
Discovering the Intrinsic Cardinality and Dimensionality of Time Series using MDL
Bing Hu Thanawin Rakthanmanon Yuan Hao Scott Evans

1
 Stefano Lonardi Eamonn Keogh

Department of Computer Science & Engineering

University of California, Riverside, Riverside, CA 92521, USA
1
GE Global Research

{bhu002, rakthant, yhao002}@ucr.edu,
1
evans@ge.com, {stelo, eamonn}@cs.ucr.edu

Abstract—Most algorithms for mining or indexing time series

data do not operate directly on the original data, but instead

they consider alternative representations that include

transforms, quantization, approximation, and multi-resolution

abstractions. Choosing the best representation and abstraction

level for a given task/dataset is arguably the most critical step

in time series data mining. In this paper, we investigate

techniques to discover the natural intrinsic representation

model, dimensionality and alphabet cardinality of a time series.

The ability to discover these intrinsic features has implications

beyond selecting the best parameters for particular algorithms,

as characterizing data in such a manner is useful in its own

right and an important sub-routine in algorithms for

classification, clustering and outlier discovery. We will frame

the discovery of these intrinsic features in the Minimal

Description Length (MDL) framework. Extensive empirical

tests show that our method is simpler, more general and

significantly more accurate than previous methods, and has the

important advantage of being essentially parameter-free.

Keywords: Time Series, MDL, Dimensionality Reduction

I. INTRODUCTION

Most algorithms for indexing or mining time series data
operate on higher-level representations of the data, which
include transforms, quantization, approximations and multi-
resolution approaches. For instance, Discrete Fourier
Transform (DFT), Discrete Wavelet Transform (DWT),
Adaptive Piecewise Constant Approximation (APCA) and
Piecewise Linear Approximation (PLA) are models that all
have their advocates for various data mining tasks, and each
has been used extensively [6]. However the question of
choosing the best abstraction level and/or representation of
the data for a given task/dataset still remains open. In this
work, we investigate this problem by discovering the natural
intrinsic model, dimensionality and (alphabet) cardinality of
a time series. We will frame the discovery of these intrinsic
features in the Minimal Description Length (MDL)
framework [11][16][25][30]. MDL is the cornerstone of
many bioinformatics algorithms [8][29], but it is arguably
underutilized in time series data mining [12][24].

The ability to discover the intrinsic dimensionality and
cardinality of time series has implications beyond setting the
best parameters for data mining algorithms, as
characterizing data in such a manner is useful in its own
right to understand/describe the data and an important sub-
routine in algorithms for classification, clustering and
outlier discovery [27][37]. To illustrate this, consider the
three unrelated datasets in Figure 1.

Figure 1. Three unrelated industrial time series with low intrinsic

cardinality. I) Evaporator (channel one). II) Winding (channel five). III)
Dryer (channel one).

The number of unique values in each time series is, from
top to bottom, 14, 500 and 62. However, we might
reasonably claim, that the intrinsic alphabet cardinality is
instead 2, 2, and 12 respectively. As it happens, an
understanding of the processes that produced these data
would perhaps support this claim [15]. In these datasets,
and indeed in many real-world datasets, there is a significant
difference between the actual and intrinsic cardinality.
Similar remarks apply to dimensionality.

Before we define more precisely what we mean by
actual versus intrinsic cardinality, we should elaborate on
the motivations behind our considerations. Our objective is
generally not simply to save memory1: if we are wastefully
using eight bytes per time point instead of using the mere
three bytes made necessary by the intrinsic cardinality, the
memory space saved is significant, but memory is getting
cheaper every day, and is rarely a bottleneck in data mining
tasks. There are instead many other reasons why we may
wish to find the true intrinsic model, cardinality and
dimensionality of the data, for example:

 There is an increasing interest in using specialized
hardware for data mining [33]. However, the
complexity of implementing data mining algorithms in
hardware typically grows super linearly with the
cardinality of the alphabet. For example, FPGAs
usually cannot handle cardinalities greater than 256
[33].

 Some data mining algorithms benefit from having the
data represented in the lowest meaningful cardinality.
As a trivial example, in the stream: ..0, 0, 1, 0, 0, 1, 0, 0,
1, we can easily find the rule that a ‘1’ follows two
appearances of ‘0’. However, notice that this rule is not
apparent in this string: ..0, 0, 1.0001, 0.0001, 0, 1,

1 Although Section I.A shows an example where this is useful.

20 40 60 80 100

-1

0

1

100 200 300 400 500

-1

0

1

0

0

0 300 600 900
-8

-4

0

4

I

II

III

0.000001, 0, 1 even though it is essentially the same
time series.

 Most time series indexing algorithms critically depend
on the ability to reduce the dimensionality [6] or the
cardinality [18] of the time series (or both [1] [2]), and
searching over the compacted representation in main
memory. However, setting the best level of
representation remains a black art.

 In resource-limited devices, it may be helpful to remove
the spurious precision induced by a
cardinality/dimensionally that is too high. We elaborate
on this issue by using a concrete example below.

 Knowing the intrinsic model, cardinality and
dimensionality of a dataset allows us to create very
simple outlier detection models. We simply look for
data where the parameters discovered in new data differ
from our expectations learned on training data. This is a
simple idea, but it can be very effective.

To enhance our appreciation of the potential utility of
knowing the intrinsic cardinality and dimensionality of the
data, we briefly consider an application in classification.

A. A CONCRETE EXAMPLE

For concreteness we present a simple scenario that
shows the utility of understanding the intrinsic
cardinality/dimensionality of data 2 . Suppose we wish to
build a time series classifier into a device with a limited
memory footprint such as a cell phone, pacemaker or
“smartshoe” [34]. Let us suppose we have only 20kB
available for the classifier, and that (as is the case with the
benchmark dataset, TwoPat [15]) each time series exemplar
has a dimensionality of 128 and takes 4 bytes per value.

