
Intelligent Icons: Integrating Lite-Weight Data Mining and Visualization
into GUI Operating Systems

Eamonn Keogh Li Wei Xiaopeng Xi Stefano Lonardi Jin Shieh Scott Sirowy

University of California – Riverside
 {eamonn, wli, xxi, stelo, shiehj, ssirowy}@cs.ucr.edu

ABSTRACT
The vast majority of visualization tools introduced so far are
specialized pieces of software that are explicitly run on a
particular dataset at a particular time for a particular
purpose. In this work we introduce a novel framework for
allowing visualization to take place in the background of
normal day to day operation of any GUI based operation
system such as MS Windows, OS X or Linux. By allowing
visualization to occur in the background of quotidian
computer activity (i.e. finding, moving, deleting, copying files
etc) we allow a greater possibility of unexpected and
serendipitous discoveries.

Our system works by replacing the standard file icons with
automatically created icons that reflect the contents of the files
in a principled way. We call such icons INTELLIGENT ICONS.
While there is little utility in examining an individual icon,
examining groups of them allows us to take advantage of small
multiples paradigm advocated by Tufte. We can further
enhance the utility of Intelligent Icons by arranging them on
the screen in a way that reflects their similarity/differences,
rather than the traditional “view by date”, “view by size” etc.
We demonstrate the utility of our approach on data as diverse
DNA, text files, electrocardiograms and Space Shuttle
telemetry. In addition we show that our system is unique in
also supporting fast and intuitive similarity search.

1 INTRODUCTION
At the heart of many information visualization and data
mining techniques is a single question “compared to
what?” [20]. In several application domains, the main
objective of data exploration is to arrange the data such that
meaningful similarities and differences are exposed.
However the vast majority of visualization/data mining
tools introduced so far are specialized pieces of software
that are explicitly run on a particular dataset at a particular
time for a particular purpose. The human effort involved in
this process is high enough that most of these tools are used
rarely, even when data keeps accumulating at very high
rates.

In this work we introduce a novel framework for
allowing lite-weight visualization and data mining to take
place in the background of normal day-to-day operation of
any GUI based operation system such as MS Windows, OS
X or Linux. By allowing visualization to occur in the
background of quotidian computer activity we allow a
greater possibility of unexpected, serendipitous and useful
discoveries.

Our system works by replacing the standard file icons
with automatically created icons that reflect the contents of
the files in a principled way. We call such icons
INTELLIGENT ICONS. While there is little utility in examining
an individual icon, examining groups of them allows us to

take advantage of small multiples paradigm elucidated by
Tufte, allowing us to answer the question “compared to
what?” We can enhance the utility of Intelligent Icons by
arranging them on the screen in a way that reflects their
similarity/differences, rather than the traditional “view by
date”, “view by size” etc. As we will demonstrate, our
approach has utility for data as diverse as DNA, text files,
and time series.

The rest of the paper is organized as follows, we
conclude Section 1 with a discussion of related work.
Section 2 introduces our ideas on a single data type, DNA.
In Section 3 we generalize these ideas to other types of
data. Section 4 contains demonstrations and experiments.
Finally in Section 5 we discuss future directions.

1.1 Prior and Related Work
Our work is closest in sprit to the recent VisualIDs work of
Lewis et. al. [15]. Here the authors note that “search and
memory for images is known to be generally faster and
more robust than search and memory for words”, and they
leverage off this fact by automatically creating distinctive
icons for desktop interfaces. The icons are created by
hashing the filenames to seeds of a pseudorandom
generator that in turn is used to create a shape grammar. In
this way, similar filenames will map to similar shapes, thus
allowing a user to see at glance when two files are related.

The most important distinction between VisualIDs and
INTELLIGENT ICONS is that the former only looks at a file
name, whereas the latter looks at file content. The authors
of VisualIDs make a convincing case that producing the
icons appearance exclusively from the file name does lend
a “permanence” (in spite of editing changes) that may aid
the user in navigating through a large file system. However
our goal extends beyond creating a simple aide-memoire
for navigation. The objective is to create a system that also
supports information visualization and query by content. As
a simple example of the difference of the two approaches
consider Figure 1.

Figure 1: The similarity of 3 DNA files based on file name (left)
and file contents (right).

The three files in the example are ASCII text files, each
of which contains approximately 16,000 base pairs of
mitochondrial DNA. Here we used string edit distance as

Ursus
americanus
(bear)

Argulus
americanus
(crustacean)

Mus
musculus
(mouse)

4

6

8

10

12

bear crustaceanmouse

Ursus
americanus
(bear)

Argulus
americanus
(crustacean)

Mus
musculus
(mouse)

4

6

8

10

12

bear crustaceanmouse

suggested in [15] to measure the distance between file
names, and Euclidean distance to measure the distance
between the file icons (as explained in more detail below).
Note that two of the species share the same specific name
of “americanus” (with a different generic name) and this
makes them similar in a way that is not biologically
meaningful1, whereas the INTELLIGENT ICON approach
captures the correct relationship between the three species.

An additional limitation of VisualIDs is that most people
do not explicitly name the vast majority of files on their
hard drive. Rather the file names are inherited when the
files are downloaded, or they are automatically named by
automatic links to an external database (i.e. music files
named by CDDB.com), or they are automatically generated
by an application, for example Canon-001.jpg,
Canon-002.jpg etc. In such cases VisualIDs may have
limited utility. Given the different goals of our approach
and VisualIDs, we will not discuss this work any further.

The idea of using the values of variables to change the
shape of an icon (glyph) dates back at least to the classic
work of Chernoff [6]. Beddow and others exploited the
availably of color display and printers to extend this
mapping to colors [5]. Keim et. al. introduced Recursive
Patterns in [8]. Recursive patterns can be considered as a
general technique to map data to bitmaps, although icons
were not explicitly considered.

