
Online Information Compression in Sensor Networks
 Song Lin, Vana Kalogeraki, Dimitrios Gunopulos, Stefano Lonardi

Computer Science & Engineering Department
University of California, Riverside
{slin, vana, dg, stelo}@cs.ucr.edu

Abstract-In the emerging area of wireless sensor networks, one
of the most typical challenges is to retrieve historical information
from the sensor nodes. Due to the resource limitation of sensor
nodes (processing, memory, bandwidth, and energy), the
collected information of sensor nodes has to be compressed
quickly and precisely for transmission. In this paper, we propose
a new technique -- the ALVQ (Adoptive Learning Vector Quan-
tization) algorithm to compress this historical information. The
ALVQ algorithm constructs a codebook to capture the prominent
features of the data and with these features all the other data can
be piece-wise encoded for compression. In addition, with two-
level regression of the codebook’s update, ALVQ algorithm saves
the data transfer bandwidth and improves the compression
precision further. Finally, we consider the problem of
transmitting data in a sensor network while maximizing the
precision. We show how we apply our algorithm so that a set of
sensors can dynamically share a wireless communication channel.

I. INTRODUCTION
The ever changing developments in electrical embedded

systems have enabled the widespread deployment of sensor
networks consisting of small sensor nodes with sensing,
computation, and communication capabilities. The sensor
nodes can monitor various characteristics of the environment
such as temperature, humidity, pressure, light, sound,
chemicals, noise levels, radioactivity, movement, etc. The
applications of sensor networks have been seen in a large
variety of areas. For example, the sensor networks can help
biologists automatically recognize and track different species
of birds. The environmental scientists can utilize sensor
networks to monitor and record the development of
environmental conditions. In the intelligent building, sensors
are deployed in offices and hallways to measure temperature,
noise, light, and interact with the building control system. In
the battle fields, soldiers equipped with sensor can be easily
tracked and organized by commander.
 Suppose there is a sensor network with a base station (sink)
and N sensors. An interesting application is to let the sink
collect the historical information from each sensor to perform
some query processing or statistical analysis. Several
constraints of sensor networks make the information retrieval
implementation difficult. The first constraint is the resource
(i.e. memory, bandwidth and power, etc) limitation of sensor
node. Thus it is impractical to transmit the original data feed
from each sensor to the base station. The second constraint is
communication channel sharing. When transmitting data to the
sink, several sensors have to share the communication channel.
In this paper, we address the historical information retrieval
problem by addressing the following sub-problems: a) At each

sensor, how to compress its historical information given a
bandwidth allocation? b) In the sensor network, how to
allocate bandwidth to sensors in order to maximize and
balance their compression qualities?

Figure 1. The LEACH model

Figure 2. A sample communication channel

An efficient data compression technique SBR (Self Based
Regression) [6] has been proposed recently and has been
shown to work better than other well-known techniques in
sensor network settings. A problem of SBR is its codebook is
not precise enough for compression. In addition the codebook
updating in SBR wastes a lot communication bandwidth. As to
the network topology, a large amount of energy-saving
algorithms [7][10][11] group nearby sensors into clusters. All
the sensors in the same cluster share the cluster head’s
communication channel evenly (as in Figure 1), that is, they
utilize the same data transmission bandwidth if they want to
talk to the cluster head. For example, in TDMA scheduling, a
different time slot is assigned to each sensor (as in Figure 2),
while in FDMA scheduling, a different frequency range slot is
allocated to each sensor. For our compression problem, as the
information is distributed differently at different sensors, the
compression qualities show large variances among sensors
given the same bandwidth allocation. As the bandwidth is an
important factor for increasing compression qualities, if we
could assign more bandwidth to the low quality sensors and
assign less band-width to the sensors whose compression
qualities are high enough, the overall compression qualities of
all sensors would be maximized and balanced. In this paper
we address this problem and present a Dynamic Bandwidth
Assignment algorithm to solve it.

Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3

New Cycle New Cycle New Cycle

Talk to Sensor 1 Talk to Sensor 2 Talk to Sensor 3

http://www.cs.ucr.edu/~vana
http://www.cs.ucr.edu/~stelo/
mailto:stelo@cs.ucr.edu

A. Our Contributions
Our contributions are summarized as follows:
 a) We apply the LVQ (Learning Vector Quantization)
algorithm to construct the codebook for data compression. Our
results show that the LVQ learning process can further
improve the codebook for high compression precision.
 b) We introduce the concept of two-level regression for
higher precision compression. The two-level regression is
applied to the codebook update in order to save more
bandwidth while keeping the codebook updated with high
precision.
 c) We consider the problem of dynamic allocation of
bandwidth in wireless sensor networks. We present a new
algorithm, DBA (Dynamic Bandwidth Allocation), which
works in combination with our compression algorithm, and
dynamically allocates bandwidth among channel sharing
sensors. The algorithm uses the recent history to predict future
bandwidth requirements and balance the expected loss for the
different sensors.

The rest of this paper is organized as follows. Section II
states the background and definition of our problem. In
Section III we present the related work and we describe our
ALVQ algorithm in Section IV. Dynamic bandwidth
allocation problem is addressed in section V. In Section VI we
provide our experimental results. Finally, we conclude our
remarks and future work in Section VII.

II. PROBLEM DEFINITION

A sensor node S is equipped with a measuring system
which generates a data record r = (t, val1, val2,…) every ε
seconds, where t is the timestamp on which the record was
generated, and (val1, val2,…) are the measurements at that
time instance. The sensor has its local data buffer B which
stores these records. When B is full, the sensor compresses the
data and transfers the compression representative to the sink.
In this paper, we address the following two problems:

Problem I: Given a one dimensional time series data X
collected by a sensor, the goal is to find a proper encoder
function F making Y = F(X) and a decoder function G, so that

a) | X | / | Y | ≥ R and b) || X - G(Y) || is minimized.
In a) R is the compressing rate determined by to application

specifications. In b) the distance between the retrieval values
from the compressed information and the original values is
minimized.

Problem II: Given a sensor network cluster C with k sensors,
given the historical compression and transmission statistics in
the cluster, the goal is to dynamically allocate different
bandwidth to different sensors, such that the overall
compression qualities of all k sensors in the cluster are
maximized and balanced.

III. DICTIONARY LOOKUP SCHEMES
In high rate lossy compressions, Dictionary Lookup

schemes [4] are widely used in graphics, pattern recognition,

etc. In such schemes, there is a codebook (or base signal) that
captures the prominent patterns of the data. For each data
piece to be compressed, we “look up” the codebook, find the
best approximation pattern and then use the approximation
parameters to represent the original data piece.

The characteristics of sensor data make the Dictionary
Lookup Scheme very appealing. Firstly, the data in sensor
networks is collected from the environment and therefore is
likely to show similar patterns over time. Secondly, some
sensor nodes collect different measurements at the same time.
These measurements show intrinsic correlation between each
other, as is the case between pressure and humidity in weather
monitoring systems.

Therefore, Dictionary Lookup Scheme is a good choice for
historical information compression in sensor networks.

A. Piece-wise Approximation

In sensor networks, many physical quantities are correlated,
like air temperature, pressure etc. Therefore we can use piece-
wise linear regression to capture those properties.

1) Piece-wise Linear Regression: Given two time series
data pieces, X and Y, we use X to approximate Y by piece-
wise linear regression, that is Y’ = a*X + b so that the
regression error || Y - Y’ || is minimized. In sensor networks,
many quantities show strong linear relationships between each
other and the quantities themselves show similar patterns over
time. Therefore if we choose the most prominent patterns, we
can piece-wise approximate other patterns with high precision.

1 2 3 4 5
0

2

4

6

8

10 X
Y' = X*3 - 8
Y

 Figure 3. Piece-wise approximation

In Figure 3, there are two time series X and Y. If we let Y’ =
3X – 8, then Y’ is a good approximation of Y.