One could choose decision trees or Bayesian classifiers
because they are space efficient, however it is well known
that nearest neighbor classifiers are very difficult to beat for
time series problems [6]. If we had simply stored forty
random samples in the memory for our nearest neighbor
classifier, the average error rate over fifty runs would be a
respectable 58.7% for a four-class problem. However, we
could also down-sample the dimensionality by a factor of
two, either by skipping every second point, or by averaging
pairs of points (as in SAX [18]), and place eighty reduced
quality samples in memory. Or perhaps we could instead
reduce the alphabet cardinality, by reducing the precision of
the original four bytes to just one byte, thus allowing 160
reduced-fidelity objects to be placed in memory. Many other
combinations of dimensionality and cardinality reduction
could be tested, which would trade reduced fidelity to the
original data for more exemplars stored in memory. In this
case, a dimensionality of 32 and a cardinality of 6 allow us
to place 852 objects in memory and achieve an error rate of
about 90.75%, a remarkable accuracy improvement given
the limited resources. As we shall see, we found this
combination of parameters using our MDL technique.

2 We defer a discussion of our experimental philosophy until Section 5.

However we note that all experiments in this paper are 100%
reproducible, and all code and data is available at [40].

In general, testing all the combinations of parameters is
computationally infeasible. Furthermore, while in this case
we have class labels to guide us through the search of
parameter space, this would not be the case for other
unsupervised data mining algorithms, such as clustering,
motif discovery [19], outlier discovery [3][35][37], and etc.

As we shall show, our MDL framework allows us to
automatically discover the parameters that reflect the
intrinsic model/cardinality/dimensionally of the data
without requiring external information or expensive cross
validation search.

II. DEFINITIONS AND NOTATION

We begin with the definition of a time series:

Definition 1: A time series T is an ordered list of numbers.

T=t1,t2,...,tm. Each value ti is a finite precision number and m is

the length of time series T.

Before continuing we must justify the decision of
(slightly) quantizing the time series. MDL is only defined
for discrete values3, but most time series are real-valued.
The obvious solution is to reduce the original number of
possible values to a manageable amount. However the
reader may object that such a drastic reduction in precision
must surely lose some significant information. However this
is not the case. To illustrate this point, we performed a
simple experiment. From each of the twenty diverse datasets
in the UCR archive [15] we randomly extracted one hundred
pairs of time series. For each pair of time series we
measured their Euclidean distance in the original high
dimensional space, and then in the quantized 256-cardinality
space, and used these pairs of distances to plot a point in a
scatter plot. Figure 2 shows the results.

Figure 2. Each point on this plot corresponds to a pair of time series: the

x-axis corresponds to their Euclidean distance, while the y-axis
corresponds to the Euclidean distance between the 8-bit quantized

representation of the same pair.

The figure illustrates that all the points fall close to the
diagonal, thus the quantization makes no perceptible
difference. Beyond this subjective visual test, we also
reproduced the heavily cited UCR time series classification
benchmark experiments [15], replacing the original data
with the 256-cardinality version. In no case did it make
more than one tenth of one percent difference to

3 The closely related technique of MML (Minimum Message Length [36])

does allow for continuous real-valued data. However, here we stick with

the more familiar MDL formulation.

0 10 20 30 40
0

10

20

30

40

Euclidean dist of real-valued pairs

E
u

cl
id

ea
n

 d
is

t
o
f

re
d

u
ce

d

ca
rd

in
al

it
y

p
ai

rs

classification accuracy (full details are at [40]). Given this,
we simply reduce all the time series data to its 256
cardinality version in this work, by using a discretization
function:

Definition 2: Discretization is a function used to normalize a

real-valued time series T into b-bit discrete values in the range

[-2b-1, 2b-1-1]. It is defined as following:

 () (

) ()

where min and max are the minimum and maximum value in T,

respectively4.

For any time series T, we are interested in determining how
many bits it takes to represent it. We can thus define the
description length of a time series.

Definition 3: A description length DL of a time series T is the

total number of bits required to represent it. When Huffman

coding is used to compress the time series T, the description

length of time series T is defined by:

DL (T) = | HuffmanCoding(T) |

In the current literature, the number of bits required to
store the time series depends on the idiosyncrasies of the
data format or hardware device, not on any intrinsic
properties of the data or domain. However we are really
interested in knowing the minimum number of bits to
exactly represent the data, the intrinsic amount of
information in the time series. Unfortunately, in the general
case this is not calculable, as it is the Kolmogorov
complexity of the time series [17]. However, we can
approximate the Kolmogorov complexity by compressing
the data, using say Huffman coding [11][35][39]. The
(lossless) compressed file size is clearly an upper bound to
the DL of the time series [5].

One of the key steps in finding the intrinsic cardinality
and/or dimensionality is converting a given time series to
other representation or model, e.g., by using DFT or DWT.
We call that representation, a hypothesis:

Definition 4: A hypothesis H is a representation of a discrete

time series T after applying a transformation M.

In general, there are many possible transforms M.
Examples include the Discrete Wavelet Transform (DWT),
the Discrete Fourier transform (DFT), the Adaptive
Piecewise Linear Approximation (APCA), the Piecewise
Linear Approximation (PLA), etc.[6]. Figure 6 shows three
illustrative examples, DFT, APCA, and PLA. In this paper,
we demonstrate our ideas using these three the most
commonly used representations. Note however that our
ideas apply to all time series models (see [6] for a survey of
time series representations).

Note that we use the term model interchangeably with
the term hypothesis in this work.

Definition 5: A reduced description length of a time series T

given hypothesis H is the number of bits used for encoding time

4 This slightly awkward formula is necessary because we use the

symmetric range [-128,127]. If we use range [1, 256] instead we get a more

elegant: () (

) () .

series T, exploiting information in the hypothesis H, i.e., DL

(T│H), and the number of bits used for encoding H, i.e., DL (H).

Thus, the reduced description length is defined as:

DL (T, H) = DL (H) + DL (T│H)

The first term, DL (H), called the model cost, is the
number of bits required to store the hypothesis H. We will
give concrete examples later, but in brief, the model cost for
say the piecewise linear approximation would include the
bits needed to encode the mean, slope and length of each
linear segment.

The second term, DL (T│H), called the correction cost
(in some works it is called the description cost or error term)
is the number of bits required to rebuild the entire time
series T from the given hypothesis H.