The arrangement of icons on the screen is an important
component of our work. Ward [22] contains an excellent
overview and some important original contributions.

2 AN EXAMPLE OF AN ICON GENERATION
ALGORITHM

For concreteness we begin with a particular example of an
icon generation algorithm before considering the more
general framework below. We have chosen DNA data for
our first example. We recognize that DNA is a rather
specialized file type. However there are two reasons for
using it as the introductory example. First, its special
structure lends itself to simple elucidation. Second, DNA is
unique in that it is the only dataset for which there exists a
unique taxonomy, and this taxonomy is near universally
agreed on for most “major” animals. This fact will allow us
to objectively test the similarity of icons.

2.1 DNA to INTELLIGENT ICON
Consider a DNA string, which is a sequence of symbols
drawn from the alphabet {A, C, G, T}. DNA strings can be
very long. For example the human mitochondrial DNA has
16,571 such symbols, beginning with
GATCACAGGTCTATCACCCTATTAACCACT… and ending
with …ACATCACGATG. This long sequence (approximately
five pages of text in this papers format) is only a tiny subset
of the three billion letters that actually make up the entire
human genome. We want to note here that size of the icon
(32 by 32 pixels) is the limiting factor in summarizing the
information content of large files.

Although the rich literature on the problem of classifying
DNA sequences contains very sophisticated approaches,
here we pursue a very simple technique based on the

1 It might be argued that the discovered similarity of specific name of
“americanus” is somehow geographically meaningful. However, the
specific name part of most organisms such as “orientalis”, “japonicum”,
“asiatica” are used in fairly arbitrary and inconsistent ways that have little
utility for taxonomy.

frequency of short substrings. The first attempt to map a
sequence in an icon would be to divide the bitmap into four
quadrants and count the frequency of each of the four
possible base pairs. We can then map the observed
frequencies to a linear colormap to produce a icon using the
indexed colors to fill in the corresponding sections of the
bitmaps as shown in Figure 2.

Figure 2: i) The four DNA base pairs arranged in a 2 by 2 grid.
ii) The observed frequencies of each letter in human
mitochondrial DNA can be indexed to a colormap to produce a
file icon as shown in iii.

Note that in this case the arrangement of the four letters
is arbitrary, and that the choice of colormap is also
arbitrary. In order to use as much of the color spectrum as
possible, we normalize the data such that the lowest
frequency symbol maps to zero and the highest frequency
symbol maps to one. More concretely, if j is one symbol in
the alphabet, then the color index of j is denoted as ci(j),
and calculated as:

ci(j) = (f(j) - min[f(A), f(C), f(G), f(T)]) / max[f(A), f(C), f(G), f(T)] (1
One could apply this simple mapping to a set of DNA

sequences corresponding to different species and examine
the icons in a file browser. Unsurprisingly however (and
unfortunately for human vanity) there is very little
difference between the icons obtained in this way for most
mammals. In an attempt to improve the discrimination
ability of the icons we can use more features, examining
the frequencies of all possible pairs of letters. For example
the substring AT appears 3 times in the first 30 base pairs
of the human mitochondrial DNA, which is
GATCACAGGTCTATCACCCTATTAACCACT. If we attempt
this strategy, we must consider the best way to map the new
features to our 32 by 32 bitmap. We could do this
arbitrarily as before, for example we could sort
lexicographically the words and fill in the bitmap left to
right, top to bottom. However below we show an
alternative method that has a potentially useful property.

Most GUI operating systems allow the user to view files
icons at different sizes. For example MS Windows XP can
show the icons in 4 different sizes depending on whether
you chose “thumbnails”, “tiles” “icons”, “list” in the view
options. It would therefore be desirable if we could arrange
for a file icon to be similar to itself regardless of the
number of features used to create it. Surprisingly, this is
easy to arrange for DNA. Below we show a general
mapping for DNA that has this property.

We begin by assigning each letter a unique key value, k:
A → 0 C → 1 G → 2 T → 3

We can control the desired number of features by
choosing l, the length of the DNA words. Each word has an
index for the location of each symbol, for clarity we can
show them explicitly as subscripts. For example, the first
word with l = 4 extracted from the human mitochondrial

CA

TG
0.2 0.4 0.6 0.8 1.00

f(A) = 0.308
f(C) = 0.313
f(G) = 0.121
f(T) = 0.246

Homo sapiens.dna

i ii iii

CA

TG

CA

TG
0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

f(A) = 0.308
f(C) = 0.313
f(G) = 0.121
f(T) = 0.246

Homo sapiens.dna

i ii iii

DNA is GOA1T2C3. So in this example we would say k0 is G,
k1 = A, k2 = T and kl = C.

To map a word into a bitmap we can use the following
equation to find its row and column values:

11

0

1

0

1 2)2(,2mod)2(!!!

=

!

=

!!!
"="= ##

nll

n n

l

n

nlnl

n
divkrowkcol (2

Figure 3 shows the mapping for l = 1, 2 and (part of) 3.

Figure 3: The mapping of DNA words of l = 1, 2 and 3. (The
colors of the text are just to allow visualization of the mapping
algorithm).

If one examines the mapping in Figure 3, one can get a
hint as to why a bitmap for a given species might be self-
similar across different scales. For example note that for
any value of l, the top column consists only of permutations
of A and C, and that the two diagonals consist of
permutations of A and T, or G and C. Similar remarks
apply other rows and columns.

To demonstrate this self-similar property we have creates
the icons for two different species at multiple levels in
Figure 4.

Figure 4:The icons created for two species at every level from 1
to 4. Note that the icons for a given species look similar across
all levels.

Note that this converging property of has been noted
before (for a more complex variation of our mapping
scheme) and has been used to study genomes [1]. For
example, a biologist can recognize that a particular DNA
word, say in a bacterial genome, is rarely used. This would
suggest the possibility that the bacteria have evolved to
avoid a particular restriction enzyme site, which means that
it might not be easily attacked by a specific bacterio-phage.

