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ABSTRACT 
The vast majority of visualization tools introduced so far are 
specialized pieces of software that are explicitly run on a 
particular dataset at a particular time for a particular 
purpose. In this work we introduce a novel framework for 
allowing visualization to take place in the background of 
normal day to day operation of any GUI based operation 
system such as MS Windows, OS X or Linux. By allowing 
visualization to occur in the background of quotidian 
computer activity (i.e. finding, moving, deleting, copying files 
etc) we allow a greater possibility of unexpected and 
serendipitous discoveries. 

Our system works by replacing the standard file icons with 
automatically created icons that reflect the contents of the files 
in a principled way. We call such icons INTELLIGENT ICONS. 
While there is little utility in examining an individual icon, 
examining groups of them allows us to take advantage of small 
multiples paradigm advocated by Tufte. We can further 
enhance the utility of Intelligent Icons by arranging them on 
the screen in a way that reflects their similarity/differences, 
rather than the traditional “view by date”, “view by size” etc. 
We demonstrate the utility of our approach on data as diverse 
DNA, text files, electrocardiograms and Space Shuttle 
telemetry. In addition we show that our system is unique in 
also supporting fast and intuitive similarity search. 

 

1 INTRODUCTION 
At the heart of many information visualization and data 
mining techniques is a single question “compared to 
what?” [20]. In several application domains, the main 
objective of data exploration is to arrange the data such that 
meaningful similarities and differences are exposed. 
However the vast majority of visualization/data mining 
tools introduced so far are specialized pieces of software 
that are explicitly run on a particular dataset at a particular 
time for a particular purpose. The human effort involved in 
this process is high enough that most of these tools are used 
rarely, even when data keeps accumulating at very high 
rates.  

In this work we introduce a novel framework for 
allowing lite-weight visualization and data mining to take 
place in the background of normal day-to-day operation of 
any GUI based operation system such as MS Windows, OS 
X or Linux. By allowing visualization to occur in the 
background of quotidian computer activity we allow a 
greater possibility of unexpected, serendipitous and useful 
discoveries. 

Our system works by replacing the standard file icons 
with automatically created icons that reflect the contents of 
the files in a principled way. We call such icons 
INTELLIGENT ICONS. While there is little utility in examining 
an individual icon, examining groups of them allows us to 

take advantage of small multiples paradigm elucidated by 
Tufte, allowing us to answer the question “compared to 
what?” We can enhance the utility of Intelligent Icons by 
arranging them on the screen in a way that reflects their 
similarity/differences, rather than the traditional “view by 
date”, “view by size” etc. As we will demonstrate, our 
approach has utility for data as diverse as DNA, text files, 
and time series. 

The rest of the paper is organized as follows, we 
conclude Section 1 with a discussion of related work. 
Section 2 introduces our ideas on a single data type, DNA. 
In Section 3 we generalize these ideas to other types of 
data. Section 4 contains demonstrations and experiments. 
Finally in Section 5 we discuss future directions. 

1.1 Prior and Related Work 
Our work is closest in sprit to the recent VisualIDs work of 
Lewis et. al. [15]. Here the authors note that “search and 
memory for images is known to be generally faster and 
more robust than search and memory for words”, and they 
leverage off this fact by automatically creating distinctive 
icons for desktop interfaces. The icons are created by 
hashing the filenames to seeds of a pseudorandom 
generator that in turn is used to create a shape grammar. In 
this way, similar filenames will map to similar shapes, thus 
allowing a user to see at glance when two files are related. 

The most important distinction between VisualIDs and 
INTELLIGENT ICONS is that the former only looks at a file 
name, whereas the latter looks at file content. The authors 
of VisualIDs make a convincing case that producing the 
icons appearance exclusively from the file name does lend 
a “permanence” (in spite of editing changes) that may aid 
the user in navigating through a large file system. However 
our goal extends beyond creating a simple aide-memoire 
for navigation. The objective is to create a system that also 
supports information visualization and query by content. As 
a simple example of the difference of the two approaches 
consider Figure 1. 

 

Figure 1: The similarity of 3 DNA files based on file name (left) 
and file contents (right).  

The three files in the example are ASCII text files, each 
of which contains approximately 16,000 base pairs of 
mitochondrial DNA. Here we used string edit distance as 
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suggested in [15] to measure the distance between file 
names, and Euclidean distance to measure the distance 
between the file icons (as explained in more detail below). 
Note that two of the species share the same specific name 
of “americanus” (with a different generic name) and this 
makes them similar in a way that is not biologically 
meaningful1, whereas the INTELLIGENT ICON approach 
captures the correct relationship between the three species. 

