies of the 
data format or hardware device, not on any intrinsic 
properties of the data or domain. However we are really 
interested in knowing the minimum number of bits to 
exactly represent the data, the intrinsic amount of 
information in the time series. Unfortunately, in the general 
case this is not calculable, as it is the Kolmogorov 
complexity of the time series [12]. However, we can 
approximate the Kolmogorov complexity by compressing 
the data, using say Huffman coding [7][24][27]. The 
(lossless) compressed file size is clearly an upper bound to 
the DL of the time series [4].  

One of the key steps in finding the intrinsic cardinality 
and/or dimensionality is converting a given time series to 
other representation or model, e.g., by using DFT or DWT. 
We call that representation, a hypothesis: 

Definition 4: A hypothesis H is a representation of a discrete 
time series T after applying a transformation M.  

In general, there are many possible transforms M. 
Examples include the Discrete Wavelet Transform (DWT), 
the Discrete Fourier transform (DFT), the Adaptive 
Piecewise Linear Approximation (APCA), the Piecewise 
Linear Approximation (PLA), etc.[5]. Figure  6 shows 
three illustrative examples, DFT, APCA, and PLA. In this 
paper, we demonstrate our ideas using these three the most 
commonly used representations (two are relegated to the 
expanded version in [28]). Note however that our ideas 
apply to all time series models (see [5] for a survey of time 
series representations).   

Note that we use the term model interchangeably with 
the term hypothesis in this work.  
                                                                 
3  This slightly awkward formula is necessary because we use the 
symmetric range [-128,127]. If we use range [1, 256] instead we get a 
more elegant:  ��	
��
���
������ � ������" �����

�������# �� "�$ � �#% �� . 

Definition 5: A reduced description length of a time series T 
given hypothesis H is the number of bits used for encoding 
time series T, exploiting information in the hypothesis H, i.e., 
DL (T�H), and the number of bits used for encoding H, i.e., DL 
(H). Thus, the reduced description length is defined as: 

DL (T, H) = DL (H) + DL (T�H)  
The first term, DL (H), called the model cost, is the 

number of bits required to store the hypothesis H. In brief, 
the model cost for say the piecewise linear approximation 
would include the bits needed to encode the mean, slope 
and length of each linear segment. 

The second term, DL (T�H), called the correction cost 
(in some works it is called the description cost or error 
term) is the number of bits required to rebuild the entire 
time series T from the given hypothesis H.  

There are many possible ways to encode T using H. 
However, if we just simply store the differences (i.e. the 
difference vector) between T and H, we can easily re-
generate a whole time series T from the information we 
have. Thus, we simply use DL (T�H) = DL (T-H).  

We will demonstrate how to calculate the reduced 
description length more in detail in the next section. 

III. MDL MODELING OF TIME SERIES 

A. AN INTUITIVE EXAMPLE OF OUR BASIC IDEA 
For concreteness, we will consider a simple worked 

example comparing two possible dimensionalities of data. 
Note that here we are assuming a cardinality of 16, and a 
model of APCA. However, more generally we do not need 
to make such assumptions. Let us consider a sample time 
series T of length 24: 

T = 1 1 1 2 3 4 5 6 7 8 9 10 11 11 12 12 12 12 11 11 10 10 9 7 

In Figure 3 we show a plot of this data. 

 
Figure 3.  A sample time series T. 

We can attempt to model this data with a single 
constant line, a special case of APCA.  We begin by 
finding the mean of all the data, which (rounding in our 
integer space) is eight. We can create a hypothesis H1 to 
model this data, which as shown in Figure 4. It is simply a 
constant line with a mean of eight. There are 16 possible 
values this model could have had. Thus DL (H1) = 4 bits.  

 
Figure 4. Time series T (blue/fine), approximated by a one-dimensional 
APCA approximation H1 (red/bold). The error for this model is 
represented by the vertical lines.  

1 2 4 6 8 10 12 14 16 18 20 22 24

1 2 4 6 8 10 12 14 16 18 20 22 24
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      This model H1 has an error modeling T, and we must 
account for it. The errors e1, represented by the length of 
the vertical lines in Figure 4 are: 

e1 = 7  7  7  6  5  4  3  2  1  0  -1 -2 -3 -3 -4 -4 -4 -4 -3 -3 -2 -2 -1  1 

As noted in Definition 5, the cost to represent these 
errors is the correction cost, the number of bits encoding e1 
using Huffman coding, which is 82 bits. Thus the overall 
cost to represent T with a one-dimensional model or its 
reduced description length is:  

�&���'!� � �&��('!� % �&�'!�� 
�&��� '!� � $� % ) � $*�+,-. 

We can now test to see if hypothesis H2, which models 
the data with two constant lines could reduce the 
description length. Figure 5 shows the two segment 
approximation lines created by APCA.  

