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Abstract—Most algorithms for mining or indexing time series 

data do not operate directly on the original data, but instead 

they consider alternative representations that include 

transforms, quantization, approximation, and multi-resolution 

abstractions. Choosing the best representation and abstraction 

level for a given task/dataset is arguably the most critical step 

in time series data mining. In this paper, we investigate 

techniques to discover the natural intrinsic representation 

model, dimensionality and alphabet cardinality of a time series.  

The ability to discover these intrinsic features has implications 

beyond selecting the best parameters for particular algorithms, 

as characterizing data in such a manner is useful in its own 

right and an important sub-routine in algorithms for 

classification, clustering and outlier discovery. We will frame 

the discovery of these intrinsic features in the Minimal 

Description Length (MDL) framework. Extensive empirical 

tests show that our method is simpler, more general and 

significantly more accurate than previous methods, and has the 

important advantage of being essentially parameter-free.   

Keywords: Time Series, MDL, Dimensionality Reduction  

I. INTRODUCTION 

Most algorithms for indexing or mining time series data 
operate on higher-level representations of the data, which 
include transforms, quantization, approximations and multi-
resolution approaches. For instance, Discrete Fourier 
Transform (DFT), Discrete Wavelet Transform (DWT), 
Adaptive Piecewise Constant Approximation (APCA) and 
Piecewise Linear Approximation (PLA) are models that all 
have their advocates for various data mining tasks, and each 
has been used extensively [6]. However the question of 
choosing the best abstraction level and/or representation of 
the data for a given task/dataset still remains open. In this 
work, we investigate this problem by discovering the natural 
intrinsic model, dimensionality and (alphabet) cardinality of 
a time series. We will frame the discovery of these intrinsic 
features in the Minimal Description Length (MDL) 
framework [11][16][25][30]. MDL is the cornerstone of 
many bioinformatics algorithms [8][29], but it is arguably 
underutilized in time series data mining [12][24]. 

The ability to discover the intrinsic dimensionality and 
cardinality of time series has implications beyond setting the 
best parameters for data mining algorithms, as 
characterizing data in such a manner is useful in its own 
right to understand/describe the data and an important sub-
routine in algorithms for classification, clustering and 
outlier discovery [27][37]. To illustrate this, consider the 
three unrelated datasets in Figure 1. 

 

Figure 1. Three unrelated industrial time series with low intrinsic 

cardinality. I) Evaporator (channel one). II) Winding (channel five).  III) 
Dryer (channel one). 

The number of unique values in each time series is, from 
top to bottom, 14, 500 and 62. However, we might 
reasonably claim, that the intrinsic alphabet cardinality is 
instead 2, 2, and 12 respectively.  As it happens, an 
understanding of the processes that produced these data 
would perhaps support this claim [15].  In these datasets, 
and indeed in many real-world datasets, there is a significant 
difference between the actual and intrinsic cardinality. 
Similar remarks apply to dimensionality. 

Before we define more precisely what we mean by 
actual versus intrinsic cardinality, we should elaborate on 
the motivations behind our considerations. Our objective is 
generally not simply to save memory1: if we are wastefully 
using eight bytes per time point instead of using the mere 
three bytes made necessary by the intrinsic cardinality, the 
memory space saved is significant, but memory is getting 
cheaper every day, and is rarely a bottleneck in data mining 
tasks. There are instead many other reasons why we may 
wish to find the true intrinsic model, cardinality and 
dimensionality of the data, for example: 

 There is an increasing interest in using specialized 
hardware for data mining [33]. However, the 
complexity of implementing data mining algorithms in 
hardware typically grows super linearly with the 
cardinality of the alphabet. For example, FPGAs 
usually cannot handle cardinalities greater than 256 
[33]. 

 Some data mining algorithms benefit from having the 
data represented in the lowest meaningful cardinality. 
As a trivial example, in the stream: ..0, 0, 1, 0, 0, 1, 0, 0, 
1, we can easily find the rule that a ‘1’ follows two 
appearances of ‘0’.  However, notice that this rule is not 
apparent in this string: ..0, 0, 1.0001, 0.0001, 0, 1, 

                                                                 

1 Although Section I.A shows an example where this is useful. 
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0.000001, 0, 1 even though it is essentially the same 
time series. 

 Most time series indexing algorithms critically depend 
on the ability to reduce the dimensionality [6] or the 
cardinality [18] of the time series (or both [1] [2]), and 
searching over the compacted representation in main 
memory. However, setting the best level of 
representation remains a black art. 

 In resource-limited devices, it may be helpful to remove 
the spurious precision induced by a 
cardinality/dimensionally that is too high. We elaborate 
on this issue by using a concrete example below. 

 Knowing the intrinsic model, cardinality and 
dimensionality of a dataset allows us to create very 
simple outlier detection models. We simply look for 
data where the parameters discovered in new data differ 
from our expectations learned on training data. This is a 
simple idea, but it can be very effective.     

To enhance our appreciation of the potential utility of 
knowing the intrinsic cardinality and dimensionality of the 
data, we briefly consider an application in classification.  