2.2 Optimizing and Arranging the Icons
Recall that our intent is to produce icons that reflect the
similarity of the files. We can objectively measure the
similarity of two icons by using the Euclidean distance
between the matrices of original frequency counts. Given
matrices A and B, of the same level l, and denoting the ith,
jth element as Aij, we can measure the distance as:

2
2

1

2

1

)(),(ij

i j

ij BABAdist

l l

!!
= =

"=
 (3

This distance measure assumes that we have access to the
original frequency counts matrices. However in practice we
can use the actual icons, provided we keep the colormap to
translate the 3-dimensional color (RGB values) back to 1-
dimensional frequency counts.

In Figure 5 we have clustered five familiar species based
on the Euclidean distance between their bitmap
representations.

Figure 5: Five species clustered using the distance between
their bitmap representations (for clarity we used their common
names).

These results are something of a mixed bag for us.
Although the clustering is objectively correct, the
differences detected by Euclidean distance measure are
very subtle to the naked eye. For example one must look
quite closely to observe that the top right element of the
primates bitmap is pink, whereas the corresponding
element for the elephants is blue.

We have therefore identified the need to enhance the
subjective visual discriminatory power of the icons. We
will devote an entire section to a discussion of general
techniques for doing just that. In what follows we show an
example of the type of modification that could enhance the
subtle visual similarities and differences of icons. An
obvious possible “trick” would be to normalize the ith,jth
elements across all icons. This has the effect of enhancing
subtle differences in color. For example the bottom right
element of all 5 icons shown in Figure 5 appear to be minor
variations of blue violet, it requires careful inspection to
note that the elephants have a slightly darker shade of it. In
Figure 6 however, normalization has emphasized the
differences such that the element in question is magenta
(fuchsia) for the elephants and pale turquoise for the
human.

Figure 6: Five species clustered using the distance between
their normalized bitmap representations.

Here the visual patterns are much more satisfactory, and
we can finally see a hint of the potential utility of

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

A C

G T

AAA AAC ACA

AAG AAT ACG

AGA AGC

AGG

l = 1 l = 2 l = 3

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

A C

G T

AAA AAC ACA

AAG AAT ACG

AGA AGC

AGG

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

AA AC CA CCAA AC CA CC

AG AT CG CTAG AT CG CT

GA GC TA TCGA GC TA TC

GG GT TG TTGG GT TG TT

A C

G T

A C

G T

AAA AAC ACA

AAG AAT ACG

AGA AGC

AGG

l = 1 l = 2 l = 3

Argulus
americanus

(crustacean)

l = 1

Homo
Sapiens
(human)

l = 2 l = 3 l = 4

Argulus
americanus

(crustacean)

l = 1

Homo
Sapiens
(human)

l = 2 l = 3 l = 4

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

INTELLIGENT ICONS. As a simple example of this, imagine
we encountered the icon shown in Figure 7.

Figure 7: The icon for another African mammal. Is this animal
more similar to an elephant or ape?

Based on the file name, we probably cannot say anything
about this animal, but simply by glancing at the file icon
and comparing it to the icons in Figure 6 we might
reasonably guess that this animal is more similar to the
chimps/human than to the elephants. In fact, this is the
case, Macaca mulatto is more commonly known as the
rhesus monkey.

We can further leverage off the INTELLIGENT ICONS by
arranging them within a file browser based on their
similarity. By way of contrast consider the classic file
browser interaction shown in Figure 8.

Figure 8: Twelve DNA files, sorted by name, in a typical file
browser. Using the classic technique of bounding box selection
we can select subsets of the files, in this case the Indian
elephant and the Indian rhinoceros.

We can use the classic bounding box section tool to
selection various subsets. However in this example it is
hard to extract meaningful subsets, other than the dubious
pairs pygmy chimpanzee/pygmy sperm whale and Indian
elephant/ Indian rhinoceros (Note we are using familiar
English names here for clarity, however using scientific
names does not help, for example the two types of elephant,
Elephas maximus and Loxodonta Africana, are not
alphabetically close).

We can use INTELLIGENT ICONS to solve this problem by
arranging the icons in the file browser based on their
similarity, rather than the classic options of name, size, date
etc. There has been much work on arranging icons
(glyphs/photo thumbnails etc) on a screen (see [22] for an
excellent overview). We have adopted Multi-Dimensional
Scaling (MDS), which requires a distance matrix between
all icons as its input (calculated using E.q. 3). In order to
prevent the icons from partially or completely overlapping,
we snap-to-grid the icons to the nearest unoccupied grid
point as suggested by Basalaj [4].

Although the time complexity of MDS is cubic in the
number of objects, we found that even on a large screen full
of small icons, an efficient MDS implementation can
dynamically adjust the position of the icons in real time as
the user changes the aspect ratio of the file browser. Figure
9 shows the same 12 mammals as shown in Figure 8
arranged in this way2.

Figure 9: Twelve DNA files, arranged by INTELLIGENT ICONS, in
a typical file browser. Using the classic technique of bounding
box selection we can select subsets of the files, in this case the
Indian rhinoceros and the white rhinoceros.

In addition to being able to select both types of Rhinos
(Rhinocerotidae) as shown above, we can now also use
standard bounding rectangles to select other logical groups,
such as:

• Both types of elephants (Elephantidae).
• All the primates (Catarrhini).
• Just the greater apes (Hominidae).
• Just the two types of chimps (Panines).
• Just the chimps and humans (Hominids).

At first glance the fact that we must select the hippo
when we select the two types of whales seems like an error,
surely the hippo belongs with either the elephants or the
rhinos. Interestingly, this is not the case; the hippos are
more closely related to whales than to any other mammals!
Whales and hippos diverged a mere 54 million years ago,
whereas the whale/hippo group parted from the rhinos
about 76 million years ago, and from the elephants about
105 million years ago. The group that includes hippo and
whales/dolphins, but excludes all other mammals above is
called Cetartiodactyla [23]. We call the combination of
INTELLIGENT ICONS and the MDS layout a Smart Browser.