 
Figure 5. Time series T (blue/fine), approximated by a two-dimensional 
APCA approximation H2 (red/bold). Vertical lines represent the error. 

As we expect, the error e2 shown as the vertical lines in 
Figure 5 is smaller than the error e1. In particular, the error 
e2 is:  

e2 = 2  2  2  1  0 -1 -2 -3  3  2  1  0 -1 -1 -2 -2 -2 -2 -1 -1  0  0  1  3 

The number of bits encoding e2 using Huffman coding 
or the correction cost to generate the time series T given 
the hypothesis H2, DL (T�H2), is 65 bits. Although the 
correction cost is smaller than one-dimensional APCA, the 
model cost is larger. In order to store two constant lines, 
two constant numbers corresponding to the height of each 
line and a pointer indicating the end position of the first 
line are required. Thus, the reduced description length of 
model H2 is:  

�&��� '/� � �&��('/� % �&�'/�� 
�&���'/� � �*0� % �� � 1�2/��*� % 31�2/��)�4 � 5$�+,-. 
Because we have��&��� '/� 6 ��&��� '!��, we prefer 

H2 as a proper number of segments for our data. 
Clearly we are not done yet, we should also test H3, H4, 

H5, etc., corresponding to 3, 4, 5, etc. piecewise constant 
segments. Moreover, we can also test alterative models 
corresponding to different levels of DFT or PLA 
representation. In addition, we can also test different 
cardinalities, because it is possible that the 16-value 
cardinality was unnecessary for this domain. For example, 
suppose we had been given T2 instead:      

T2 = 0  0  0  0  4  4  4  4  4  0  0  0  0  8  8  8 8  8  8  12  12  12  12  12 

Here, if we tested multiple hypotheses as to the 
cardinality of this data, we would hope to find that the 
hypothesis '78�  that attempts to encode the data with a 
cardinality of just 4 would result in the smallest model. 

We have shown a detailed example for APCA; 
however, essentially all the time series representations can 
be encoded in a similar way. As shown with three 
representative examples in Figure  6, essentially all the 
time series models consist of a set of basic functions (i.e., 
coefficients) that are linearly combined to produce an 
approximation of the data.  

Figure  6. A time series T shown in bold/blue and three different models 
of it shown in fine/red: from left to right: DFT, APCA, and PLA.  

As we apply our ideas to each representation, we must 
be careful to correctly “charge” each model for its 
approximation level. For example, each APCA segment 
requires two numbers, to encode its mean value and its 
length. However, PLA segments require three numbers, 
mean value, segment length and slope. Each DFT 
coefficient requires two numbers to encode the amplitude 
and phase of each sine wave, however, because of the 
complex conjugate property, we get a “free” coefficient for 
each one we record [2][5]. In previous comparisons of the 
indexing performance of various time series 
representations, many authors [9] have given an unfair 
advantage to one representation by the counting cost to 
represent an approximation incorrectly. The ideas in this 
work do explicitly assume a fair comparison.  Fortunately, 
the community seems more aware of this problem in recent 
years [2] [16]. 

In the next section we give both the generic version of 
the MDL model discovery for time series algorithm, and a 
concrete instantiations for APCA. Other two instantiations 
for DFT and PLA are explained in [28]. 

B. GENERIC MDL FOR TIME SERIES ALGORITHM 
In the last section, we use a toy example for 

demonstrating how to compute the reduced description 
length of a time series with competing hypothesis. In this 
section, we will show a detailed generic version of our 
algorithm, and then explain our algorithm in detail for the 
three most commonly used time series representations. 

Our algorithm can not only discover the intrinsic 
cardinality and dimensionality of an input time series, but 
can also be used to find the right model or data 
representation for the given time series. TABLE I shows a 
high-level view of our algorithm for discovering the best 
model, cardinality, and dimensionality which will 
minimize the total number of bits required to store the 
input time series. 

Because MDL is a heart of our algorithm, the first step 
in our algorithm is to quantize a real-value time series into 

1 2 4 6 8 10 12 14 16 18 20 22 24

0 40 80 120 0 40 80 120 0 40 80 120
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a discrete-value (but still fine-grained) time series, T (line 
1). Next, we consider each model, cardinality, and 
dimensionality one by one (line 3-5). Then a hypothesis H 
is created based on the selected model and parameters (line 
6). For example, a hypothesis H shown in Figure 5 is 
created when the model M=APCA, cardinality c=16, and 
dimensionality d=2; note that, in that case, the length of 
input time series was m=24. 

The reduced description length defined in Definition 5 
is then calculated (line 7), and our algorithm returns the 
model and parameters which minimized the reduced 
description length for encoding T (line 8-13). 