A. A CONCRETE EXAMPLE 

For concreteness we present a simple scenario that 
shows the utility of understanding the intrinsic 
cardinality/dimensionality of data 2 . Suppose we wish to 
build a time series classifier into a device with a limited 
memory footprint such as a cell phone, pacemaker or 
“smartshoe” [34]. Let us suppose we have only 20kB 
available for the classifier, and that (as is the case with the 
benchmark dataset, TwoPat [15]) each time series exemplar 
has a dimensionality of 128 and takes 4 bytes per value. 

One could choose decision trees or Bayesian classifiers 
because they are space efficient, however it is well known 
that nearest neighbor classifiers are very difficult to beat for 
time series problems [6]. If we had simply stored forty 
random samples in the memory for our nearest neighbor 
classifier, the average error rate over fifty runs would be a 
respectable 58.7% for a four-class problem. However, we 
could also down-sample the dimensionality by a factor of 
two, either by skipping every second point, or by averaging 
pairs of points (as in SAX [18]), and place eighty reduced 
quality samples in memory. Or perhaps we could instead 
reduce the alphabet cardinality, by reducing the precision of 
the original four bytes to just one byte, thus allowing 160 
reduced-fidelity objects to be placed in memory. Many other 
combinations of dimensionality and cardinality reduction 
could be tested, which would trade reduced fidelity to the 
original data for more exemplars stored in memory. In this 
case, a dimensionality of 32 and a cardinality of 6 allow us 
to place 852 objects in memory and achieve an error rate of 
about 90.75%, a remarkable accuracy improvement given 
the limited resources. As we shall see, we found this 
combination of parameters using our MDL technique.  

                                                                 

2 We defer a discussion of our experimental philosophy until Section 5. 

However we note that all experiments in this paper are 100% 
reproducible, and all code and data is available at [40]. 

In general, testing all the combinations of parameters is 
computationally infeasible. Furthermore, while in this case 
we have class labels to guide us through the search of 
parameter space, this would not be the case for other 
unsupervised data mining algorithms, such as clustering, 
motif discovery [19], outlier discovery [3][35][37], and etc.  

As we shall show, our MDL framework allows us to 
automatically discover the parameters that reflect the 
intrinsic model/cardinality/dimensionally of the data 
without requiring external information or expensive cross 
validation search.  

II. DEFINITIONS AND NOTATION   

We begin with the definition of a time series:   

Definition 1: A time series T is an ordered list of numbers. 

T=t1,t2,...,tm. Each value ti is a finite precision number and m is 

the length of time series T.  

Before continuing we must justify the decision of 
(slightly) quantizing the time series. MDL is only defined 
for discrete values3, but most time series are real-valued. 
The obvious solution is to reduce the original number of 
possible values to a manageable amount. However the 
reader may object that such a drastic reduction in precision 
must surely lose some significant information. However this 
is not the case. To illustrate this point, we performed a 
simple experiment. From each of the twenty diverse datasets 
in the UCR archive [15] we randomly extracted one hundred 
pairs of time series. For each pair of time series we 
measured their Euclidean distance in the original high 
dimensional space, and then in the quantized 256-cardinality 
space, and used these pairs of distances to plot a point in a 
scatter plot.  Figure 2 shows the results.  

 
Figure 2. Each point on this plot corresponds to a pair of time series: the 

x-axis corresponds to their Euclidean distance, while the y-axis 
corresponds to the Euclidean distance between the 8-bit quantized 

representation of the same pair. 

The figure illustrates that all the points fall close to the 
diagonal, thus the quantization makes no perceptible 
difference. Beyond this subjective visual test, we also 
reproduced the heavily cited UCR time series classification 
benchmark experiments [15], replacing the original data 
with the 256-cardinality version. In no case did it make 
more than one tenth of one percent difference to 

                                                                 

3 The closely related technique of MML (Minimum Message Length [36]) 

does allow for continuous real-valued data. However, here we stick with 

the more familiar MDL formulation.   
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classification accuracy (full details are at [40]).  Given this, 
we simply reduce all the time series data to its 256 
cardinality version in this work, by using a discretization 
function: 

Definition 2: Discretization is a function used to normalize a 

real-valued time series T into b-bit discrete values in the range 

[-2b-1, 2b-1-1]. It is defined as following: 

               ( )        (
     

       
)  (    )       

where min and max are the minimum and maximum value in T, 

respectively4. 

For any time series T, we are interested in determining how 
many bits it takes to represent it. We can thus define the 
description length of a time series.   

Definition 3: A description length DL of a time series T is the 

total number of bits required to represent it. When Huffman 

coding is used to compress the time series T, the description 

length of time series T is defined by: 

DL (T) = | HuffmanCoding(T) | 

In the current literature, the number of bits required to 
store the time series depends on the idiosyncrasies of the 
data format or hardware device, not on any intrinsic 
properties of the data or domain. However we are really 
interested in knowing the minimum number of bits to 
exactly represent the data, the intrinsic amount of 
information in the time series. Unfortunately, in the general 
case this is not calculable, as it is the Kolmogorov 
complexity of the time series [17]. However, we can 
approximate the Kolmogorov complexity by compressing 
the data, using say Huffman coding [11][35][39]. The 
(lossless) compressed file size is clearly an upper bound to 
the DL of the time series [5].  