3 GENERALIZING FROM THE DNA EXAMPLE
We have now seen a concrete example of INTELLIGENT
ICONS, and shown some examples of their utility. We want
to have a software tool that (1) is capable of changing the

2 To mitigate some of the problems of reproducing screen captures at a

small scale, this screen capture and some those that follow, have had
minor touch ups in a photo editing program. For example, the cursor was
made twice its normal size. However in no case where the colors or
locations of the icons changed.

Macaca
mulatta.dna

Macaca
mulatta.dna

Macaca
mulatta.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

individual icons of selected file types and (2) allows the
option of arranging the file icons by similarity. When the
tool is first installed, the user must to create or download
plug-ins that tells our software how to convert their
filetypes. Below we consider plug-ins for text and time
series and provide general guidelines for arbitrary data
types. Note that this type of software design has recently
become very popular. For example, the Google Desktop
Search Tool is able to index a handful of common file types
as shipped, however volunteers have written plug-ins that
allow the program to index more exotic file types such as
DjVu, 3dsmax and C++ source code [14].

In order to be able to handle more file types, next we
generalize the ideas presented in the previous section. Let
us begin by considering the desirable properties of
INTELLIGENT ICONS.

3.1 Desirable Properties of INTELLIGENT ICONS
Below we list four desirable properties of Intelligent Icons:
• File types should retain distinctiveness. In current

operating systems, most file types have a particular
icon associated with them. This makes it easy to
determine at a glance the file type (e.g., PDF,
PowerPoint, etc.) It is desirable that INTELLIGENT
ICONS inherit this property. As we shall see, this
property is only apparently in conflict with the
property 2 below.

• Similar files should have similar icons. This is the
fundamental property that allows smart browsing, that
is allow users to spot clusters, duplicates and outliers
in their data. Furthermore, as we shall see later, this
property can support query by content (e.g., find me
the file most similar to this one), whereas current
systems only support query by name, data, size etc.

• File icons should look similar at different resolution
(cf. Figure 4). This is because most operating systems
allow use to view icons at various sizes.

• File icon updates should be fast. It is important files
can be added, deleted or edited, and have their icons
instantaneously reflect their content.

Below we will consider how to address these properties
in more detail.

3.1.1 Distinctiveness of File Type
There can be little doubt that having distinctive file icons
for different file types aids rapid file navigation. At first
blush it may appear that the idea of basing the icons on the
file contents would remove this benefit. However, this is
not the case. We can retain file distinctiveness while
allowing individuality with a combination of two
techniques:
• Using different colormaps for different file types.
• Using different mappings for different file types.
To illustrate this we have chosen three distinctive

colormaps for the three main datatypes that we have
encountered (personally, given our research interests). In
addition we have chosen a distinctive mapping for video
games as shown in Figure 10.

Figure 10: i) The three different colormaps used for the 3
principle file types considered in this work. ii) Two examples of
mapping templates for INTELLIGENT ICONS. iii) A screen capture
of a folder with 3 different file types.

In the figure above the choice of colormaps was
completely arbitrary, however this need not be the case. For
example gene expressions visualizations almost always use
a red/green colormaps [19] and we could leverage of this
fact to create intuitive icons for that file type.

3.1.2 Similar Files should have Similar Icons
The basic idea discussed in Section 2 of extracting features
from the file, measuring their frequency, and mapping these
frequencies to color and spatial arrangements can be easily
applied to other domains. These general principles are
familiar to those in the machine learning and visualization
communities.

We want to extract features that have high discriminatory
power. For example, for text documents the feature,
frequency_of_word(the) is not useful.

We want features that are as independent as possible. For
example, for text documents if we included the feature
frequency_of_word(bicycle), there would probably be little
utility of including the frequency_of_word(bike).

Below we consider these requirements on two concrete
examples, namely text and time series and a generic “type”,
metadata.
Text: Files containing text, such as MS Word, PDF, TEX,
TXT files etc. are perhaps the most commonly encountered
file types for the majority of people. We can leverage off
the large body of work in the text IR community to map
these files to icons. For example we begin by discarding
stop words, such as “the”, “of”, “and” etc. Such words tend
to have equal frequency across all documents and thus have
little discriminative power. We next stem the words using
Porters algorithm [17], so that variations on a word map to
a single root, for example “dividing”, “divided” and
“divide” all map to “divid”. After completing these steps
we are typically left with much fewer words, although for
large documents collections many tens of thousands of
words is still possible. Since the number of possible words
is much greater than the number of pixels available, we
need to reduce the dimensionality of the features. We
achieve this by using a classic text-processing algorithm
called Latent Symantec Indexing (LSI). LSI finds a lower
dimensionality representation of the data by projecting it
onto a space that reflects the latent structure. This takes

0.2 0.4 0.6 0.8 1.00

DNA

Text

Time
Series Template for DNA,

text and time series
Template for
video games

i ii

Jedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dna

iii

0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

DNA

Text

Time
Series Template for DNA,

text and time series
Template for
video games

i ii

Jedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dnaJedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dna

iii

care of the problem of synonymy and also prioritizes the
features by arranging them by relative importance.
Time Series: Time series are a ubiquitous and increasingly
prevalent type of data. They occur in virtually every field
of human endeavor, including finance, medicine,
meteorology and entertainment. There is some existing
work on visualizing time series that could be adapted for
our needs. For example the Recursive Pattern work of
Ankerest et. al. allows recursive generalization of arbitrary
line and column oriented arrangements, including time
series. Another possibility is to discretize the time series
and use the approach above for text, or to discretize the
time series into exactly 4 symbols and use the algorithm
above for DNA. Let us consider the later approach in more
detail.