An additional limitation of VisualIDs is that most people 
do not explicitly name the vast majority of files on their 
hard drive. Rather the file names are inherited when the 
files are downloaded, or they are automatically named by 
automatic links to an external database (i.e. music files 
named by CDDB.com), or they are automatically generated 
by an application, for example Canon-001.jpg, 
Canon-002.jpg etc. In such cases VisualIDs may have 
limited utility. Given the different goals of our approach 
and VisualIDs, we will not discuss this work any further. 

The idea of using the values of variables to change the 
shape of an icon (glyph) dates back at least to the classic 
work of Chernoff [6]. Beddow and others exploited the 
availably of color display and printers to extend this 
mapping to colors [5].  Keim et. al. introduced Recursive 
Patterns in [8]. Recursive patterns can be considered as a 
general technique to map data to bitmaps, although icons 
were not explicitly considered. 

The arrangement of icons on the screen is an important 
component of our work. Ward [22] contains an excellent 
overview and some important original contributions.  

2 AN EXAMPLE OF AN ICON GENERATION 
ALGORITHM  

For concreteness we begin with a particular example of an 
icon generation algorithm before considering the more 
general framework below. We have chosen DNA data for 
our first example. We recognize that DNA is a rather 
specialized file type. However there are two reasons for 
using it as the introductory example. First, its special 
structure lends itself to simple elucidation. Second, DNA is 
unique in that it is the only dataset for which there exists a 
unique taxonomy, and this taxonomy is near universally 
agreed on for most “major” animals. This fact will allow us 
to objectively test the similarity of icons.  

2.1 DNA to INTELLIGENT ICON 
Consider a DNA string, which is a sequence of symbols 
drawn from the alphabet {A, C, G, T}. DNA strings can be 
very long. For example the human mitochondrial DNA has 
16,571 such symbols, beginning with 
GATCACAGGTCTATCACCCTATTAACCACT… and ending 
with …ACATCACGATG. This long sequence (approximately 
five pages of text in this papers format) is only a tiny subset 
of the three billion letters that actually make up the entire 
human genome. We want to note here that size of the icon 
(32 by 32 pixels) is the limiting factor in summarizing the 
information content of large files. 

Although the rich literature on the problem of classifying 
DNA sequences contains very sophisticated approaches, 
here we pursue a very simple technique based on the 
                                                                    

1 It might be argued that the discovered similarity of specific name of 
“americanus” is somehow geographically meaningful. However, the 
specific name part of most organisms such as “orientalis”, “japonicum”, 
“asiatica” are used in fairly arbitrary and inconsistent ways that have little 
utility for taxonomy. 

frequency of short substrings. The first attempt to map a 
sequence in an icon would be to divide the bitmap into four 
quadrants and count the frequency of each of the four 
possible base pairs. We can then map the observed 
frequencies to a linear colormap to produce a icon using the 
indexed colors to fill in the corresponding sections of the 
bitmaps as shown in Figure 2. 

 

Figure 2: i) The four DNA base pairs arranged in a 2 by 2 grid. 
ii) The observed frequencies of each letter in human 
mitochondrial DNA can be indexed to a colormap to produce a 
file icon as shown in iii. 

Note that in this case the arrangement of the four letters 
is arbitrary, and that the choice of colormap is also 
arbitrary. In order to use as much of the color spectrum as 
possible, we normalize the data such that the lowest 
frequency symbol maps to zero and the highest frequency 
symbol maps to one. More concretely, if j is one symbol in 
the alphabet, then the color index of j is denoted as ci(j), 
and calculated as: 

ci(j) = (f(j) - min[f(A), f(C), f(G), f(T)]) / max[f(A), f(C), f(G), f(T)]    (1 
One could apply this simple mapping to a set of DNA 

sequences corresponding to different species and examine 
the icons in a file browser. Unsurprisingly however (and 
unfortunately for human vanity) there is very little 
difference between the icons obtained in this way for most 
mammals. In an attempt to improve the discrimination 
ability of the icons we can use more features, examining 
the frequencies of all possible pairs of letters. For example 
the substring AT appears 3 times in the first 30 base pairs 
of the human mitochondrial DNA, which is 
GATCACAGGTCTATCACCCTATTAACCACT. If we attempt 
this strategy, we must consider the best way to map the new 
features to our 32 by 32 bitmap. We could do this 
arbitrarily as before, for example we could sort 
lexicographically the words and fill in the bitmap left to 
right, top to bottom. However below we show an 
alternative method that has a potentially useful property.  