One of the key steps in finding the intrinsic cardinality 
and/or dimensionality is converting a given time series to 
other representation or model, e.g., by using DFT or DWT. 
We call that representation, a hypothesis: 

Definition 4: A hypothesis H is a representation of a discrete 

time series T after applying a transformation M.  

In general, there are many possible transforms M. 
Examples include the Discrete Wavelet Transform (DWT), 
the Discrete Fourier transform (DFT), the Adaptive 
Piecewise Linear Approximation (APCA), the Piecewise 
Linear Approximation (PLA), etc.[6]. Figure  6 shows three 
illustrative examples, DFT, APCA, and PLA. In this paper, 
we demonstrate our ideas using these three the most 
commonly used representations. Note however that our 
ideas apply to all time series models (see [6] for a survey of 
time series representations).   

Note that we use the term model interchangeably with 
the term hypothesis in this work.  

Definition 5: A reduced description length of a time series T 

given hypothesis H is the number of bits used for encoding time 

                                                                 

4  This slightly awkward formula is necessary because we use the 

symmetric range [-128,127]. If we use range [1, 256] instead we get a more 

elegant:                ( )        (      

       
)   (    )    . 

series T, exploiting information in the hypothesis H, i.e., DL 

(T│H), and the number of bits used for encoding H, i.e., DL (H). 

Thus, the reduced description length is defined as: 

DL (T, H) = DL (H) + DL (T│H)  

The first term, DL (H), called the model cost, is the 
number of bits required to store the hypothesis H. We will 
give concrete examples later, but in brief, the model cost for 
say the piecewise linear approximation would include the 
bits needed to encode the mean, slope and length of each 
linear segment. 

The second term, DL (T│H), called the correction cost 
(in some works it is called the description cost or error term) 
is the number of bits required to rebuild the entire time 
series T from the given hypothesis H.  

There are many possible ways to encode T using H. 
However, if we just simply store the differences (i.e. the 
difference vector) between T and H, we can easily re-
generate a whole time series T from the information we 
have. Thus, we simply use DL (T│H) = DL (T-H).  

We will demonstrate how to calculate the reduced 
description length more in detail in the next section. 

III. MDL MODELING OF TIME SERIES 

A. AN INTUITIVE EXAMPLE OF OUR BASIC IDEA 

For concreteness, we will consider a simple worked 
example comparing two possible dimensionalities of data. 
Note that here we are assuming a cardinality of 16, and a 
model of APCA. However, more generally we do not need 
to make such assumptions. Let us consider a sample time 
series T of length 24: 

T = 1 1 1 2 3 4 5 6 7 8 9 10 11 11 12 12 12 12 11 11 10 10 9 7 

In Figure 3 we show a plot of this data. 
 

 

Figure 3.  A sample time series T. 

We can attempt to model this data with a single constant 
line, a special case of APCA.  We begin by finding the 
mean of all the data, which (rounding in our integer space) 
is eight. We can create a hypothesis H1 to model this data, 
which as shown in Figure 4. It is simply a constant line with 
a mean of eight. There are 16 possible values this model 
could have had. Thus DL (H1) = 4 bits.  

 

Figure 4. Time series T (blue/fine), approximated by a one-dimensional 

APCA approximation H1 (red/bold). The error for this model is 

1 2 4 6 8 10 12 14 16 18 20 22 24

1 2 4 6 8 10 12 14 16 18 20 22 24



represented by the vertical lines.  

      This model H1 has a significant amount of error 5 
modeling T, and we must account for this. The errors e1, 
represented by the length of the vertical lines in Figure 4 are: 

e1 = 7  7  7  6  5  4  3  2  1  0  -1 -2 -3 -3 -4 -4 -4 -4 -3 -3 -2 -2 -1  1 

As noted in Definition 5, the cost to represent these 
errors is the correction cost, the number of bits encoding e1 

using Huffman coding, which is 82 bits. Thus the overall 
cost to represent T with a one-dimensional model or its 
reduced description length is:  

  (    )    (    )    (  )  

  (    )               

We can now test to see if hypothesis H2, which models 
the data with two constant lines could reduce the description 
length. Figure 5 shows the two segment approximation lines 
created by APCA.  

 

Figure 5. Time series T (blue/fine), approximated by a two-dimensional 

APCA approximation H2 (red/bold). Vertical lines represent the error. 

As we expect, the error e2 shown as the vertical lines in 
Figure 5 is smaller than the error e1. In particular, the error 
e2 is:  

e2 = 2  2  2  1  0 -1 -2 -3  3  2  1  0 -1 -1 -2 -2 -2 -2 -1 -1  0  0  1  3 

The number of bits encoding e2 using Huffman coding 
or the correction cost to generate the time series T given the 
hypothesis H2, DL (T│H2), is 65 bits. Although the 
correction cost is smaller than one-dimensional APCA, the 
model cost is larger. In order to store two constant lines, two 
constant numbers corresponding to the height of each line 
and a pointer indicating the end position of the first line are 
required. Thus, the reduced description length of model H2 
is:  

  (    )    (    )    (  )  

  (    )              (  )  ⌈    (  )⌉          

Because we have   (    )     (    ) , we prefer H2 
as a proper number of segments for our data. 