There are many possible ways to encode T using H.
However, if we just simply store the differences (i.e. the
difference vector) between T and H, we can easily re-
generate a whole time series T from the information we
have. Thus, we simply use DL (T│H) = DL (T-H).

We will demonstrate how to calculate the reduced
description length more in detail in the next section.

III. MDL MODELING OF TIME SERIES

A. AN INTUITIVE EXAMPLE OF OUR BASIC IDEA

For concreteness, we will consider a simple worked
example comparing two possible dimensionalities of data.
Note that here we are assuming a cardinality of 16, and a
model of APCA. However, more generally we do not need
to make such assumptions. Let us consider a sample time
series T of length 24:

T = 1 1 1 2 3 4 5 6 7 8 9 10 11 11 12 12 12 12 11 11 10 10 9 7

In Figure 3 we show a plot of this data.

Figure 3. A sample time series T.

We can attempt to model this data with a single constant
line, a special case of APCA. We begin by finding the
mean of all the data, which (rounding in our integer space)
is eight. We can create a hypothesis H1 to model this data,
which as shown in Figure 4. It is simply a constant line with
a mean of eight. There are 16 possible values this model
could have had. Thus DL (H1) = 4 bits.

Figure 4. Time series T (blue/fine), approximated by a one-dimensional

APCA approximation H1 (red/bold). The error for this model is

1 2 4 6 8 10 12 14 16 18 20 22 24

1 2 4 6 8 10 12 14 16 18 20 22 24

represented by the vertical lines.

 This model H1 has a significant amount of error 5
modeling T, and we must account for this. The errors e1,
represented by the length of the vertical lines in Figure 4 are:

e1 = 7 7 7 6 5 4 3 2 1 0 -1 -2 -3 -3 -4 -4 -4 -4 -3 -3 -2 -2 -1 1

As noted in Definition 5, the cost to represent these
errors is the correction cost, the number of bits encoding e1

using Huffman coding, which is 82 bits. Thus the overall
cost to represent T with a one-dimensional model or its
reduced description length is:

 () () ()

 ()

We can now test to see if hypothesis H2, which models
the data with two constant lines could reduce the description
length. Figure 5 shows the two segment approximation lines
created by APCA.

Figure 5. Time series T (blue/fine), approximated by a two-dimensional

APCA approximation H2 (red/bold). Vertical lines represent the error.

As we expect, the error e2 shown as the vertical lines in
Figure 5 is smaller than the error e1. In particular, the error
e2 is:

e2 = 2 2 2 1 0 -1 -2 -3 3 2 1 0 -1 -1 -2 -2 -2 -2 -1 -1 0 0 1 3

The number of bits encoding e2 using Huffman coding
or the correction cost to generate the time series T given the
hypothesis H2, DL (T│H2), is 65 bits. Although the
correction cost is smaller than one-dimensional APCA, the
model cost is larger. In order to store two constant lines, two
constant numbers corresponding to the height of each line
and a pointer indicating the end position of the first line are
required. Thus, the reduced description length of model H2
is:

 () () ()

 () () ⌈ ()⌉

Because we have () () , we prefer H2
as a proper number of segments for our data.

Clearly we are not done yet, we should also test H3, H4,
H5, etc., corresponding to 3, 4, 5, etc. piecewise constant
segments. Moreover, we can also test alterative models
corresponding to different levels of DFT or PLA
representation. In addition, we can also test different
cardinalities, because it is possible that the 16-value
cardinality was unnecessary for this domain. For example,
suppose we had been given T2 instead:

T2 = 0 0 0 0 4 4 4 4 4 0 0 0 0 8 8 8 8 8 8 12 12 12 12 12

5 The word error has a pejorative meaning not intended here, some authors

prefer to use correction cost.

Here, if we tested multiple hypotheses as to the
cardinality of this data, we would hope to find that the
hypothesis

 that attempts to encode the data with a
cardinality of just 4 would result in the smallest model.

We have shown a detailed example for APCA; however,
essentially all the time series representations can be encoded
in a similar way. As shown with three representative
examples in Figure 6, essentially all the time series models
consist of a set of basic functions (i.e., coefficients) that are
linearly combined to produce an approximation of the data.

Figure 6. A time series T shown in bold/blue and three different models of

it shown in fine/red: from left to right: DFT, APCA, and PLA.

As we apply our ideas to each representation, we must
be careful to correctly “charge” each model for its
approximation level. For example, each APCA segment
requires two numbers, to encode its mean value and its
length. However, PLA segments require three numbers,
mean value, segment length and slope. Each DFT
coefficient requires two numbers to encode the amplitude
and phase of each sine wave, however, because of the
complex conjugate property, we get a “free” coefficient for
each one we record [2][6]. In previous comparisons of the
indexing performance of various time series representations,
many authors [13] have given an unfair advantage to one
representation by the counting cost to represent an
approximation incorrectly. The ideas in this work do
explicitly assume a fair comparison. Fortunately, the
community seems more aware of this problem in recent
years [2] [23].

In the next section we give both the generic version of
the MDL model discovery for time series algorithm, and
three concrete instantiations for DFT, APCA, and PLA.

B. GENERIC MDL FOR TIME SERIES ALGORITHM

In the last section, we use a toy example for
demonstrating how to compute the reduced description
length of a time series with competing hypothesis. In this
section, we will show a detailed generic version of our
algorithm, and then explain our algorithm in detail for the
three most commonly used time series representations.

Our algorithm can not only discover the intrinsic
cardinality and dimensionality of an input time series, but
can also be used to find the right model or data
representation for the given time series. TABLE I shows a
high-level view of our algorithm for discovering the best
model, cardinality, and dimensionality which will minimize

1 2 4 6 8 10 12 14 16 18 20 22 24

0 40 80 120 0 40 80 120 0 40 80 120

the total number of bits required to store the input time
series.

Because MDL is a heart of our algorithm, the first step
in our algorithm is to quantize a real-value time series into a

discrete-value (but still fine-grained) time series, T (line 1).
Next, we consider each model, cardinality, and

dimensionality one by one (line 3-5). Then a hypothesis H is
created based on the selected model and parameters (line 6).