Most GUI operating systems allow the user to view files 
icons at different sizes. For example MS Windows XP can 
show the icons in 4 different sizes depending on whether 
you chose “thumbnails”, “tiles” “icons”, “list” in the view 
options. It would therefore be desirable if we could arrange 
for a file icon to be similar to itself regardless of the 
number of features used to create it. Surprisingly, this is 
easy to arrange for DNA. Below we show a general 
mapping for DNA that has this property.  

We begin by assigning each letter a unique key value, k:  
A → 0 C → 1 G → 2 T → 3 

We can control the desired number of features by 
choosing l, the length of the DNA words. Each word has an 
index for the location of each symbol, for clarity we can 
show them explicitly as subscripts. For example, the first 
word with l = 4 extracted from the human mitochondrial 
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DNA is GOA1T2C3. So in this example we would say k0 is G, 
k1 = A, k2 = T and kl = C.  

To map a word into a bitmap we can use the following 
equation to find its row and column values: 
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Figure 3 shows the mapping for l = 1, 2 and (part of) 3. 

 

Figure 3: The mapping of DNA words of l = 1, 2 and 3. (The 
colors of the text are just to allow visualization of the mapping 
algorithm).  

If one examines the mapping in Figure 3, one can get a 
hint as to why a bitmap for a given species might be self-
similar across different scales. For example note that for 
any value of l, the top column consists only of permutations 
of A and C, and that the two diagonals consist of 
permutations of A and T, or G and C. Similar remarks 
apply other rows and columns. 

To demonstrate this self-similar property we have creates 
the icons for two different species at multiple levels in 
Figure 4. 

 

Figure 4:The icons created for two species at every level from 1 
to 4. Note that the icons for a given species look similar across 
all levels.  

Note that this converging property of has been noted 
before (for a more complex variation of our mapping 
scheme) and has been used to study genomes [1]. For 
example, a biologist can recognize that a particular DNA 
word, say in a bacterial genome, is rarely used. This would 
suggest the possibility that the bacteria have evolved to 
avoid a particular restriction enzyme site, which means that 
it might not be easily attacked by a specific bacterio-phage. 

2.2 Optimizing and Arranging the Icons 
Recall that our intent is to produce icons that reflect the 
similarity of the files. We can objectively measure the 
similarity of two icons by using the Euclidean distance 
between the matrices of original frequency counts. Given 
matrices A and B, of the same level l, and denoting the ith, 
jth element as Aij, we can measure the distance as: 
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This distance measure assumes that we have access to the 
original frequency counts matrices. However in practice we 
can use the actual icons, provided we keep the colormap to 
translate the 3-dimensional color (RGB values) back to 1-
dimensional frequency counts. 

In Figure 5 we have clustered five familiar species based 
on the Euclidean distance between their bitmap 
representations. 

 

Figure 5: Five species clustered using the distance between 
their bitmap representations (for clarity we used their common 
names).  

These results are something of a mixed bag for us. 
Although the clustering is objectively correct, the 
differences detected by Euclidean distance measure are 
very subtle to the naked eye. For example one must look 
quite closely to observe that the top right element of the 
primates bitmap is pink, whereas the corresponding 
element for the elephants is blue.  

We have therefore identified the need to enhance the 
subjective visual discriminatory power of the icons. We 
will devote an entire section to a discussion of general 
techniques for doing just that. In what follows we show an 
example of the type of modification that could enhance the 
subtle visual similarities and differences of icons. An 
obvious possible “trick” would be to normalize the ith,jth 
elements across all icons. This has the effect of enhancing 
subtle differences in color. For example the bottom right 
element of all 5 icons shown in Figure 5 appear to be minor 
variations of blue violet, it requires careful inspection to 
note that the elephants have a slightly darker shade of it. In 
Figure 6 however, normalization has emphasized the 
differences such that the element in question is magenta 
(fuchsia) for the elephants and pale turquoise for the 
human. 

 

Figure 6: Five species clustered using the distance between 
their normalized bitmap representations. 

Here the visual patterns are much more satisfactory, and 
we can finally see a hint of the potential utility of 
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INTELLIGENT ICONS. As a simple example of this, imagine 
we encountered the icon shown in Figure 7.  

 

Figure 7: The icon for another African mammal. Is this animal 
more similar to an elephant or ape?  

Based on the file name, we probably cannot say anything 
about this animal, but simply by glancing at the file icon 
and comparing it to the icons in Figure 6 we might 
reasonably guess that this animal is more similar to the 
chimps/human than to the elephants. In fact, this is the 
case, Macaca mulatto is more commonly known as the 
rhesus monkey. 

We can further leverage off the INTELLIGENT ICONS by 
arranging them within a file browser based on their 
similarity. By way of contrast consider the classic file 
browser interaction shown in Figure 8. 