Clearly we are not done yet, we should also test H3, H4, 
H5, etc., corresponding to 3, 4, 5, etc. piecewise constant 
segments. Moreover, we can also test alterative models 
corresponding to different levels of DFT or PLA 
representation. In addition, we can also test different 
cardinalities, because it is possible that the 16-value 
cardinality was unnecessary for this domain. For example, 
suppose we had been given T2 instead:      

T2 = 0  0  0  0  4  4  4  4  4  0  0  0  0  8  8  8 8  8  8  12  12  12  12  12 

                                                                 

5 The word error has a pejorative meaning not intended here, some authors 

prefer to use correction cost.  

Here, if we tested multiple hypotheses as to the 
cardinality of this data, we would hope to find that the 
hypothesis   

   that attempts to encode the data with a 
cardinality of just 4 would result in the smallest model. 

We have shown a detailed example for APCA; however, 
essentially all the time series representations can be encoded 
in a similar way. As shown with three representative 
examples in Figure  6, essentially all the time series models 
consist of a set of basic functions (i.e., coefficients) that are 
linearly combined to produce an approximation of the data.  

 

Figure  6. A time series T shown in bold/blue and three different models of 

it shown in fine/red: from left to right: DFT, APCA, and PLA.  

As we apply our ideas to each representation, we must 
be careful to correctly “charge” each model for its 
approximation level. For example, each APCA segment 
requires two numbers, to encode its mean value and its 
length. However, PLA segments require three numbers, 
mean value, segment length and slope. Each DFT 
coefficient requires two numbers to encode the amplitude 
and phase of each sine wave, however, because of the 
complex conjugate property, we get a “free” coefficient for 
each one we record [2][6]. In previous comparisons of the 
indexing performance of various time series representations, 
many authors [13] have given an unfair advantage to one 
representation by the counting cost to represent an 
approximation incorrectly. The ideas in this work do 
explicitly assume a fair comparison.  Fortunately, the 
community seems more aware of this problem in recent 
years [2] [23]. 

In the next section we give both the generic version of 
the MDL model discovery for time series algorithm, and 
three concrete instantiations for DFT, APCA, and PLA. 

B. GENERIC MDL FOR TIME SERIES ALGORITHM 

In the last section, we use a toy example for 
demonstrating how to compute the reduced description 
length of a time series with competing hypothesis. In this 
section, we will show a detailed generic version of our 
algorithm, and then explain our algorithm in detail for the 
three most commonly used time series representations. 

Our algorithm can not only discover the intrinsic 
cardinality and dimensionality of an input time series, but 
can also be used to find the right model or data 
representation for the given time series. TABLE I shows a 
high-level view of our algorithm for discovering the best 
model, cardinality, and dimensionality which will minimize 

1 2 4 6 8 10 12 14 16 18 20 22 24

0 40 80 120 0 40 80 120 0 40 80 120



the total number of bits required to store the input time 
series. 

Because MDL is a heart of our algorithm, the first step 
in our algorithm is to quantize a real-value time series into a 

discrete-value (but still fine-grained) time series, T (line 1). 
Next, we consider each model, cardinality, and 

dimensionality one by one (line 3-5). Then a hypothesis H is 
created based on the selected model and parameters (line 6). 

For example, a hypothesis H shown in Figure 5 is created 

when the model M=APCA, cardinality c=16, and 

dimensionality d=2; note that, in that case, the length of 

input time series was m=24. 
The reduced description length defined in Definition 5 is 

then calculated (line 7), and our algorithm returns the model 
and parameters which minimized the reduced description 
length for encoding T (line 8-13). 

TABLE I. GENERIC MDL FOR TIME SERIES ALGORITHM 

Input:  TS : time series   

Output: best_model : best model 

                   best_card  : best cardinality 

                   best_dim   : best dimensionality 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

T = Discretization(TS)  

bsf = ∞ 

for all M in {APCA,PLA,DFT} 

  for all cardinality c 

    for all dimensionality d 

      H = ModelRespresentation(T,M,c,d) 

      total_cost = DL(H)+ DL(T|H) 

      if (bsf > total_cost) 

        bsf = total_cost 

        best_model = M 

        best_card  = c 

        best_dim   = d 

      end if 

    end for 

  end for 

end for 

For concreteness we will now consider three specific 
versions of our generic algorithm. 

C. ADAPTIVE PIECEWISE CONSTANT APPROXIMATION 

As we have seen in a previous section, an APCA model 
is simple; it contains only constant lines. The pseudo code 
for APCA shown in TABLE II is very similar to the generic 
algorithm. First of all, we do quantization on the input time 
series (line 1). Then, we evaluate all cardinalities from 2 to 
256 and dimensionalities from 2 to the maximum possible 
number, which is a half of the length of input time series TS 
(line 3-4).  