For example, a hypothesis H shown in Figure 5 is created

when the model M=APCA, cardinality c=16, and

dimensionality d=2; note that, in that case, the length of

input time series was m=24.
The reduced description length defined in Definition 5 is

then calculated (line 7), and our algorithm returns the model
and parameters which minimized the reduced description
length for encoding T (line 8-13).

TABLE I. GENERIC MDL FOR TIME SERIES ALGORITHM

Input: TS : time series

Output: best_model : best model

 best_card : best cardinality

 best_dim : best dimensionality

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

T = Discretization(TS)

bsf = ∞

for all M in {APCA,PLA,DFT}

 for all cardinality c

 for all dimensionality d

 H = ModelRespresentation(T,M,c,d)

 total_cost = DL(H)+ DL(T|H)

 if (bsf > total_cost)

 bsf = total_cost

 best_model = M

 best_card = c

 best_dim = d

 end if

 end for

 end for

end for

For concreteness we will now consider three specific
versions of our generic algorithm.

C. ADAPTIVE PIECEWISE CONSTANT APPROXIMATION

As we have seen in a previous section, an APCA model
is simple; it contains only constant lines. The pseudo code
for APCA shown in TABLE II is very similar to the generic
algorithm. First of all, we do quantization on the input time
series (line 1). Then, we evaluate all cardinalities from 2 to
256 and dimensionalities from 2 to the maximum possible
number, which is a half of the length of input time series TS
(line 3-4).

TABLE II. OUR ALGORITHM SPECIFIC TO APCA

Algorithm: IntrinsicDiscovery for APCA

1

2

3

4

5

6

7

8

9

10

11

12

T = Discretization(TS)

bsf = ∞

for c = 2 to 256

 for d = 2 to m/2

 H = APCA(T,c,d)

 model_cost =d*log2(c)+(d-1)*log2(m)

 total_cost = model_cost + DL(T-H)

 if (bsf > total_cost)

 bsf = total_cost

 best_card = c

 best_dim = d

 end if

13

14

 end for

end for

Note that if the dimensionality was more than m/2, some

segments will contain only one point. Then, a hypothesis H
is created using the values of cardinality c and
dimensionality d, as shown in Figure 5 when c=16 and d=2.

The model contains d constant segments so the model cost

is the number of bits required for storing d constant

numbers, and d-1 pointers to indicate the offset of the end
of each segment (line 6). The difference between T and H is
also required to rebuild T. The correction cost (Definition 5)
is computed; then the reduced description length is the
combination of the model cost and the correction cost (line
7). Finally, the hypothesis which minimized this value is
returned as an output of the algorithm (line 8-13).

D. PIECEWISE LINEAR APPROXIMATION

An example of a PLA model is shown in Figure 6.right.
In contrast to APCA, a hypothesis using PLA is more
complex because each segment contains a line of any slope,
instead of a constant line in APCA. The algorithm to
discover the intrinsic cardinality and dimensionality for
PLA is shown in TABLE III, which is similar to the
algorithm for APCA except the code in line 5 and 6.

A PLA hypothesis H is created from external module
PLA (line 5). To store a line of each segment in hypothesis
H, we record the starting value, ending value, and the
ending offset (line 6). Note that the slope is not kept because

to store a real number is more expensive than log2(c).

 The first two values are represented in cardinality c and

thus log2(c) bits are required for each of them. We also

require log2(m) bits to point to any arbitrary offset in T.
Thus, the model cost is shown in line 6. Finally, the
hypothesis reduce description length is calculated and the
best choice is returned (line 8-13).

TABLE III. OUR ALGORITHM SPECIFIC TO PLA

Algorithm: IntrinsicDiscovery for PLA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

T = Discretization(TS)

bsf = ∞

for c = 2 to 256

 for d = 2 to m/2

 H = PLA(T,c,d)

 model_cost = 2*d*log2(c)+(d-1)*log2(m)

 total_cost = model_cost +DL(T-H)

 if (bsf > toal_cost)

 bsf = toal_cost

 best_card = c

 best_dim = d

 end if

 end for

end for

E. DISCRETE FOURIER TRANSFORM

A data representation in DFT space is simply a linear
combination of sine waves as shown in Figure 6.left.
TABLE IV presents our algorithm specific to DFT. After

we quantize the input time series to a discrete time series T
(line 1), the external module DFT is called to return the list

of sine wave coefficients which represent T. The

coefficients in DFT are a set of complex conjugates, so we
store only a half set of all coefficients which contains
complex numbers without their conjugate, called

half_coef (line 5). Note that when half_coef is
provided, it is trivial to compute their conjugates and restore
all coefficients.

Instead of using all of half_coef to regenerate T, we
test using subsets of them as the hypothesis to

approximately regenerate T, incurring some inevitable error.
To do this, we first sort the coefficients by their absolute

value (line 6). We use top-d coefficients as the hypothesis to

regenerate T by using InverseDFT (line 8). For example,

when d=1 we use only the single most important coefficient

to rebuild T, and when d=2 the combination of top-two sine
waves are used as a hypothesis etc. However, it is expensive
to use 16 bits for each coefficient by keeping two complex
numbers for its real part and imaginary part. Therefore, in

line 7, we reduce those numbers to just c possible values
(cardinality) by rounding up/down the number to the

corresponding point in a space of size c, and we also need
to keep constant bits (32 bits) for the maximum and
minimum value of the real parts and also of the imaginary
parts Hence, the model contains top-d coefficients whose

real (and imaginary) parts are in space of size c. Thus, the
model cost and the reduced description length are shown in
line 9 and 10.

TABLE IV. OUR ALGORITHM SPECIFIC TO DFT

Algorithm: IntrinsicDiscovery for DFT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

T = Discretization(TS)

bsf = ∞

for c = 2 to 256

 for d = 2 to m/2

 half_coef = DFT(T)

 sorted_coef = SortByPolar(half_coef)

 round_coef = Round(sorted_coef, c)

 H = InverseDFT(round_coef(1:n))

 model_cost=2*d*log2(c)+d*log2(m/2))+32

 total_cost = model_cost + DL(T-H)

 if (bsf > total_cost)

 bsf = total_cost

 best_card = c

 best_dim = d

 end if

 end for

end for

Note that for the sake of notational simplicity we put the
external modules APCA, PLA, and DFT inside two for-
loops, however we can move it outside the loops and
compute it once to improve performance.