While there are at least 200 techniques in the literature
for converting real valued time series into discrete symbols
[12], the SAX technique of Lin et. al. is unique and ideally
suited for our purposes [16]. The SAX representation is
created by taking a real valued signal and dividing it into
equal sized sections. The mean value of each section is then
calculated. This produces a reduced dimensionality
piecewise constant approximation of the data. This
representation is then discretized in such a manner as to
produce a word with approximately equi-probable symbols.
Figure 11 shows a short time series being converted to a
discrete string.

Figure 11: A real valued time series being discretized into the
SAX word GTTGACCA.

The figure shows a relatively short time series converted
into a pseudo DNA word of 8 symbols, hardly long enough
to robustly extract frequency information. Fortunately most
time series in the real world are typically much longer, for
example ECG samples in a medical log often contain at
least 10,000 datapoints.
Metadata: The diligent reader may already be wondering
how we extracted meaningful features from the video game
executables show in Figure 10. The answer is, we did not.
It is extremely difficult to extract useful features from
many file types, including executables, music and video
files. Fortunately, many such file types can be mapped to
extensive repositories of metadata. For example, we create
icons for MP3 music files based not the file contents, but
on metadata provided (automatically) by CDDB.com. The
features available include, Track Artist, Record Label,
Year, Beats Per Minute, Metagenre (rock, classical, new
age, jazz, etc.), Subgenre (punk, ska, baroque, choral,
ambient, bebop, ragtime) etc.

For video games, there is no completely automatic
metadata server, but an hours work enabled use to write a
crawler which extracted features from
www.metacritic.com/games/pc/scores/.

The idea of using external metadata to create the icons
opens several exciting possibilities for future research;
however for brevity we will not further discuss this here.

3.1.3 File icons should look similar to different
resolution versions of themselves

File icons should look similar when viewed at different
scales because most operating systems allow user to view
icons at different resolutions. For example Windows XP
supports icons sized 48 × 48, 32 × 32, 24 × 24, and 16 × 16
pixels. Microsoft invites application developers to produce
optimized versions of icons in each size; otherwise it takes
the single icon provided and (linearly) interpolates it to the
other sizes.

In some cases this “self-similar” property can be easily
arranged, we have already seen in Figure 4 that our
mapping for DNA has this property, and our mapping
function for time series inherits this property. So we can
use an l = 2 mapping for 16 × 16 pixels, and an l = 3
mapping for 32 × 32 pixels, and expect the two icons to
resemble each other.

More generally, this property may be hard to ensure if we
wish to use every pixel of say a 48 × 48 bitmap. When we
reduce the size of this bitmap to 24 × 24, we must average
the quartets of pixels into one. If the original pixels
elements are independent (a general requirement cf. section
3.1.2) the smaller bitmaps will not resemble the larger
bitmaps from which they where derived. The good news is
that it is unlikely we would ever want to use all 2,304
pixels of the largest icon size. Decades of research in
machine learning and information retrieval strongly
suggests that although objects may exist in very high
dimensional spaces, meaningful similarity can best be
captured in some low dimensional subspace. Even the 256
dimensions allowed by the smallest icon size would be hard
to meaningfully populate for most domains. We therefore
restrict ourselves to some small number of features,
typically less than one hundred, and map each feature to
several contiguous pixels in the smallest bitmap. The larger
sizes bitmaps can then be obtained by simple linear
extrapolation.

The two techniques, variable level mappings, and simple
linear extrapolation are not mutually exclusive; Figure 12
shows how we combine both techniques for the DNA file
icons.

Figure 12: Four different sized DNA icons for Argulus
americanus. The smallest icon is a level 2 mapping of one
feature to 4 pixels; the next size up is simply an enlargement of
the smallest size. The 32*32 size icon is a level 3 mapping of
one feature to 4 pixels, and the largest icon is simply an
enlargement of the second largest size.

00 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

A

C

G

T

GTTGACCA

00 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

A

C

G

T

GTTGACCA

l = 2

16*16
24*24

l = 2 l = 3 l = 3

32*32

48*48

l = 2

16*16
24*24

l = 2 l = 3 l = 3

32*32

48*48

3.1.4 File icon updates should be fast
In general, if we only need to process a few files in order to
create their INTELLIGENT ICON, time complexity might not
be an issue. For example, using the mapping algorithm in
Eq. 2 for DNA, we can create an icon in a few milliseconds
for a file containing hundreds of thousands of base pairs.
However the issue of time complexity does become
important if the mapping algorithm requires access to
multiple files. We have already seen examples of this
situation. In Section 2.2 we have shown that DNA icons
look better if we normalize the frequencies across all icons.
Clearly, if we add a new file to our collection, these
frequencies can be expected to change somewhat. This
means that every update (deletions, insertions, and editing
changes) to our files should be accompanied by an update
to all icons. These updates could become unacceptably
slow if we have many files.

Our solution is to use a classic idea in the database
community, lazy updates [13]. The basic idea is to learn the
best mapping on all N files offline, use it to create icons for
all N files, and save the mapping function. If we later need
to add a new file to the collection, we simply use the
current mapping function to immediately create the new
icon, and wait for an opportunity to create the optimal icons
for all N + 1 icons. We do this in one of two ways, either
assign a very low priority thread to the process (this is
Google’s solution for its desktop search indexer) or
perform all updates at a scheduled time when we are
unlikely to compete with human users for CPU time, say in
the middle of the night.

4 EXPERIMENTAL EVALUATION OF INTELLIGENT
ICONS

The central claim of our paper is that INTELLIGENT ICONS
allow unexpected and serendipitous discoveries. This is a
difficult claim to prove in anything but an anecdotal way.
Fortunately, UCR is the home of a very large archive of
time series test datasets. We can begin by examining this
archive in a smart browser.