TABLE II. OUR ALGORITHM SPECIFIC TO APCA 

Algorithm: IntrinsicDiscovery for APCA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

T = Discretization(TS) 

bsf = ∞ 

for c = 2 to 256 

  for d = 2 to m/2 

    H = APCA(T,c,d) 

    model_cost =d*log2(c)+(d-1)*log2(m) 

    total_cost = model_cost + DL(T-H)  

    if (bsf > total_cost) 

      bsf = total_cost 

      best_card = c 

      best_dim  = d 

    end if 

13 

14 

  end for 

end for 

Note that if the dimensionality was more than m/2, some 

segments will contain only one point. Then, a hypothesis H 
is created using the values of cardinality c and 
dimensionality d, as shown in Figure 5 when c=16 and d=2. 

The model contains d constant segments so the model cost 

is the number of bits required for storing d constant 

numbers, and d-1 pointers to indicate the offset of the end 
of each segment (line 6). The difference between T and H is 
also required to rebuild T. The correction cost (Definition 5) 
is computed; then the reduced description length is the 
combination of the model cost and the correction cost (line 
7). Finally, the hypothesis which minimized this value is 
returned as an output of the algorithm (line 8-13).  

D. PIECEWISE LINEAR APPROXIMATION 

An example of a PLA model is shown in Figure  6.right. 
In contrast to APCA, a hypothesis using PLA is more 
complex because each segment contains a line of any slope, 
instead of a constant line in APCA. The algorithm to 
discover the intrinsic cardinality and dimensionality for 
PLA is shown in TABLE III, which is similar to the 
algorithm for APCA except the code in line 5 and 6.  

A PLA hypothesis H is created from external module 
PLA (line 5). To store a line of each segment in hypothesis 
H, we record the starting value, ending value, and the 
ending offset (line 6). Note that the slope is not kept because 

to store a real number is more expensive than log2(c). 

 The first two values are represented in cardinality c and 

thus log2(c) bits are required for each of them. We also 

require log2(m) bits to point to any arbitrary offset in T. 
Thus, the model cost is shown in line 6. Finally, the 
hypothesis reduce description length is calculated and the 
best choice is returned (line 8-13).  

TABLE III. OUR ALGORITHM SPECIFIC TO PLA 

Algorithm: IntrinsicDiscovery for PLA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

T = Discretization(TS) 

bsf = ∞ 

for c = 2 to 256 

  for d = 2 to m/2 

    H = PLA(T,c,d) 

    model_cost = 2*d*log2(c)+(d-1)*log2(m) 

    total_cost = model_cost +DL(T-H)  

    if (bsf > toal_cost) 

      bsf = toal_cost 

      best_card = c 

      best_dim  = d 

    end if 

  end for 

end for 

E. DISCRETE FOURIER TRANSFORM 

A data representation in DFT space is simply a linear 
combination of sine waves as shown in Figure  6.left. 
TABLE IV presents our algorithm specific to DFT. After 

we quantize the input time series to a discrete time series T 
(line 1), the external module DFT is called to return the list 

of sine wave coefficients which represent T. The 



coefficients in DFT are a set of complex conjugates, so we 
store only a half set of all coefficients which contains 
complex numbers without their conjugate, called 

half_coef (line 5). Note that when half_coef is 
provided, it is trivial to compute their conjugates and restore 
all coefficients. 

Instead of using all of half_coef to regenerate T, we 
test using subsets of them as the hypothesis to 

approximately regenerate T, incurring some inevitable error. 
To do this, we first sort the coefficients by their absolute 

value (line 6). We use top-d coefficients as the hypothesis to 

regenerate T by using InverseDFT (line 8). For example, 

when d=1 we use only the single most important coefficient 

to rebuild T, and when d=2 the combination of top-two sine 
waves are used as a hypothesis etc. However, it is expensive 
to use 16 bits for each coefficient by keeping two complex 
numbers for its real part and imaginary part. Therefore, in 

line 7, we reduce those numbers to just c possible values 
(cardinality) by rounding up/down the number to the 

corresponding point in a space of size c, and we also need 
to keep constant bits (32 bits) for the maximum and 
minimum value of the real parts and also of the imaginary 
parts Hence, the model contains top-d coefficients whose 

real (and imaginary) parts are in space of size c. Thus, the 
model cost and the reduced description length are shown in 
line 9 and 10. 

TABLE IV. OUR ALGORITHM SPECIFIC TO DFT 

Algorithm: IntrinsicDiscovery for DFT 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

T = Discretization(TS) 

bsf = ∞ 

for c = 2 to 256 

  for d = 2 to m/2 

    half_coef = DFT(T) 

    sorted_coef = SortByPolar(half_coef) 

    round_coef = Round(sorted_coef, c)    

    H = InverseDFT(round_coef(1:n)) 

    model_cost=2*d*log2(c)+d*log2(m/2))+32 

    total_cost = model_cost + DL(T-H) 

    if (bsf > total_cost) 

      bsf = total_cost 

      best_card = c 

      best_dim  = d 

    end if 

  end for 

end for 

Note that for the sake of notational simplicity we put the 
external modules APCA, PLA, and DFT inside two for-
loops, however we can move it outside the loops and 
compute it once to improve performance. 

IV. EXPERIMENTAL EVALUATION 

We begin by explaining our experimental philosophy. 
To ensure that our experiments are easily reproducible, we 
have built a website which contains all data and code, 
together with the raw spreadsheets for the results [40]. In 
addition this website contains additional experiments that 
are omitted here for brevity. 