2) 2-level Piece-wise Linear Regression: Given three
vectors of same size, X, Y and Z, we could use linear
combination of X and Y to approximate Z:
1. We piece-wise approximate Z by X, that is Z’ = a*X + b

so that the regression error || Z - Z’ || is minimized.
2. We construct a new vector D to store the difference of

Vector Z and the approximation vector Z’, D = Z - Z’.
3. Employ Y to approximate the difference vector D we

obtained above, that is D’ = c*Y + d, so that the
regression error || D - D’ || is minimized.

4. The compression parameters a, b, c, d are transmitted as
the compression representative of Z.

It should be noted that 2-level Piece-wise Linear Regression
is at least as good as standard Piece-wise Linear Regression.

Usually it is much more precise than its 1-level counterpart. It
could be utilized in applications where higher compression
precision is required.

B. Previous Work: LVQ (Learning Vector Quantization)

LVQ algorithm [8] is used in many applications such as
image and voice compression, voice recognition, etc.

Assume there is a training data set with n vectors in k
classes. Each vector has the class label indicating which class
it belongs to. We want to construct a set of representative
codeword vectors (called codebook) to classify the data in real
world. Each new vector to be classified finds the nearest
codeword vector in the codebook and is assigned the same
class as that codebook vector.

Unfortunately designing a codebook that best represents the
set of training vectors is NP-hard [14]. We therefore resort to a
suboptimal codebook design scheme − LVQ (Learning Vector
Quantization). First, we randomly select a training vector from
each class. We denote theses vectors as m1,...mk and take them
as initial codebook. For every other training vector x we
perform the following learning process:
 for i = 1, … k,

mi = mi + a(t)[x - mi] if x and mi are in the same class;
mi = mi − a(t)[x - mi] if x and mi are in different classes;

Here 0<a(t)<1, and a(t) may be constant or decrease
monotonically with time.
 LVQ continuously adjusts its codebook with all the training
data, so that the codebook is trained nearer to the optimal
representative of each class.

C. Previous Work: SBR (Self Based Regression)

Because the historical information in sensor networks
shows similar patterns over time and different measurements
show natural correlation between each other, the SBR (Self
Based Regression) algorithm was recently proposed in [6] to
exploit these characteristics of the data. The authors show it
outperforms other standard approximation techniques such as
DCT, Wavelets and Histograms in precision. The SBR
algorithm extracts the prominent feature from the training data
to construct the codebook and the base station keeps a
codebook for each sensor. When the data buffer at some
sensor node is full, the collected data is compressed by piece-
wise regression and the update codebook data piece is
calculated. These results are then transmitted to the base
station where the approximation of sensor data is retrieved.

Compared with SBR, our ALVQ algorithm increases the
compression precision by improve the codebook accuracy. In
addition, ALVQ compresses the update of codebook too,
which saves bandwidth for data transmission and increases the
quality of the approximation.

IV. THE ALVQ FRAMEWORK

 We now present the Adoptive LVQ (ALVQ) algorithm for
compressing historical information in sensor networks.
 The ALVQ algorithm receives as input the latest n (size of
data buffer in sensor node) data values, a bandwidth constraint
TotalBand (number of values to transmit, including any

codebook update values), the maximum size of the codebook
Mcode and the current codebook Cbase of size |Cbase| < Mcode.

Our ALVQ algorithm works in the following ways: First, in
the codebook construction, ALVQ performs a LVQ (Learning
Vector Quantization) learning process on the codebook, which
adjusts the codebook, to be nearer to the optimal codebook.
Second, for codebook updates, ALVQ compresses the
codebook update data pieces and transfers the compressed
information to the base station. Using 2-level piece-wise
regression, ALVQ can compress the update with high
precision while saving more bandwidth for data transmission
in order to increase the quality of the approximation.

A. Codebook Construction from Training Dataset

A training dataset is needed to construct the original
codebook. The training dataset can be sampled from the
environment as follows. We divide the data into several Data
Pieces (DPs) each with same size W (W = n1/2). Each DP could
then be approximated by another DP using piece-wise
regression. According to the memory limitations of the sensor
nodes and base station, the size of codebook is restricted to
some limitation Mcode. We take the first (Mcode/W) DPs that
can best approximate the other DPs by piece-wise regression
as the “raw” codebook. This is implemented by repeatedly
finding in the training dataset the top DP that can improve the
approximation precision most if inserted into the codebook.