We used the tool to browse the hundreds of datasets in
the UCR archive. One such dataset, known as
Kalpakis_ECG, contains 18 normal ECGS used to test time
series clustering techniques. Figure 13 shows the dataset as
most people have viewed it.

Figure 13: The 18 normal ECGs from the Kalpakis dataset
shown in a typical MS Window XP file browser.

When we glanced at this dataset with our Smart Browser,
we immediately noticed something interesting. While
ECGs (and therefore the icons derived from them) can have
great variability, five of the 18 thumbnails had radically
different icons. Figure 14 illustrates this.

Figure 14: The 18 normal ECGs from the Kalpakis dataset
shown in a Smart browser. Five of the INTELLIGENT ICONS are
radically different from the rest.
This structure was so unexpected we asked UCLA

cardiologist, Dr. Helga Van Herle to explain these findings.
She informed us that the 5 recordings in question are not
ECGs! They are in fact examples of the action potential of
a normal pacemaker cell (not to be confused with the man-
made devices which mimic them, and are named after
them). Figure 15 illustrates the difference.

Figure 15: Top) Four snippets from randomly chosen ECGs
from the Kalpakis_ECG dataset. Note that ECGs can have
great variability. Bottom) A snippet from the normal18.txt “ECG”
from the Kalpakis_ECG dataset.

In retrospect, after visualizing the data it is apparent even
to the untrained eye that the five time series in question are
radically different to the rest. Nevertheless many people
have used this dataset to test algorithms, apparently without
noticing this [7].

Another dataset we examined with Smart Browser was a
NASA dataset containing examples of telemetry from a
Space Shuttle valve. Figure 16 show five such time series.

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt

0 100 200 300 400 500

ventricular depolarization

initial rapid

repolarization

“plateau” stage

repolarization

recovery phase

0 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

ventricular depolarization

initial rapid

repolarization

“plateau” stage

repolarization

recovery phase

0 100 200 300 400 500

Figure 16: Five NASA Marotta MPV-41 valve trace files shown
in a Smart Browser.

It is immediately apparent that one file has quite a
different structure to the rest. NASA engineers where able
to explain the difference by noting that while the other four
files correspond to normal sequences, file TEK00016.CSV
corresponds to an abnormal trace, as shown in Figure 17.

Figure 17: The five time series whose INTELLIGENT ICONS are
shown in Figure 16. Note that the bottom four are normal, but
TEK00016.CSV has a fault.

As a final example we consider twelve monthly electrical
power demand time series from Italy, Figure 18 shows the
data viewed in a smart browser. It is immediately apparent
that there are two major clusters that correspond to winter
months (October to March) and summer months (April to
September). Such a division makes sense. Given that the
demand for heating dominates the winter power demand
(Air conditioning is still fairly rare in Italy).

The other immediately obvious feature of Figure 18 is
that the month of August is an outlier. This is apparent
from both its icon’s location on the screen and by its color.
To get some insight into this phenomenon we can visualize
the entire year as a single time series as in Figure 19.
Clearly the month of August is a true outlier, but what is
going on? The answer lies in an Italian cultural
phenomenon. According to travel writer Nella Nencini, “By
the middle of July, normal activity begins to wane and by
the beginning of August, shops no longer close between 1
and 4 p.m., they close for two or three weeks. Dry cleaners
close, mechanics close, factories close, wineries close,
restaurants close, even some museums close. Cities like

Florence and Venice would be abandoned if not for the
tourists braving the heat to visit artistic treasures”.

Figure 18: Twelve monthly power demand time series from Italy
shown in a Smart Browser.

The dramatic change in power demand reflects the fact
that most major employers (like Fiat and many government
offices) simple shut down for the month.

Figure 19: One Year of Italian Power Demand (1997). Note that
the month of August is radically different to the rest of the year.

As before, once the data is viewed by plotting it in
Matlab or MS Excel, it is fairly easy to see the differences.
However, without the Smart Browser to invoke the users
curiosity, this simply may never happen.

4.1 INTELLIGENT ICONS FOR TEXT
A central claim of this work is that once the basic

framework for INTELLIGENT ICONS has been established, it
is easy for people to write “plug-ins” for their favourite
data types. To test this hypotheses, the first author spent 15
minutes explaining the basics of INTELLIGENT ICONS to
graduate students taking a data mining course (UCR
CS235, Spring 06), and invited students to write a plug-in
for any data type they where interested in. Two students
(Jin and Scott, credited here as co-authors) produced a text
plug-in. Their approach is somewhat different to the
approach suggested above, and does not (currently) obey
the ”File icons should look similar at different resolution”
property, however their project demonstration elicited such
a positive reaction we decided to include an example of
their work as an example of the kind of thing which is
possible with a days work. Full details of how their
approach works can be found in [18].

TEK00000.CSV

TEK00001.CSV

TEK00003.CSV TEK000002.CSV

TEK00016.CSV

TEK00000.CSV

TEK00001.CSV

TEK00003.CSV TEK000002.CSV

TEK00016.CSV

TEK00016.CSV

TEK00000.CSV

TEK00001.CSV TEK00003.CSV

TEK000002.CSV

Poppet pulled significantly out of the solenoid before energizing

TEK00016.CSV

TEK00000.CSV TEK00000.CSV

TEK00001.CSV TEK00001.CSV TEK00003.CSV TEK00003.CSV

TEK000002.CSV TEK000002.CSV

Poppet pulled significantly out of the solenoid before energizing

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

January

0

100

200

300

December
August

One Year of Italian Power Demand

January

0

100

200

300

December
August

One Year of Italian Power Demand

Figure 20: Thirty-eight PDF files represented by Shieh-Sirowy INTELLIGENT ICONS. See Figure 21 for an explanation of the results

Figure 21: A visual key explaining the results of Figure 20

The dataset is question is a collection of database/data mining
papers by diverse authors, which reference one of two papers by
the first author. Those two papers are “Exact indexing of dynamic
time warping” [10] and “Learning the Structure of Augmented
Bayesian Classifiers” [11]. In order to make the task more
challenging, we indexed all the text except the references.