A. A DETAILED EXAMPLE ON A FAMOUS PROBLEM 

We begin with a simple sanity check on the classic 
problem specifying the correct time series model, 
cardinality and dimensionality, given an observation of a 
corrupted version of it. While this problem has received 
significant attention in the literature [7][31][32], our MDL 
method has two significant advantages over existing works; 
It is parameter-free, whereas most other methods require 
several parameters to be set, and MDL can specify the 
model, cardinality and dimensionality, whereas other 
methods typically only consider model and/or 
dimensionality. 

To eliminate the possibility of data bias [14] we consider 
a ten year-old instantiation [32] of a classic benchmark 
problem [7]. In Figure 7 we show the classic Donoho-
Johnstone block benchmark. The underlying model used to 
produce it is a twelve piecewise constant sections with 
Gaussian noise added.  

 

Figure 7. A version of the Donoho-Johnstone block benchmark created ten 

years ago and downloaded from [32]. 

The task is challenging because some of the piecewise 
constant sections are very short and thus easily dismissed 
during a model search. There have been dozens of 
algorithms that applied to this problem (indeed, to this exact 
instance of data) in the last decade, so which should we 
compare to? Most of these algorithms have several 
parameters, in some cases as many as six [9] [10]. We argue 
that comparisons to such methods are pointless, since our 
explicit aim is to introduce a parameter-free method. The 
most cited parameter-free method to address this problem is 
the L-Method of [31]. In essence, the L-Method is a “knee-
finding” algorithm. It attempts to explain the residual error 
vs. size-of-model curve using all possible pairs of two 
regression lines. Figure 8.top shows one such pairs of lines, 
from one to ten and from eleven to the end. The location that 
produces the minimum sum of the residual errors of these 
two curves R, is offered as the optimal model, as we can see 
in Figure 8.bottom, this occurs at location ten, a good 
estimate of the true value of twelve. 

We also tested several other methods, including a recent 
Bayesian Information Criterion based method that we found 
predicted a too coarse four-segment model [38]. However 
no other parameter-free or parameter-lite method we found 
produced intuitive (much less correct) results. We therefore 
omit further comparisons in this paper (however, many 
additional experiments are at [40]). 

 

Donoho-JohnstoneBenchmark

0 500 1000 1500 2000



 

Figure 8. The knee finding L-Method top) A residual error vs. size-of-
model curve (bold/blue) is modeled by all possible pairs of regression lines 

(light/red). Here just one possibility is shown. bottom) The location that 

minimizes the summed residual error of the two  regression lines is given 
as the optimal “knee”.  

We can now attempt to solve this problem with our 
MDL approach. Figure 9 shows that of the 512 different 
piecewise constant models it evaluated, MDL chose the 
twelve-segment model, the correct answer. 

 

Figure 9. The description length of the Donoho-Johnstone block 

benchmark time series is minimized at a dimensionality corresponding to 
twelve piecewise constant segments, which is the correct answer [32]. 

The figure above uses a cardinality of 256, but the same 
answer is retuned for (at least) every cardinality from 8 to 
256. 

Beyond outperforming other techniques at the task of 
finding the correct dimensionality of a model, MDL can also 
find the intrinsic cardinality of a dataset, something that 
methods [31][38] are not even defined for. In Figure 10 we 
have repeated the previous experiment, but this time fixing 
the dimensionality to twelve as suggested above, and testing 
all possible cardinality values from 2 to 256. 

 

Figure 10. The description length of the Donoho-Johnstone block 

benchmark time series is minimized with a cardinality of ten, which is the 

true cardinality [32]. 

Here MDL indicates a cardinality of ten, which is the 
correct answer [32]. We also reimplemented the most 
referenced recent paper on time series discretization [10]. 
The algorithm is stochastic, and requires the setting of five 
parameters. In one hundred runs over multiple parameters 
we found it consistently underestimated the cardinality of 
the data (the mean cardinality was 7.2). 

Before leaving this example, we show one further 
significant advantage of MDL over existing techniques. 
Both [31] [38] try to find the optimal dimensionality, 

assuming the underlying model is known. However in many 
circumstances we may not know the underlying model. As 
we show in Figure 11, with MDL we can relax even this 
assumption. If our MDL scoring scheme is allowed to 
choose over the cross product of model = {APCA, PLA, 
DFT}, dimensionality = {1 to 512} and cardinality = {2 to 
256}, it correctly chooses the right model, dimensionality 
and cardinality. 

 

Figure 11. The description length of the Donoho-Johnstone block 
benchmark time series is minimized with a piecewise constant model 
(APCA), not a piecewise linear model (PLA) or Fourier representation 
(DFT). 

B. AN EXAMPLE APPLICATION IN PHYSIOLOGY 

The Muscle dataset studied by Mörchen and Ultsch [22] 
describes the muscle activation of a professional inline 
speed skater. The authors calculated the muscle activation 
from the original EMG (Electromyography) measurements 
by taking the logarithm of the energy derived from a 
wavelet analysis. Figure 12.top shows an excerpt. At first 
glance it seems to have two states, which correspond to our 
(perhaps) naive intuitions about skating and muscle 
physiology.  