IV. EXPERIMENTAL EVALUATION

We begin by explaining our experimental philosophy.
To ensure that our experiments are easily reproducible, we
have built a website which contains all data and code,
together with the raw spreadsheets for the results [40]. In
addition this website contains additional experiments that
are omitted here for brevity.

A. A DETAILED EXAMPLE ON A FAMOUS PROBLEM

We begin with a simple sanity check on the classic
problem specifying the correct time series model,
cardinality and dimensionality, given an observation of a
corrupted version of it. While this problem has received
significant attention in the literature [7][31][32], our MDL
method has two significant advantages over existing works;
It is parameter-free, whereas most other methods require
several parameters to be set, and MDL can specify the
model, cardinality and dimensionality, whereas other
methods typically only consider model and/or
dimensionality.

To eliminate the possibility of data bias [14] we consider
a ten year-old instantiation [32] of a classic benchmark
problem [7]. In Figure 7 we show the classic Donoho-
Johnstone block benchmark. The underlying model used to
produce it is a twelve piecewise constant sections with
Gaussian noise added.

Figure 7. A version of the Donoho-Johnstone block benchmark created ten

years ago and downloaded from [32].

The task is challenging because some of the piecewise
constant sections are very short and thus easily dismissed
during a model search. There have been dozens of
algorithms that applied to this problem (indeed, to this exact
instance of data) in the last decade, so which should we
compare to? Most of these algorithms have several
parameters, in some cases as many as six [9] [10]. We argue
that comparisons to such methods are pointless, since our
explicit aim is to introduce a parameter-free method. The
most cited parameter-free method to address this problem is
the L-Method of [31]. In essence, the L-Method is a “knee-
finding” algorithm. It attempts to explain the residual error
vs. size-of-model curve using all possible pairs of two
regression lines. Figure 8.top shows one such pairs of lines,
from one to ten and from eleven to the end. The location that
produces the minimum sum of the residual errors of these
two curves R, is offered as the optimal model, as we can see
in Figure 8.bottom, this occurs at location ten, a good
estimate of the true value of twelve.

We also tested several other methods, including a recent
Bayesian Information Criterion based method that we found
predicted a too coarse four-segment model [38]. However
no other parameter-free or parameter-lite method we found
produced intuitive (much less correct) results. We therefore
omit further comparisons in this paper (however, many
additional experiments are at [40]).

Donoho-JohnstoneBenchmark

0 500 1000 1500 2000

Figure 8. The knee finding L-Method top) A residual error vs. size-of-
model curve (bold/blue) is modeled by all possible pairs of regression lines

(light/red). Here just one possibility is shown. bottom) The location that

minimizes the summed residual error of the two regression lines is given
as the optimal “knee”.

We can now attempt to solve this problem with our
MDL approach. Figure 9 shows that of the 512 different
piecewise constant models it evaluated, MDL chose the
twelve-segment model, the correct answer.

Figure 9. The description length of the Donoho-Johnstone block

benchmark time series is minimized at a dimensionality corresponding to
twelve piecewise constant segments, which is the correct answer [32].

The figure above uses a cardinality of 256, but the same
answer is retuned for (at least) every cardinality from 8 to
256.

Beyond outperforming other techniques at the task of
finding the correct dimensionality of a model, MDL can also
find the intrinsic cardinality of a dataset, something that
methods [31][38] are not even defined for. In Figure 10 we
have repeated the previous experiment, but this time fixing
the dimensionality to twelve as suggested above, and testing
all possible cardinality values from 2 to 256.

Figure 10. The description length of the Donoho-Johnstone block

benchmark time series is minimized with a cardinality of ten, which is the

true cardinality [32].

Here MDL indicates a cardinality of ten, which is the
correct answer [32]. We also reimplemented the most
referenced recent paper on time series discretization [10].
The algorithm is stochastic, and requires the setting of five
parameters. In one hundred runs over multiple parameters
we found it consistently underestimated the cardinality of
the data (the mean cardinality was 7.2).

Before leaving this example, we show one further
significant advantage of MDL over existing techniques.
Both [31] [38] try to find the optimal dimensionality,

assuming the underlying model is known. However in many
circumstances we may not know the underlying model. As
we show in Figure 11, with MDL we can relax even this
assumption. If our MDL scoring scheme is allowed to
choose over the cross product of model = {APCA, PLA,
DFT}, dimensionality = {1 to 512} and cardinality = {2 to
256}, it correctly chooses the right model, dimensionality
and cardinality.

Figure 11. The description length of the Donoho-Johnstone block
benchmark time series is minimized with a piecewise constant model
(APCA), not a piecewise linear model (PLA) or Fourier representation
(DFT).

B. AN EXAMPLE APPLICATION IN PHYSIOLOGY

The Muscle dataset studied by Mörchen and Ultsch [22]
describes the muscle activation of a professional inline
speed skater. The authors calculated the muscle activation
from the original EMG (Electromyography) measurements
by taking the logarithm of the energy derived from a
wavelet analysis. Figure 12.top shows an excerpt. At first
glance it seems to have two states, which correspond to our
(perhaps) naive intuitions about skating and muscle
physiology.

Figure 12. top) An excerpt from the Muscle dataset. bottom) A zoomed-in

section of the Muscle dataset which had its model, dimensionality and

cardinality set by MDL.

We can test this binary assumption by using MDL to
find the model, dimensionality and cardinality. The results
for model and dimensionality are objectively correct, as we
might have expected given the results in the previous
section, but the results for cardinality, shown in Figure
13.left are worth examining.

Our MDL method suggests a cardinality of three.
Glancing back at Figure 12.bottom shows why. At the end
of the stroke there is an additional level corresponding to an
additional push-off by the athlete. This feature was noted by
physiologists that worked with Mörchen and Ultsch [22].
However, their algorithm weakly predicts a value of four6.
Here once again we find the MDL can beat rival approaches,
even though the rival approach attempted the most favorable
parameter tuning.