In Figure 20 we can see two major distinct clusters. One cluster
is a collection of papers on (mostly Bayesian) classification, the

other cluster is a collection of papers on Dynamic Time Warping
(DTW). One icon is centered almost exactly in-between the two
major clusters. This makes perfect sense, since it is a paper on
classification of time series that using DTW (Decision-tree
Induction from Time-series Data… by Yamada et. al) and thus
belongs equally to both clusters.

The two remaining icons also have intuitive placement and
coloring. Both are written in languages other than English, which
explains why they appear as outliers. However, their coloring is
still gives us a clue as to their content. The icon that has the most
blue pixels (in Italian) is about classification, and the icon that has
mostly red pixels (In Portuguese) is about warping. This coloring
is reflected in the major clusters. It is perhaps surprising that the
icons are intuitive even in the face of been in different languages,
however an examination of the texts reveals the occasional
passage that lapses into English, such as: “..verificar a
superioridade da Warp Metric Distance como medida…”, and this
is enough structure for the algorithm to produce intuitive icon
coloring.

4.2 INTELLIGENT ICON SEARCH
Although the primary use of INTELLIGENT ICONS is
visualization and data mining, their utility for query by
content is related and potentially so useful that we briefly
consider it here.

Cluster of “warping” papers

Cluster of
classification papers

Paper on using
“warping” to

classify

Classification
paper in Italian

“Warping” paper
in Portuguese

Cluster of “warping” papers

Cluster of
classification papers

Paper on using
“warping” to

classify

Classification
paper in Italian

“Warping” paper
in Portuguese

Efficient subsequence
matching in time…

Making Time series
Classification More….

Augmenting Naive Bayes
Classifiers with…

Naive Bayes with
Higher Order Attributes…

Warp Metric Distance
Aprimorando o Uso de…

Rotation invariant distance
measures for…

Warping the Time on
Data Streams…

Scaling and time
warping in time series…

Combining Naive Bayes
and nGram Language…

Efficient subsequence
matching for…

Detection of surface
defects on raw…

Tree augmented naive
Bayes ensembles…

An efficient data mining
method for…

LB Keogh Supports
Exact Indexing of…

FEATURE SELECTION
FOR THE NAÏVE…

FTW fast similarity
search…

A novel technique for
indexing…

Averaged One-
Dependence Estimators…

A Heuristic Lazy
Bayesian Rule…

Learning Recursive
Bayesian Multinets…

Floating search algorithm
for structure…

WARP accurate retrieval
of shapes…

Efficiently and
Accurately Comparing…

Indexing multidimensional
time-series…

Learning Bayesian
network classifiers…

Decision tree Induction
from Time series…

A PCA based similarity
measure for…

Warping indexes with
envelope…

Applying general
Bayesian techniques…

Discriminative versus
generative parameter…

Boosted Bayesian
Network Classifiers…

Robust and fast similarity
search…

Clustering Multidimensional
Trajectories…

Indexing spatio temporal
trajectories…

Elastic Translation Invariant
Matching…

Lower Bounding of
Dynamic Time Warping….

Estensione del Classificatore
Naive Bayes…

FastDTW Toward Accurate
Dynamic Time…

Efficient subsequence
matching in time…

Making Time series
Classification More….

Augmenting Naive Bayes
Classifiers with…

Naive Bayes with
Higher Order Attributes…

Warp Metric Distance
Aprimorando o Uso de…

Rotation invariant distance
measures for…

Warping the Time on
Data Streams…

Scaling and time
warping in time series…

Combining Naive Bayes
and nGram Language…

Efficient subsequence
matching for…

Detection of surface
defects on raw…

Tree augmented naive
Bayes ensembles…

An efficient data mining
method for…

LB Keogh Supports
Exact Indexing of…

FEATURE SELECTION
FOR THE NAÏVE…

FTW fast similarity
search…

A novel technique for
indexing…

Averaged One-
Dependence Estimators…

A Heuristic Lazy
Bayesian Rule…

Learning Recursive
Bayesian Multinets…

Floating search algorithm
for structure…

WARP accurate retrieval
of shapes…

Efficiently and
Accurately Comparing…

Indexing multidimensional
time-series…

Learning Bayesian
network classifiers…

Decision tree Induction
from Time series…

A PCA based similarity
measure for…

Warping indexes with
envelope…

Applying general
Bayesian techniques…

Discriminative versus
generative parameter…

Boosted Bayesian
Network Classifiers…

Robust and fast similarity
search…

Clustering Multidimensional
Trajectories…

Indexing spatio temporal
trajectories…

Elastic Translation Invariant
Matching…

Lower Bounding of
Dynamic Time Warping….

Estensione del Classificatore
Naive Bayes…

FastDTW Toward Accurate
Dynamic Time…

Most operating systems support search by ‘name’, ‘date’,
‘size’ etc, and further enhance the search by ‘name’ by
allowing wildcards. However, no current operating systems
support query-by-content. The utility of such search is
becoming increasing obvious as commercial hard drives
now exceeded 400 gigabytes in size. For example, suppose
we know that we have a preliminary version of a paper
buried among our files, but we don’t remember its name. It
would be useful to be able to simply right click on the icon,
and choose an option “find most similar file”. We have
built such a utility into our Smart Browser tool. When
searching for the most similar icon we exclude from
consideration files in the same folder as the query file.

In general, query-by-content search using icons provides
very intuitive results. For example, we have arranged DNA
icons for approximately 380 mammals, reptiles and birds in
folders that reflect their geographical location rather than
their taxonomic relationship. If we search for the most
similar file to chimpanzee.dna in the African folder,
we are told that the closest match is orangutan.dna in
the Asian folder. Likewise, as shown in Figure 22, a search
for the most similar file to american black
bear.dna, returns Polar Bear.dna3.