 
Figure 12. top) An excerpt from the Muscle dataset. bottom) A zoomed-in 

section of the Muscle dataset which had its model, dimensionality and 

cardinality set by MDL. 

We can test this binary assumption by using MDL to 
find the model, dimensionality and cardinality. The results 
for model and dimensionality are objectively correct, as we 
might have expected given the results in the previous 
section, but the results for cardinality, shown in Figure 
13.left   are worth examining.  

Our MDL method suggests a cardinality of three. 
Glancing back at Figure 12.bottom shows why. At the end 
of the stroke there is an additional level corresponding to an 
additional push-off by the athlete. This feature was noted by 
physiologists that worked with Mörchen and Ultsch [22]. 
However, their algorithm weakly predicts a value of four6. 
Here once again we find the MDL can beat rival approaches, 
even though the rival approach attempted the most favorable 
parameter tuning.  

                                                                 

6 The values for k = 3, 4 or 5 do not differ by more than 1%. 
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Figure 13. left) The description length of the muscle activation time series 

is minimized with a cardinality of three, which is the correct answer. right) 

The PERSIST algorithm, using the code from [22] predicts a value of four.  

C. AN EXAMPLE APPLICATION IN ASTRONOMY 

In this section (and the one following) we consider the 
possible utility of MDL scoring as an anomaly detector. 
Building an anomaly detector using MDL is very simple. 
We can simply record the best model, dimensionality and/or 
cardinality predicted for the training data, and then look for 
future observations that have significantly different learned 
parameters. We can illustrate this with an example in 
astronomy. 

Globally there are hundreds of telescopes covering the 
sky and constantly recording massive amounts of 
astronomical data [27]. Moreover, there is a worldwide 
effort to digitize tens of millions of observations recorded 
on formats ranging from paper/pencil to punch cards over 
the last hundred years. Having humans manually inspect all 
such observations is clearly impossible [20]. So outlier 
detector detection is useful to catch anomalous data, which 
may be an exciting new discovery or just a pedestrian error.  
We took a collection of 1,000 hand-annotated RRL variable 
stars [27] [28], and measured the mean and standard 
deviation of the DFT dimensionally, finding them to be 
22.52 and 2.12 respectively. As shown in Figure 14.top, the 
distribution is Gaussian.   

We then took a test set of 8,124 objects, known to 
contain at least one anomaly, and measured the intrinsic 
DFT dimensionally of all its members, finding one had a 
value of 31. As shown in Figure 14.bottom, the offending 
curve does look different to the other data, and is labeled 
RRL_OGLE053803.42-695656.4.I.folded ANOM, it is a 
previously known anomaly. In this case, we are simply able 
to reproduce the anomaly finding ability of previous work 
[27] [28]. However note that we can do so without extensive 
parameter tuning, and we can do so very efficiently.    

 

 

Figure 14. top) The distribution of intrinsic dimensionalities of star light 

curves,  estimated over 5,327 human-annotated examples.  bottom) Three 

typical examples of the class RRL, and a high intrinsic dimensionality 

example, labeled as an outlier by [27]. 

D. AN EXAMPLE APPLICATION IN CARDIOLOGY 

In this section we show how MDL can be used to mine 
ECG data. Note that our intention is not to produce a 
definitive method for this domain, but simply to 
demonstrate the utility and generality of MDL. We 
conducted an experiment that is similar in spirit to the 
previous section. We learned the mean and standard 
deviation of the DFT dimensionally on 200 normal 
heartbeats, finding them to be 20.82 and 1.70 respectively. 
As shown in Figure 15.top the distribution is clearly 
Gaussian.  We used these learned values to monitor the rest 
of the data, flagging any heartbeats that had a dimensionally 
that was more than three standard deviations from the mean.  
Figure 15.bottom shows a heartbeat that was flagged by this 
technique.  

 

 
 

Figure 15. top) The distribution of intrinsic dimensionalities of individual 

heartbeats,  estimated over the 200 normal examples the proceeded time 

zero in record 108 of the MIT BIH Arrhythmia Database (bottom). 

Once again, here we are simply reproducing a result that 
could be produced by other methods [37]. However, we 
reiterate that we are doing so without tuning parameters. 
Moreover, it is interesting to note when our algorithm does 
not flag innocuous data (i.e., produce false positives). 
Consider the two adjacent heartbeats labeled A and B in 
Figure 15.bottom. It happens that the completely normal 
heartbeat B has significantly more noise than heartbeat A. 
Such non-stationary noise poises great difficulties for 
distance-based and density-based outlier detection methods 
[37], but MDL is essentially invariant to it. Likewise the 
significant wandering baseline (not illustrated) in parts of 
this dataset has no medical significance and is ignored by 
MDL, but it is the bane of many EEG anomaly detection 
methods [3]. 

E. AN EXAMPLE APPLICATION IN GEOSCIENCES  

Global-scale Earth observation satellites such as the 
Defense Meteorological Satellite Program (DMSP) Special 
Sensor Microwave/Imager (SSM/I) have provided 
temporally detailed information of the earth surface since 
1978, and the National Snow and Ice Data Center (NSIDC) 
in Boulder, Colorado makes this data available in real time. 
Such archives are a critical resource for scientists studying 
climate change [26].  In Figure 16 we show a brightness 
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temperature time series from a region in Antarctica, using 
SSM/I daily observations over the 2001-2002 austral 
summer. 