 

Figure 8: Twelve DNA files, sorted by name, in a typical file 
browser. Using the classic technique of bounding box selection 
we can select subsets of the files, in this case the Indian 
elephant and the Indian rhinoceros. 

We can use the classic bounding box section tool to 
selection various subsets. However in this example it is 
hard to extract meaningful subsets, other than the dubious 
pairs pygmy chimpanzee/pygmy sperm whale and Indian 
elephant/ Indian rhinoceros (Note we are using familiar 
English names here for clarity, however using scientific 
names does not help, for example the two types of elephant, 
Elephas maximus and Loxodonta Africana, are not 
alphabetically close). 

We can use INTELLIGENT ICONS to solve this problem by 
arranging the icons in the file browser based on their 
similarity, rather than the classic options of name, size, date 
etc. There has been much work on arranging icons 
(glyphs/photo thumbnails etc) on a screen (see [22] for an 
excellent overview). We have adopted Multi-Dimensional 
Scaling (MDS), which requires a distance matrix between 
all icons as its input (calculated using E.q. 3). In order to 
prevent the icons from partially or completely overlapping, 
we snap-to-grid the icons to the nearest unoccupied grid 
point as suggested by Basalaj [4]. 

Although the time complexity of MDS is cubic in the 
number of objects, we found that even on a large screen full 
of small icons, an efficient MDS implementation can 
dynamically adjust the position of the icons in real time as 
the user changes the aspect ratio of the file browser. Figure 
9 shows the same 12 mammals as shown in Figure 8 
arranged in this way2.  

 

Figure 9: Twelve DNA files, arranged by INTELLIGENT ICONS, in 
a typical file browser. Using the classic technique of bounding 
box selection we can select subsets of the files, in this case the 
Indian rhinoceros and the white rhinoceros. 

In addition to being able to select both types of Rhinos 
(Rhinocerotidae) as shown above, we can now also use 
standard bounding rectangles to select other logical groups, 
such as: 

• Both types of elephants (Elephantidae).  
• All the primates (Catarrhini). 
• Just the greater apes (Hominidae). 
• Just the two types of chimps (Panines). 
• Just the chimps and humans (Hominids). 

At first glance the fact that we must select the hippo 
when we select the two types of whales seems like an error, 
surely the hippo belongs with either the elephants or the 
rhinos. Interestingly, this is not the case; the hippos are 
more closely related to whales than to any other mammals! 
Whales and hippos diverged a mere 54 million years ago, 
whereas the whale/hippo group parted from the rhinos 
about 76 million years ago, and from the elephants about 
105 million years ago. The group that includes hippo and 
whales/dolphins, but excludes all other mammals above is 
called Cetartiodactyla [23]. We call the combination of 
INTELLIGENT ICONS and the MDS layout a Smart Browser.  

3 GENERALIZING FROM THE DNA EXAMPLE  
We have now seen a concrete example of INTELLIGENT 
ICONS, and shown some examples of their utility. We want 
to have a software tool that (1) is capable of changing the 

                                                                    
2 To mitigate some of the problems of reproducing screen captures at a 

small scale, this screen capture and some those that follow, have had 
minor touch ups in a photo editing program. For example, the cursor was 
made twice its normal size. However in no case where the colors or 
locations of the icons changed. 
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individual icons of selected file types and  (2) allows the 
option of arranging the file icons by similarity.  When the 
tool is first installed, the user must to create or download 
plug-ins that tells our software how to convert their 
filetypes. Below we consider plug-ins for text and time 
series and provide general guidelines for arbitrary data 
types. Note that this type of software design has recently 
become very popular. For example, the Google Desktop 
Search Tool is able to index a handful of common file types 
as shipped, however volunteers have written plug-ins that 
allow the program to index more exotic file types such as 
DjVu, 3dsmax and C++ source code [14]. 

In order to be able to handle more file types, next we 
generalize the ideas presented in the previous section. Let 
us begin by considering the desirable properties of 
INTELLIGENT ICONS. 

3.1 Desirable Properties of INTELLIGENT ICONS 
Below we list four desirable properties of Intelligent Icons: 
• File types should retain distinctiveness. In current 

operating systems, most file types have a particular 
icon associated with them. This makes it easy to 
determine at a glance the file type (e.g., PDF, 
PowerPoint, etc.) It is desirable that INTELLIGENT 
ICONS inherit this property. As we shall see, this 
property is only apparently in conflict with the 
property 2 below. 