Figure 22: A screen capture of a search interaction with Smart
Browser. The user right clicked on the icon for the American
Black bear, and chose “Icon Search”, the closest match was
the polar bear.

Shortly before this paper was submitted, we became aware of
an interesting proof of the similarity of the Polar Bear and the
American Black Bear. The first example of a hybrid in the wild
was confirmed by DNA tests [1].

5 CONCLUSIONS AND FUTURE WORK
We have introduced INTELLIGENT ICONS, a novel technique
for allowing visualization to take place in the background
of day-to-day computer use. Future research directions

3 The Polar Bear is found in the Alaska and Canada, in addition to
Iceland, Greenland and Russia, so the choice of placing it in the Europe
folder was somewhat arbitrary. Note that the Asiatic Black Bear (Ursus
thibetanus), which may be more similar to the American Black Bear, has
not yet been sequenced.

include an extensive user study and providing support for
other file types.

ACKNOWLEDGEMENTS: We would like to thank Edward
Tufte, Ben Shneiderman, Christos Faloutsos, Marti Hearst
and Margaret H. Dunham for encouraging comments on an
early draft of this work. We would also like Dr. Helga Van
Herle of the David Geffen School of Medicine at UCLA
and all the donors of datasets.

REPRODUCIBLE RESEARCH STATEMENT: All datasets use
in this work are available by emailing the first author.

REFERENCE
[1] Associated Press: “Hunter Shoots Hybrid Bear”, 2006-05-12.

Retrieved on 2006-06-18.
[2] Jonas S. Almeida, Joao A. Carrico, Antonio Maretzek, Peter

A. Noble, and Madilyn Fletcher. Analysis of genomic
sequences by Chaos Game Representation. In
Bioinformatics, volume 17, no. 5, pages 429-37, 2001.

[3] Daniel A. Keim, Hans-Peter Kriegel, and Mihacl Ankerst.
Recursive pattern: A technique for visualizing very large
amounts of data. In Proc of IEEE Conference Visualization
‘95, pages 279–286, 1995.

[4] Wojciech Basalaj. Proximity visualization of abstract data.
PhD thesis, University of Cambridge Computer Laboratory,
2000.

[5] Jeff Beddow. Shape coding for multidimensional data on a
microcomputer display. In Proceedings of IEEE Conference
Visualization ‘90, pages 238-246, 1990.

[6] Herman Chernoff. The use of faces to represent points in k-
dimensional space graphically. In Journal of the American
Statistical Association, volume 68, pages 361-368, 1973.

[7] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara
Puttagunta Distance measures for effective clustering of
ARIMA time-series. In Proceedings of the 2001 IEEE
International Conference on Data Mining, pages 273-280,
2001.

[8] Daniel A. Keim, Mihael Ankerst, Hans-Peter Kriegel:
Recursive Pattern: A Technique for Visualizing Very Large
Amounts of Data. IEEE Visualization 1995: 279

[9] Eamonn Keogh. The UCR time series data mining archive.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].
University of California, Riverside.

[10] Eamonn Keogh. Exact indexing of dynamic time warping. In
Proceedings of the 28th International Conference on Very
Large Data Bases, Hong Kong. pp 406-417, 2002.

[11] Eamonn Keogh, and Michael Pazzani. Learning the Structure
of Augmented Bayesian Classifiers. International Journal on
Artificial Intelligence Tools, 2002. Vol. 11, No. 4, pp 587-
601.

[12] C. Stuart Daw, Charles Edward Andrew Finney, and Eugene
R. Tracy A review of symbolic analysis of experimental data.
In Review of Scientific Instruments, volume 74, no. 2, pages
915-930, 2003.

[13] Fabrizio Ferrandina, Thorsten Meyer, and Roberto Zicari.
Implementing lazy database updates for an object database
system. In Proceedings of the Twentieth International
Conference on Very Large Databases, pages 261-272, 1994.

[14] Google desktop search plug-in download page.
http://desktop.google.com/plugins.html

[15] John P. Lewis, Ruth Rosenholtz, Nickson Fong, and Ulrich
Neumann. VisualIDs: automatic distinctive icons for desktop

 Icon Search

 Icon Search

interfaces. In Proceedings of the 2004 SIGGRAPH
Conference, ACM Transactions on Graphics (TOG), volume
23, issue 3, pages 416-423, 2004.

[16] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu.
A symbolic representation of time series, with implications
for streaming algorithms. In proceedings of the eighth ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 2-11, 2003.

[17] Martin F. Porter. An algorithm for suffix stripping. Program,
volume 14, no. 3, pages 130-137, 1980.

[18] Jin Shieh and Scott Sirowy: Organizing Internet Bookmarks
using Latent Semantic Analysis and Intelligent Icons.
www.cs.ucr.edu/~eamonn/cs235_final_report.pdf

[19] Jinwook Seo and Ben Shneiderman. A rank-by-feature
framework for unsupervised multidimensional data
exploration using low dimensional projections. In
Proceedings of the IEEE Symposium on Information
Visualization 2004 (INFOVIS 2004), pages 65-72, 2004.

[20] Edward R Tufte. Envisioning Information. Graphics Press,
1990.

[21] Kerry Rodden, Wojciech Basalaj, David Sinclair, and
Kenneth Wood. Does organisation by similarity assist image
browsing? In Proceedings of the ACM Conference on Human
Factors in Computing Systems (ACM CHI 2001), pages 190-
197, 2001.

[22] Matthew O. Ward. A taxonomy of glyph placement
strategies for multidimensional data visualization. In
Information Visualization, volume 1, no. 3-4, pages 194-210,
2002.

[23] Bjorn M. Ursing and Ulfur Arnason. Analyses of
mitochondrial genomes strongly support a hippopotamus-
whale clade. In Proceedings of the Royal Society of London,
Series B, volume 265, pages 2251-2255, 1998.