We used MDL to search this archive for low complexity 
annual data, reasoning that low complexity data might be 
amenable to explanation.  Because there is no natural 
starting point for a year, for each time series we tested every 
possible day as the starting point. The simplest time series 
we discovered required a piecewise constant dimensionality 
of two with a cardinality of two, suggesting a very simple 
process created the data. Furthermore, the model (piecewise 
constant) discovered is somewhat surprising, since virtually 
all climate data is sinusoidal, reflecting annual periodicity, 
thus we were intrigued to find an explanation for the data. 

 

Figure 16. left) A time series of temperature in a region of Antarctica. 

right) Of the hundreds of millions of such time series archived at NSIDC, 

this time series (and a few thousand more) are unusual in that it has a very 
low complexity, being best modeled with just two linear segments.    

After consulting some polar climate experts, the 
following explanation emerges. For most of the year the 
location in question is covered in snow. The introduction of 
a small amount of liquid water will significantly change the 
reflective properties of the ground cover, allowing 
absorbing more heat from the sun, thus producing more 
liquid water in a positive feedback cycle. This explains why 
they data does not a sinusoidal shape or a gradual (say 
linear) rise, but a fast phase change, from a mean of about 
155 Kelvin to a ninety day summer of about 260 Kelvin.  

V. TIME AND SPACE COMPLEXITY 

The space complexly of our algorithm is linear in the 
size of the original data. The time complexity of the 
algorithms in Tables 2, 3 and 4 are optimized for simplicity, 
and appear quadratic in the time series length. However, we 
can do the DFT/PLA/APCA decomposition once at the 
finest granularity, and cache the results, leaving only a loop 
that performs efficient calculations on integers. After this 
optimization, the time taken for our algorithms is O(mlog2m) 
and an inconsequential fraction of the time it takes to do 
PLA or APCA once, and only slightly slower than the time 
it takes to do DFT once. We therefore omit timing 
experiments.  

VI. DISCUSSION AND RELATED WORK 

We took the opportunity to show a preview of this work 
to many respected researchers in this area, and this paper 
greatly benefits from their input. However we found that 
many researchers felt it necessary to passionately argue 
often mutuality exclusive points related to MDL that we felt 

were orthogonal to our work and distracting from our claims. 
We will briefly address these points here.  

The first issue is who should be credited with invention 
of basic idea we are exploiting; that shortest overall two-part 
message is more likely to be correct. We found that there 
are experts in complexity theory that advocate passionately 
for Andrey Kolmogorov or Chris Wallace or Ray 
Solomonoff or Gregory Chaitin etc. Obviously, this work is 
not weighting in on such a discussion, [17] is a good neutral 
starting point for historical context. We stand on the 
shoulders of all such giants.  

One researcher felt that MDL models can only be 
evaluated in terms of prediction of future events, not on 
post-hoc explanations of the models discovered (as we did 
in Figure 12 for example).  However we note that we have 
done prediction experiments. For example, in the 
introduction section we used our MDL technique to predict 
which of approximately 700 combinations of settings of the 
cardinality/dimensionality/number of exemplars would 
produce the most accurate classifier under the given 
constraints. Clearly the 90.75% we achieved significantly 
beat the default settings that gave only 58.7%. However a 
brute force search shows that our predicted model produced 
the best result (three similar settings of the parameters did 
tie with the 90.75% accuracy). Likewise the experiment 
shown in Figure 15 can be cast in a prediction framework: 
“predict which of these heartbeats is a cardiologist most 
likely to state is abnormal”. To summarize, we do not feel 
that the prediction/explanation dichotomy is of particular 
relevance here.   

There are many papers that use MDL to consider 
problems involving real-valued time series. However, our 
simple parameter-free method is novel. For example, [9] 
uses MDL to help guide a PLA segmentation of times 
series, however the method also uses both hybrid neural 
networks and hidden Markov models, requiring at least six 
parameters to be set (and a significant amount of 
computational overhead). Similarly, [21] also use MDL 
with neural networks, inheriting the utility of MDL but also 
inheriting the difficulty of leaning the topology and 
parameters of a neural network. 

Likewise [4] uses MDL to “find breaks” (i.e. segment) 
in a time series, but their formulation uses a genetic 
algorithm which requires a large computational overhead 
and the careful setting of seven parameters.  

There are also examples of research efforts using MDL 
to help cluster or do motif discovery in time series, however 
to the best of our knowledge this is the first work to show a 
completely parameter-free method for the discovery of 
cardinality/dimensionality/model of a time series.   

VII. CONCLUSIONS 

We have shown that a simple methodology based on 
MDL can robustly specify the intrinsic model, cardinality 
and dimensionality of time series data from a wide variety 
of domains. Our method has significant advantages over 
rival methods in that it is more general and is essentially 
parameter-free. We have further shown applications of our 
ideas to resource-limited classification and anomaly 
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detection. We have given away all our (admittedly very 
simple) code and datasets so that others can confirm and 
build on our results [40]. 
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