• Similar files should have similar icons. This is the 
fundamental property that allows smart browsing, that 
is allow users to spot clusters, duplicates and outliers 
in their data. Furthermore, as we shall see later, this 
property can support query by content (e.g., find me 
the file most similar to this one), whereas current 
systems only support query by name, data, size etc. 

• File icons should look similar at different resolution 
(cf. Figure 4). This is because most operating systems 
allow use to view icons at various sizes. 

• File icon updates should be fast. It is important files 
can be added, deleted or edited, and have their icons 
instantaneously reflect their content.   

Below we will consider how to address these properties 
in more detail. 

3.1.1 Distinctiveness of File Type 
There can be little doubt that having distinctive file icons 
for different file types aids rapid file navigation. At first 
blush it may appear that the idea of basing the icons on the 
file contents would remove this benefit. However, this is 
not the case. We can retain file distinctiveness while 
allowing individuality with a combination of two 
techniques: 
• Using different colormaps for different file types. 
• Using different mappings for different file types. 
To illustrate this we have chosen three distinctive 

colormaps for the three main datatypes that we have 
encountered (personally, given our research interests). In 
addition we have chosen a distinctive mapping for video 
games as shown in Figure 10. 

 

Figure 10: i) The three different colormaps used for the 3 
principle file types considered in this work. ii) Two examples of 
mapping templates for INTELLIGENT ICONS. iii) A screen capture 
of a folder with 3 different file types. 

In the figure above the choice of colormaps was 
completely arbitrary, however this need not be the case. For 
example gene expressions visualizations almost always use 
a red/green colormaps [19] and we could leverage of this 
fact to create intuitive icons for that file type.   

3.1.2 Similar Files should have Similar Icons 
The basic idea discussed in Section 2 of extracting features 
from the file, measuring their frequency, and mapping these 
frequencies to color and spatial arrangements can be easily 
applied to other domains. These general principles are 
familiar to those in the machine learning and visualization 
communities.  

We want to extract features that have high discriminatory 
power. For example, for text documents the feature, 
frequency_of_word(the) is not useful. 

We want features that are as independent as possible. For 
example, for text documents if we included the feature 
frequency_of_word(bicycle), there would probably be little 
utility of including the frequency_of_word(bike). 

Below we consider these requirements on two concrete 
examples, namely text and time series and a generic “type”, 
metadata. 
Text: Files containing text, such as MS Word, PDF, TEX, 
TXT files etc. are perhaps the most commonly encountered 
file types for the majority of people. We can leverage off 
the large body of work in the text IR community to map 
these files to icons. For example we begin by discarding 
stop words, such as “the”, “of”, “and” etc. Such words tend 
to have equal frequency across all documents and thus have 
little discriminative power. We next stem the words using 
Porters algorithm [17], so that variations on a word map to 
a single root, for example “dividing”, “divided” and 
“divide” all map to “divid”. After completing these steps 
we are typically left with much fewer words, although for 
large documents collections many tens of thousands of 
words is still possible. Since the number of possible words 
is much greater than the number of pixels available, we 
need to reduce the dimensionality of the features. We 
achieve this by using a classic text-processing algorithm 
called Latent Symantec Indexing (LSI). LSI finds a lower 
dimensionality representation of the data by projecting it 
onto a space that reflects the latent structure. This takes 
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care of the problem of synonymy and also prioritizes the 
features by arranging them by relative importance.  
Time Series: Time series are a ubiquitous and increasingly 
prevalent type of data.  They occur in virtually every field 
of human endeavor, including finance, medicine, 
meteorology and entertainment. There is some existing 
work on visualizing time series that could be adapted for 
our needs. For example the Recursive Pattern work of 
Ankerest et. al. allows  recursive generalization of arbitrary 
line and column oriented arrangements, including time 
series. Another possibility is to discretize the time series 
and use the approach above for text, or to discretize the 
time series into exactly 4 symbols and use the algorithm 
above for DNA. Let us consider the later approach in more 
detail. 

While there are at least 200 techniques in the literature 
for converting real valued time series into discrete symbols 
[12], the SAX technique of Lin et. al. is unique and ideally 
suited for our purposes [16]. The SAX representation is 
created by taking a real valued signal and dividing it into 
equal sized sections. The mean value of each section is then 
calculated. This produces a reduced dimensionality 
piecewise constant approximation of the data. This 
representation is then discretized in such a manner as to 
produce a word with approximately equi-probable symbols. 
Figure 11 shows a short time series being converted to a 
discrete string. 

 

Figure 11: A real valued time series being discretized into the 
SAX word GTTGACCA.  