TABLE I. GENERIC MDL FOR TIME SERIES ALGORITHM 

Input:  TS : time series   
Output: best_model : best model 
                   best_card  : best cardinality 
                   best_dim   : best dimensionality 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

T = Discretization(TS)  
bsf = � 
for all M in {APCA,PLA,DFT} 
  for all cardinality c 
    for all dimensionality d 
      H = ModelRespresentation(T,M,c,d) 
      toal_cost = DL(H)+ DL(T|H) 
      if (bsf > toal_cost) 
        bsf = toal_cost 
        best_model = M 
        best_card  = c 
        best_dim   = d 
      end if 
    end for 
  end for 
end for 

For concreteness we will now consider specific 
versions of our generic algorithm. See [28] for more details. 

C. ADAPTIVE PIECEWISE CONSTANT APPROXIMATION 
As we have seen in a previous section, an APCA model 

is simple; it contains only constant lines. The pseudo code 
for APCA shown in TABLE II is very similar to the 
generic algorithm. First of all, we do quantization on the 
input time series (line 1). Then, we evaluate all 
cardinalities from 2 to 256 and dimensionalities from 2 to 
the maximum possible number, which is a half of the 
length of input time series TS (line 3-4).  

TABLE II. OUR ALGORITHM SPECIFIC TO APCA 

Algorithm: IntrinsicDiscovery for APCA 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

T = Discretization(TS) 
bsf = � 
for c = 2 to 256 
  for d = 2 to m/2 
    H = APCA(T,c,d) 
    model_cost =d*log2(c)+(d-1)*log2(m) 
    total_cost = model_cost + DL(T-H)  
    if (bsf > total_cost) 
      bsf = total_cost 
      best_card = c 
      best_dim  = d 
    end if 
  end for 
end for 

Note that if the dimensionality was more than m/2, 
some segments will contain only one point. Then, a 
hypothesis H is created using the values of cardinality c and 
dimensionality d, as shown in Figure 5 when c=16 and 
d=2. The model contains d constant segments so the model 

cost is the number of bits required for storing d constant 
numbers, and d-1 pointers to indicate the offset of the end 
of each segment (line 6). The difference between T and H 
is also required to rebuild T. The correction cost 
(Definition 5) is computed; then the reduced description 
length is the combination of the model cost and the 
correction cost (line 7). Finally, the hypothesis which 
minimized this value is returned as an output of the 
algorithm (line 8-13).  

The algorithms for Piecewise Linear Approximation 
and DFT are similar and are relegated to the extended 
version of this paper [28].  

IV. EXPERIMENTAL EVALUATION 
To ensure that our experiments are easily reproducible, 

we have built a website which contains all data and code, 
together with the raw spreadsheets for the results [28]. In 
addition this website contains additional experiments that 
are omitted here for brevity. 

A. AN EXAMPLE APPLICATION IN PHYSIOLOGY 
The Muscle dataset studied by Mörchen and Ultsch [15] 

describes the muscle activation of a professional inline 
speed skater. The authors calculated the muscle activation 
from the original EMG (Electromyography) measurements 
by taking the logarithm of the energy derived from a 
wavelet analysis. Figure 7.top shows an excerpt. At first 
glance it seems to have two states, which correspond to our 
(perhaps) naive intuitions about skating and muscle 
physiology.  

 
Figure 7. top) An excerpt from the Muscle dataset. bottom) A zoomed-in 
section of the Muscle dataset which had its model, dimensionality and 
cardinality set by MDL. 

We can test this binary assumption by using MDL to 
find the model, dimensionality and cardinality. The results 
for model and dimensionality are objectively correct, as we 
might have expected given the results in the previous 
section, but the results for cardinality, shown in Figure 
8.left are worth examining.  

Figure 8. left) The description length of the muscle activation time series 
is minimized with a cardinality of three, which is the correct answer. 
right) The PERSIST algorithm, [15] predicts a value of four.  
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Our MDL method suggests a cardinality of three. 
Glancing back at Figure 7.bottom shows why. At the end 
of the stroke there is an additional level corresponding to 
an additional push-off by the athlete. This feature was 
noted by physiologists that worked with Mörchen and 
Ultsch [15]. However, their algorithm weakly predicts a 
value of four4. Here once again we find the MDL can beat 
rival approaches, even though the rival approach attempted 
the most favorable parameter tuning. 

V. CONCLUSIONS 
We have shown that a simple methodology based on 

MDL can robustly specify the intrinsic model, cardinality 
and dimensionality of time series data from a wide variety 
of domains. Our method has significant advantages over 
revival methods in that it is more general and is essentially 
parameter-free. We have further shown applications of our 
ideas to resource-limited classification and anomaly 
detection. We have given away all our (admittedly very 
simple) code and datasets so that others can confirm and 
build on our results [28]. 
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