6 The values for k = 3, 4 or 5 do not differ by more than 1%.

0 10 20 30 40 50 60 70 80 90 100

0

100,000

0 10 20 30 40 50 60 70 80 90 100

Two regression lines from 1 to K, and from K+1 to end. Here K =10 (lines shifted up for visual clarity)

The sum of the residual errors of these two lines is denoted R

Residual error between piecewise constant model and benchmark data for different numbers of segments, K

R

The value of R for all values of K from 2 to 100

The minimum is at 10

0 10 20 30 40 50 60

0
500

1000

DL(H)

DL(T |H)

DL(T |H) + DL(H)
The minimum is at 12

0 10 50 100 150 200 250

DL(T |H) + DL(H)

DL(T |H)

The minimum is at 10

DL(H)

0
1000
2000

DL(T |H) + DL(H) DFT

0 10 20 30 40 50 60

0
500

1000

PLA

APCA

0 1000 2000 3000 4000

0 10000 20000

stroke stroke

glide glide glide

push offpush off

Figure 13. left) The description length of the muscle activation time series

is minimized with a cardinality of three, which is the correct answer. right)

The PERSIST algorithm, using the code from [22] predicts a value of four.

C. AN EXAMPLE APPLICATION IN ASTRONOMY

In this section (and the one following) we consider the
possible utility of MDL scoring as an anomaly detector.
Building an anomaly detector using MDL is very simple.
We can simply record the best model, dimensionality and/or
cardinality predicted for the training data, and then look for
future observations that have significantly different learned
parameters. We can illustrate this with an example in
astronomy.

Globally there are hundreds of telescopes covering the
sky and constantly recording massive amounts of
astronomical data [27]. Moreover, there is a worldwide
effort to digitize tens of millions of observations recorded
on formats ranging from paper/pencil to punch cards over
the last hundred years. Having humans manually inspect all
such observations is clearly impossible [20]. So outlier
detector detection is useful to catch anomalous data, which
may be an exciting new discovery or just a pedestrian error.
We took a collection of 1,000 hand-annotated RRL variable
stars [27] [28], and measured the mean and standard
deviation of the DFT dimensionally, finding them to be
22.52 and 2.12 respectively. As shown in Figure 14.top, the
distribution is Gaussian.

We then took a test set of 8,124 objects, known to
contain at least one anomaly, and measured the intrinsic
DFT dimensionally of all its members, finding one had a
value of 31. As shown in Figure 14.bottom, the offending
curve does look different to the other data, and is labeled
RRL_OGLE053803.42-695656.4.I.folded ANOM, it is a
previously known anomaly. In this case, we are simply able
to reproduce the anomaly finding ability of previous work
[27] [28]. However note that we can do so without extensive
parameter tuning, and we can do so very efficiently.

Figure 14. top) The distribution of intrinsic dimensionalities of star light

curves, estimated over 5,327 human-annotated examples. bottom) Three

typical examples of the class RRL, and a high intrinsic dimensionality

example, labeled as an outlier by [27].

D. AN EXAMPLE APPLICATION IN CARDIOLOGY

In this section we show how MDL can be used to mine
ECG data. Note that our intention is not to produce a
definitive method for this domain, but simply to
demonstrate the utility and generality of MDL. We
conducted an experiment that is similar in spirit to the
previous section. We learned the mean and standard
deviation of the DFT dimensionally on 200 normal
heartbeats, finding them to be 20.82 and 1.70 respectively.
As shown in Figure 15.top the distribution is clearly
Gaussian. We used these learned values to monitor the rest
of the data, flagging any heartbeats that had a dimensionally
that was more than three standard deviations from the mean.
Figure 15.bottom shows a heartbeat that was flagged by this
technique.

Figure 15. top) The distribution of intrinsic dimensionalities of individual

heartbeats, estimated over the 200 normal examples the proceeded time

zero in record 108 of the MIT BIH Arrhythmia Database (bottom).

Once again, here we are simply reproducing a result that
could be produced by other methods [37]. However, we
reiterate that we are doing so without tuning parameters.
Moreover, it is interesting to note when our algorithm does
not flag innocuous data (i.e., produce false positives).
Consider the two adjacent heartbeats labeled A and B in
Figure 15.bottom. It happens that the completely normal
heartbeat B has significantly more noise than heartbeat A.
Such non-stationary noise poises great difficulties for
distance-based and density-based outlier detection methods
[37], but MDL is essentially invariant to it. Likewise the
significant wandering baseline (not illustrated) in parts of
this dataset has no medical significance and is ignored by
MDL, but it is the bane of many EEG anomaly detection
methods [3].

E. AN EXAMPLE APPLICATION IN GEOSCIENCES

Global-scale Earth observation satellites such as the
Defense Meteorological Satellite Program (DMSP) Special
Sensor Microwave/Imager (SSM/I) have provided
temporally detailed information of the earth surface since
1978, and the National Snow and Ice Data Center (NSIDC)
in Boulder, Colorado makes this data available in real time.
Such archives are a critical resource for scientists studying
climate change [26]. In Figure 16 we show a brightness

DL(H)

0 10 20 30 40 50 60

0

2000

4000

DL(T |H)

DL(T |H) + DL(H)

The minimum is at 3

2 3 4 5 6 70

0.2

0.4

0.6

0.8

P
e

rs
is

te
n

ce

RRL_ OGLE053803.42-

695656.4.I.folded ANOM

200 400 600 800 10000

10 15 20 25 30 35
0

500

1000
5,327 Star light curves annotated
as class RRL.

Mean DL = 22.52

STD of DL = 2.12

0 2000 4000 6000 8000

Premature ventricular contractionn

10 15 20 25 30 35
0

20

40

60

Approximate 200 heartbeats

annotated as normal

Mean DL = 20.82

STD of DL =1.7

A B

temperature time series from a region in Antarctica, using
SSM/I daily observations over the 2001-2002 austral
summer.