The figure shows a relatively short time series converted 
into a pseudo DNA word of 8 symbols, hardly long enough 
to robustly extract frequency information. Fortunately most 
time series in the real world are typically much longer, for 
example ECG samples in a medical log often contain at 
least 10,000 datapoints. 
Metadata: The diligent reader may already be wondering 
how we extracted meaningful features from the video game 
executables show in Figure 10. The answer is, we did not. 
It is extremely difficult to extract useful features from 
many file types, including executables, music and video 
files. Fortunately, many such file types can be mapped to 
extensive repositories of metadata. For example, we create 
icons for MP3 music files based not the file contents, but 
on metadata provided (automatically) by CDDB.com. The 
features available include, Track Artist, Record Label, 
Year, Beats Per Minute, Metagenre (rock, classical, new 
age, jazz, etc.), Subgenre (punk, ska, baroque, choral, 
ambient, bebop, ragtime) etc.  

For video games, there is no completely automatic 
metadata server, but an hours work enabled use to write a 
crawler which extracted features from 
www.metacritic.com/games/pc/scores/. 

The idea of using external metadata to create the icons 
opens several exciting possibilities for future research; 
however for brevity we will not further discuss this here. 

3.1.3 File icons should look similar to different 
resolution versions of themselves 

File icons should look similar when viewed at different 
scales because most operating systems allow user to view 
icons at different resolutions. For example Windows XP 
supports icons sized 48 × 48, 32 × 32, 24 × 24, and 16 × 16 
pixels. Microsoft invites application developers to produce 
optimized versions of icons in each size; otherwise it takes 
the single icon provided and (linearly) interpolates it to the 
other sizes. 

In some cases this “self-similar” property can be easily 
arranged, we have already seen in Figure 4 that our 
mapping for DNA has this property, and our mapping 
function for time series inherits this property. So we can 
use an l = 2 mapping for   16 × 16 pixels, and an l = 3 
mapping for 32 × 32 pixels, and expect the two icons to 
resemble each other. 

More generally, this property may be hard to ensure if we 
wish to use every pixel of say a 48 × 48 bitmap. When we 
reduce the size of this bitmap to 24 × 24, we must average 
the quartets of pixels into one. If the original pixels 
elements are independent (a general requirement cf. section 
3.1.2) the smaller bitmaps will not resemble the larger 
bitmaps from which they where derived. The good news is 
that it is unlikely we would ever want to use all 2,304 
pixels of the largest icon size. Decades of research in 
machine learning and information retrieval strongly 
suggests that although objects may exist in very high 
dimensional spaces, meaningful similarity can best be 
captured in some low dimensional subspace. Even the 256 
dimensions allowed by the smallest icon size would be hard 
to meaningfully populate for most domains. We therefore 
restrict ourselves to some small number of features, 
typically less than one hundred, and map each feature to 
several contiguous pixels in the smallest bitmap. The larger 
sizes bitmaps can then be obtained by simple linear 
extrapolation. 

The two techniques, variable level mappings, and simple 
linear extrapolation are not mutually exclusive; Figure 12 
shows how we combine both techniques for the DNA file 
icons. 

 

Figure 12: Four different sized DNA icons for Argulus 
americanus. The smallest icon is a level 2 mapping of one 
feature to 4 pixels; the next size up is simply an enlargement of 
the smallest size. The 32*32 size icon is a level 3 mapping of 
one feature to 4 pixels, and the largest icon is simply an 
enlargement of the second largest size.   
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3.1.4 File icon updates should be fast 
In general, if we only need to process a few files in order to 
create their INTELLIGENT ICON, time complexity might not 
be an issue. For example, using the mapping algorithm in 
Eq. 2 for DNA, we can create an icon in a few milliseconds 
for a file containing hundreds of thousands of base pairs. 
However the issue of time complexity does become 
important if the mapping algorithm requires access to 
multiple files. We have already seen examples of this 
situation. In Section 2.2 we have shown that DNA icons 
look better if we normalize the frequencies across all icons. 
Clearly, if we add a new file to our collection, these 
frequencies can be expected to change somewhat. This 
means that every update (deletions, insertions, and editing 
changes) to our files should be accompanied by an update 
to all icons. These updates could become unacceptably 
slow if we have many files. 

Our solution is to use a classic idea in the database 
community, lazy updates [13]. The basic idea is to learn the 
best mapping on all N files offline, use it to create icons for 
all N files, and save the mapping function. If we later need 
to add a new file to the collection, we simply use the 
current mapping function to immediately create the new 
icon, and wait for an opportunity to create the optimal icons 
for all N + 1 icons. We do this in one of two ways, either 
assign a very low priority thread to the process (this is 
Google’s solution for its desktop search indexer) or 
perform all updates at a scheduled time when we are 
unlikely to compete with human users for CPU time, say in 
the middle of the night.   