We used MDL to search this archive for low complexity
annual data, reasoning that low complexity data might be
amenable to explanation. Because there is no natural
starting point for a year, for each time series we tested every
possible day as the starting point. The simplest time series
we discovered required a piecewise constant dimensionality
of two with a cardinality of two, suggesting a very simple
process created the data. Furthermore, the model (piecewise
constant) discovered is somewhat surprising, since virtually
all climate data is sinusoidal, reflecting annual periodicity,
thus we were intrigued to find an explanation for the data.

Figure 16. left) A time series of temperature in a region of Antarctica.

right) Of the hundreds of millions of such time series archived at NSIDC,

this time series (and a few thousand more) are unusual in that it has a very
low complexity, being best modeled with just two linear segments.

After consulting some polar climate experts, the
following explanation emerges. For most of the year the
location in question is covered in snow. The introduction of
a small amount of liquid water will significantly change the
reflective properties of the ground cover, allowing
absorbing more heat from the sun, thus producing more
liquid water in a positive feedback cycle. This explains why
they data does not a sinusoidal shape or a gradual (say
linear) rise, but a fast phase change, from a mean of about
155 Kelvin to a ninety day summer of about 260 Kelvin.

V. TIME AND SPACE COMPLEXITY

The space complexly of our algorithm is linear in the
size of the original data. The time complexity of the
algorithms in Tables 2, 3 and 4 are optimized for simplicity,
and appear quadratic in the time series length. However, we
can do the DFT/PLA/APCA decomposition once at the
finest granularity, and cache the results, leaving only a loop
that performs efficient calculations on integers. After this
optimization, the time taken for our algorithms is O(mlog2m)
and an inconsequential fraction of the time it takes to do
PLA or APCA once, and only slightly slower than the time
it takes to do DFT once. We therefore omit timing
experiments.

VI. DISCUSSION AND RELATED WORK

We took the opportunity to show a preview of this work
to many respected researchers in this area, and this paper
greatly benefits from their input. However we found that
many researchers felt it necessary to passionately argue
often mutuality exclusive points related to MDL that we felt

were orthogonal to our work and distracting from our claims.
We will briefly address these points here.

The first issue is who should be credited with invention
of basic idea we are exploiting; that shortest overall two-part
message is more likely to be correct. We found that there
are experts in complexity theory that advocate passionately
for Andrey Kolmogorov or Chris Wallace or Ray
Solomonoff or Gregory Chaitin etc. Obviously, this work is
not weighting in on such a discussion, [17] is a good neutral
starting point for historical context. We stand on the
shoulders of all such giants.

One researcher felt that MDL models can only be
evaluated in terms of prediction of future events, not on
post-hoc explanations of the models discovered (as we did
in Figure 12 for example). However we note that we have
done prediction experiments. For example, in the
introduction section we used our MDL technique to predict
which of approximately 700 combinations of settings of the
cardinality/dimensionality/number of exemplars would
produce the most accurate classifier under the given
constraints. Clearly the 90.75% we achieved significantly
beat the default settings that gave only 58.7%. However a
brute force search shows that our predicted model produced
the best result (three similar settings of the parameters did
tie with the 90.75% accuracy). Likewise the experiment
shown in Figure 15 can be cast in a prediction framework:
“predict which of these heartbeats is a cardiologist most
likely to state is abnormal”. To summarize, we do not feel
that the prediction/explanation dichotomy is of particular
relevance here.

There are many papers that use MDL to consider
problems involving real-valued time series. However, our
simple parameter-free method is novel. For example, [9]
uses MDL to help guide a PLA segmentation of times
series, however the method also uses both hybrid neural
networks and hidden Markov models, requiring at least six
parameters to be set (and a significant amount of
computational overhead). Similarly, [21] also use MDL
with neural networks, inheriting the utility of MDL but also
inheriting the difficulty of leaning the topology and
parameters of a neural network.

Likewise [4] uses MDL to “find breaks” (i.e. segment)
in a time series, but their formulation uses a genetic
algorithm which requires a large computational overhead
and the careful setting of seven parameters.

There are also examples of research efforts using MDL
to help cluster or do motif discovery in time series, however
to the best of our knowledge this is the first work to show a
completely parameter-free method for the discovery of
cardinality/dimensionality/model of a time series.

VII. CONCLUSIONS

We have shown that a simple methodology based on
MDL can robustly specify the intrinsic model, cardinality
and dimensionality of time series data from a wide variety
of domains. Our method has significant advantages over
rival methods in that it is more general and is essentially
parameter-free. We have further shown applications of our
ideas to resource-limited classification and anomaly

0 100 200 300 3650 100 200 300 365
140

160

180

200

220

240

260

280

Days since July 1, 2001 Circular rotation of 2001 data, starting at Dec 1s t

D
e

g
re

e
s

K
e

lv
in

Melt day (154)

SSM/I Brightness Temperature

Piecewise Constant

Approximation

detection. We have given away all our (admittedly very
simple) code and datasets so that others can confirm and
build on our results [40].

ACKNOWLEDGEMENTS AND NOTES

This project was supported by the Department of the

United States Air Force, Air Force Research Laboratory
under Contract FA8750-10-C-0160, and by NSF grants
0803410/ 0808770. The first two authors contributed
equally and did the bulk of the work, and should be consider
joint first authors.

REFERENCES

[1] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The TS-Tree:

Efficient Time Series Search and Retrieval. EDBT, 2008.

[2] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. iSAX 2.0:

Indexing and Mining One Billion Time Series, International

Conference on Data Mining. 2010.

[3] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:

A survey, ACM Comput. Surv. 41, 3, 2009.

[4] R.A. Davis, T.C.M. Lee, and G. Rodriguez-Yam. Break

Detection for a Class of Nonlinear Time Series Models. J. of

Time Series Analysis, 29, 834-867, 2008

[5] S. De Rooij and P. Vitányi. Approximating Rate-Distortion

Graphs of Individual Data: Experiments in Lossy Compression

and Denoising. IEEE Transactions on Computers, 2006.

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E.

Keogh. Querying and mining of time series data: experimental

comparison of representations and distance measures. VLDB,

pp. 1542-1552, 2008.

[7] D.L. Donoho and I. M. Johnstone. Ideal spatial adaptation via

wavelet shrinkage. Journal of Biometrika 81, pp. 425-455,

1994.

[8] S.C. Evans et al. MicroRNA target detection and analysis for

genes related to breast cancer using MDL compress. EURASIP

J. Bioinform. Syst. Biol., pp. 1-16, 2007.

[9] L. Firoiu and P. R. Cohen. Segmenting time series with a

hybrid neural networks—Hidden Markov model. Proc. 8th Nat.

Conf. Artif. Intell, p.247, 2002.

[10] D. García-López and H. Acosta-Mesa. Discretization of Time

Series Dataset with a Genetic Search. MICAI, pp. 201-212,

2009.

[11] P.D. Grünwald, I.J. Myung, and M.A. Pitt, Advances in

Minimum Description Length: Theory and Applications, MIT

Press, 2005.

[12] I. Jonyer, L. B. Holder, and D. J. Cook, Attribute-Value

Selection Based on Minimum Description Length.

International Conference on Artificial Intelligence, 2004.

[13] E. Keogh and M. J. Pazzani, A Simple Dimensionality

Reduction Technique for Fast Similarity Search in Large Time

Series Databases. PAKDD, pp.122-133, 2000.

[14] E. Keogh and S. Kasetty. On the Need for Time Series Data

Mining Benchmarks: A Survey and Empirical Demonstration.

Journal of Data Mining and Knowledge Discovery, pp.349-

371, 2003.

[15] E. Keogh, Q. Zhu, B. Hu, Y. Hao , X. Xi, L. Wei, and C. A.

Ratanamahatana. The UCR Time Series Classification

/Clustering Homepage:

www.cs.ucr.edu/~eamonn/time_series_data/, 2006.

[16] P. Kontkanen and P. Myllym. MDL histogram density

estimation. Proceedings of the Eleventh International

Workshop on Artificial Intelligence and Statistics, 2007.

[17] M. Li and P. Vitanyi. An Introduction to Kolmogorov

Complexity and Its Applications. 2nd Ed, Springer, 1997.

[18] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a

novel symbolic representation of time series. Journal of

DMKD 15, 2, pp. 107-144, 2007.

[19] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in

time series. In Proc. of 2nd Workshop on Temporal Data

Mining, 2002.

[20] K. Malatesta, S. Beck, G. Menali, and E. Waagen. The

AAVSO data validation project. Journal of the American

Association of Variable Star Observers (JAAVSO) 78, pp. 31–

44, 2005

[21] Y.I. Molkov, D. N. Mukhin, E. M. Loskutov, and A. M.

Feigin, Using the minimum description length principle for

global reconstruction of dynamic systems from noisy time

series. Phys. Rev. E 80, 046207, 2009.

[22] F. Mörchen and A. Ultsch. Optimizing time series

discretization for knowledge discovery. KDD, 2005.

[23] T. Palpanas, M. Vlachos, E. Keogh, and D. Gunopulos.

Streaming Time Series Summarization Using User-Defined

Amnesic Functions. IEEE Trans. Knowl. Data Eng. 20, 7, pp.

992-1006, 2008.

[24] S. Papadimitriou, A. Gionis, P. Tsaparas, A. Väisänen , H.

Mannila and C. Faloutsos . Parameter-free spatial data

mining using MDL. ICDM, 2005

[25] E.P.D. Pednault. Some Experiments in Applying Inductive

Inference Principles to Surface Reconstruction. IJCAI, pp.

1603-1609, 1989.

[26] G. Picard, M. Fily, and H. Gallee. Surface melting derived

from microwave radiometers: a climatic indicator in Antarctica.

Annals of Glaciology, 47, pp.29 – 34, 2007.

[27] P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R.

Dave, and C. Alcock. Finding outlier light-curves in catalogs

of periodic variable stars. Monthly Notices of the Royal

Astronomical Society, 369, pp. 677–696, 2006.

[28] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. R.

Alcock, “Finding anomalous periodic time series,” Machine

Learning 74, 3, pp. 281-313, 2009.

[29] J. Rissanen. Stochastic Complexity in Statistical Inquiry.

World Scientific, Singapore, 1989.

[30] J. Rissanen, T. Speed and B. Yu. Density estimation by

stochastic complexity. IEEE Trans. On Information Theory, 38,

315-323, 1992.

[31] S. Salvador and P. Chan. Determining the Number of

Clusters/Segments in Hierarchical Clustering/Segmentation

Algorithms. International Conference on Tools with Artificial

Intelligence, pp. 576-584, 2004.

[32] W. Sarle, Donoho-Johnstone Benchmarks: Neural Net Results,

ftp://ftp.sas.com/pub/neural/dojo/dojo.html, 1999.

[33] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh.

Accelerating Dynamic Time Warping Subsequence Search

with GPUs and FPGAs. IEEE International Conference on

Data Mining, pp. 1001- 1006, 2010.

[34] A. Vahdatpour and M. Sarrafzadeh. Unsupervised Discovery

of Abnormal Activity Occurrences in Multi-dimensional Time

http://www.cwi.nl/~paulv

Series, with Applications in Wearable Systems. SIAM

International Conference on Data Mining, 2010.

[35] N. Vereshchagin and P. Vitanyi. Rate distortion and denoising

of individual data using Kolmogorov complexity. IEEE Trans.

Information Theory 56, 7, pp. 3438–3454, 2010.

[36] C.S. Wallace and D. M. Boulton. An information measure for

classification. Computer Journal 11, 2, pp.185-194, 1968.

[37] D. Yankov, E. Keogh, and U. Rebbapragada. Disk aware

discord discovery: finding unusual time series in terabyte sized

datasets. Knowl. Inf. Syst. 17, 2, pp. 241-262, 2008.

[38] Q. Zhao, V. Hautamaki, and P. Franti. Knee point detection in

BIC for detecting the number of clusters. ACIVS, 5259, pp.

664–673, 2008.

[39] H.J. Zwally and P. Gloersen. Passive microwave images of the

polar regions and research applications. Polar Records 18, pp.

431-450, 1977.

[40] Project URL: www.cs.ucr.edu/~bhu002/MDL/MDL.html This

URL contains all data and code used in this paper. In addition

it contains many additional experiments omitted for brevity.