4 EXPERIMENTAL EVALUATION OF INTELLIGENT 
ICONS  

The central claim of our paper is that INTELLIGENT ICONS 
allow unexpected and serendipitous discoveries. This is a 
difficult claim to prove in anything but an anecdotal way. 
Fortunately, UCR is the home of a very large archive of 
time series test datasets. We can begin by examining this 
archive in a smart browser.  

We used the tool to browse the hundreds of datasets in 
the UCR archive. One such dataset, known as 
Kalpakis_ECG, contains 18 normal ECGS used to test time 
series clustering techniques. Figure 13 shows the dataset as 
most people have viewed it.  

 

Figure 13: The 18 normal ECGs from the Kalpakis dataset 
shown in a typical MS Window XP file browser. 

When we glanced at this dataset with our Smart Browser, 
we immediately noticed something interesting. While 
ECGs (and therefore the icons derived from them) can have 
great variability, five of the 18 thumbnails had radically 
different icons. Figure 14 illustrates this. 

 

Figure 14: The 18 normal ECGs from the Kalpakis dataset 
shown in a Smart browser. Five of the INTELLIGENT ICONS are 
radically different from the rest. 
This structure was so unexpected we asked UCLA 

cardiologist, Dr. Helga Van Herle to explain these findings. 
She informed us that the 5 recordings in question are not 
ECGs! They are in fact examples of the action potential of 
a normal pacemaker cell (not to be confused with the man-
made devices which mimic them, and are named after 
them). Figure 15 illustrates the difference. 

 

Figure 15: Top) Four snippets from randomly chosen ECGs 
from the Kalpakis_ECG dataset. Note that ECGs can have 
great variability. Bottom) A snippet from the normal18.txt “ECG” 
from the Kalpakis_ECG dataset. 

In retrospect, after visualizing the data it is apparent even 
to the untrained eye that the five time series in question are 
radically different to the rest. Nevertheless many people 
have used this dataset to test algorithms, apparently without 
noticing this [7].  

Another dataset we examined with Smart Browser was a 
NASA dataset containing examples of telemetry from a 
Space Shuttle valve. Figure 16 show five such time series.  
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Figure 16: Five NASA Marotta MPV-41 valve trace files shown 
in a Smart Browser. 

It is immediately apparent that one file has quite a 
different structure to the rest. NASA engineers where able 
to explain the difference by noting that while the other four 
files correspond to normal sequences, file TEK00016.CSV 
corresponds to an abnormal trace, as shown in Figure 17. 

 

Figure 17: The five time series whose INTELLIGENT ICONS are 
shown in Figure 16. Note that the bottom four are normal, but 
TEK00016.CSV has a fault. 

As a final example we consider twelve monthly electrical 
power demand time series from Italy, Figure 18 shows the 
data viewed in a smart browser. It is immediately apparent 
that there are two major clusters that correspond to winter 
months (October to March) and summer months (April to 
September). Such a division makes sense. Given that the 
demand for heating dominates the winter power demand 
(Air conditioning is still fairly rare in Italy). 

The other immediately obvious feature of Figure 18 is 
that the month of August is an outlier. This is apparent 
from both its icon’s location on the screen and by its color. 
To get some insight into this phenomenon we can visualize 
the entire year as a single time series as in Figure 19. 
Clearly the month of August is a true outlier, but what is 
going on? The answer lies in an Italian cultural 
phenomenon. According to travel writer Nella Nencini, “By 
the middle of July, normal activity begins to wane and by 
the beginning of August, shops no longer close between 1 
and 4 p.m., they close for two or three weeks. Dry cleaners 
close, mechanics close, factories close, wineries close, 
restaurants close, even some museums close. Cities like 

Florence and Venice would be abandoned if not for the 
tourists braving the heat to visit artistic treasures”. 

 

Figure 18: Twelve monthly power demand time series from Italy 
shown in a Smart Browser. 

The dramatic change in power demand reflects the fact 
that most major employers (like Fiat and many government 
offices) simple shut down for the month. 

 

Figure 19: One Year of Italian Power Demand (1997). Note that 
the month of August is radically different to the rest of the year. 

As before, once the data is viewed by plotting it in 
Matlab or MS Excel, it is fairly easy to see the differences. 
However, without the Smart Browser to invoke the users 
curiosity, this simply may never happen. 

4.1 INTELLIGENT ICONS FOR TEXT 
A central claim of this work is that once the basic 

framework for INTELLIGENT ICONS has been established, it 
is easy for people to write “plug-ins” for their favourite 
data types. To test this hypotheses, the first author spent 15 
minutes explaining the basics of INTELLIGENT ICONS to 
graduate students taking a data mining course (UCR 
CS235, Spring 06), and invited students to write a plug-in 
for any data type they where interested in. Two students 
(Jin and Scott, credited here as co-authors) produced a text 
plug-in. Their approach is somewhat different to the 
approach suggested above, and does not (currently) obey 
the ”File icons should look similar at different resolution” 
property, however their project demonstration elicited such 
a positive reaction we decided to include an example of 
their work as an example of the kind of thing which is 
possible with a days work.  Full details of how their 
approach works can be found in [18]. 
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Figure 20: Thirty-eight PDF files represented by Shieh-Sirowy INTELLIGENT ICONS. See Figure 21 for an explanation of the results  

 

 

Figure 21: A visual key explaining the results of Figure 20 

The dataset is question is a collection of database/data mining 
papers by diverse authors, which reference one of two papers by 
the first author. Those two papers are “Exact indexing of dynamic 
time warping” [10] and “Learning the Structure of Augmented 
Bayesian Classifiers” [11]. In order to make the task more 
challenging, we indexed all the text except the references.  

In Figure 20 we can see two major distinct clusters. One cluster 
is a collection of papers on (mostly Bayesian) classification, the 

other cluster is a collection of papers on Dynamic Time Warping 
(DTW).  One icon is centered almost exactly in-between the two 
major clusters. This makes perfect sense, since it is a paper on 
classification of time series that using DTW (Decision-tree 
Induction from Time-series Data… by Yamada et. al) and thus 
belongs equally to both clusters. 

The two remaining icons also have intuitive placement and 
coloring. Both are written in languages other than English, which 
explains why they appear as outliers. However, their coloring is 
still gives us a clue as to their content. The icon that has the most 
blue pixels (in Italian) is about classification, and the icon that has 
mostly red pixels (In Portuguese) is about warping. This coloring 
is reflected in the major clusters. It is perhaps surprising that the 
icons are intuitive even in the face of been in different languages, 
however an examination of the texts reveals the occasional 
passage that lapses into English, such as: “..verificar a 
superioridade da Warp Metric Distance como medida…”, and this 
is enough structure for the algorithm to produce intuitive icon 
coloring. 

 

4.2 INTELLIGENT ICON SEARCH 
Although the primary use of INTELLIGENT ICONS is 
visualization and data mining, their utility for query by 
content is related and potentially so useful that we briefly 
consider it here. 
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Most operating systems support search by ‘name’, ‘date’, 
‘size’ etc, and further enhance the search by ‘name’ by 
allowing wildcards. However, no current operating systems 
support query-by-content. The utility of such search is 
becoming increasing obvious as commercial hard drives 
now exceeded 400 gigabytes in size. For example, suppose 
we know that we have a preliminary version of a paper 
buried among our files, but we don’t remember its name. It 
would be useful to be able to simply right click on the icon, 
and choose an option “find most similar file”. We have 
built such a utility into our Smart Browser tool. When 
searching for the most similar icon we exclude from 
consideration files in the same folder as the query file. 

In general, query-by-content search using icons provides 
very intuitive results. For example, we have arranged DNA 
icons for approximately 380 mammals, reptiles and birds in 
folders that reflect their geographical location rather than 
their taxonomic relationship. If we search for the most 
similar file to chimpanzee.dna in the African folder, 
we are told that the closest match is orangutan.dna in 
the Asian folder. Likewise, as shown in Figure 22, a search 
for the most similar file to american black 
bear.dna, returns Polar Bear.dna3.  

 

Figure 22: A screen capture of a search interaction with Smart 
Browser. The user right clicked on the icon for the American 
Black bear, and chose “Icon Search”, the closest match was 
the polar bear. 

Shortly before this paper was submitted, we became aware of 
an interesting proof of the similarity of the Polar Bear and the 
American Black Bear. The first example of a hybrid in the wild 
was confirmed by DNA tests [1]. 

5 CONCLUSIONS AND FUTURE WORK  
We have introduced INTELLIGENT ICONS, a novel technique 
for allowing visualization to take place in the background 
of day-to-day computer use. Future research directions 
                                                                    

3 The Polar Bear is found in the Alaska and Canada, in addition to 
Iceland, Greenland and Russia, so the choice of placing it in the Europe 
folder was somewhat arbitrary. Note that the Asiatic Black Bear (Ursus 
thibetanus), which may be more similar to the American Black Bear, has 
not yet been sequenced. 

include an extensive user study and providing support for 
other file types.  
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