When the “raw” codebook is full, we perform the following
LVQ learning process to polish the codebook:

For each DP X in the training dataset, we find the best CDP
(Codebook Data Piece) in the codebook that can approximate
it with the smallest error. We denote this DP in the codebook
as CDPi, and update CDPi:

CDPi = CDPi + α [(X-b)/a- CDPi],
where a, b are the regression parameters; and 0 <α< 1 is the
training parameter.

After all the DPs in the training dataset have been tested,
the codebook is adjusted and transmitted to the base station.

B. Compressing time series data in real world

After the training process is finished, the sensor node
collects measured data continuously and adds it to its buffer.
When the buffer is full, it divides the buffer data into several
intervals each having the same size W (n1/2). First, it maps
each interval to the best CDP (Codebook Data Piece) in the
codebook using piece-wise regression. Then it finds the
interval with the largest regression error and divides it into
half. If the data interval size is smaller than W, it can shift in
the CDP until the best approximation is achieved. We keep
dividing the intervals with the highest error until the maximum
number of intervals is achieved (depending on the bandwidth
and the buffer size). Then the approximation parameters are
transmitted to the base station as compression representation.

C. Codebook Update

Because the environmental data feature may change over
time, as a new data stream is collected at the sensor node, old
data patterns in the codebook may become out of date and

inappropriate for the new data regression. Thus we need to
insert new frequently occurring patterns into the codebook and
remove out-of-date patterns. Please note that it is not always
desirable to update the codebook with too many new patterns.
Since the transmission bandwidth to the base station is upper
bounded by TotalBand, the more new DPs we use to update
codebook, the less bandwidth there is left that can be utilized
for data transmission.

The algorithm works as follows:
1. Similar to [6], ALVQ found the set of CDPs to be

inserted into the codebook, a 2-level regression subroutine is
called to compress these CDPs and the compression repre-
sentatives are transmitted to the sink.

2. The out-of-date CDPs are found using Least Frequently
Used (LFU) policy and their ids are transmitted to the sink.

3. When transmission is finished, the sink first replaces out-
of-date codebook with the newly transmitted CDPs to update
the codebook. Then it utilizes the new codebook and the
compression representatives to approximate the original
values at the sensor node.

D. Computing Complexity of ALVQ

According to [6], the time complexity of SBR is O(n1.5)
where n is the size of data buffer in sensor node. In ALVQ, for
each DP in the buffer, our learning process finds the best
codebook data piece CDP and adjust CDP in O(W) time. In
addition, the compression of codebook update takes
O(Mbase·W). Therefore, the running time complexity of ALVQ
is O(n1.5+ W·W+ Mbase·W) = O(n1.5) which is the same as SBR
and is acceptable for real sensors.

V. DYNAMIC BANDWIDTH ASSIGNMENT IN WSN

Now let us consider the problem in a general case where we
want to gather the historical information from all the sensors
in the sensor network. Recently a large amount of energy-
saving algorithms have been proposed for efficient routing in
sensor networks. Algorithms [5][7][10][11][12][13] are based
on the collect and send scheme, treat all the sensors equally in
the data transmission scheduling. In our collect-compress-
transmit scenario, as the compression qualities show variances
at different sensors, to assign more bandwidth priorities to
low-compression-quality sensors is more appealing.

A. Network Topology: The LEACH Framework

LEACH (Low-Energy Adaptive Clustering Hierarchy) [7]
and its variants [10][11] are among the most popular
hierarchical routing algorithms for sensor networks. The idea
is to form clusters of the sensor nodes based on the received
signal strength and use local cluster heads as routers to the
sink. The cluster heads are elected from sensor nodes
randomly over time in order to balance the energy dissipation
of nodes.

As described in Figure 1, in LEACH, all the sensor nodes
send packages directly to its local cluster head and the cluster
head transmits these packages to the sink through multi hops
in the sensor network. Since the communication between the
sensor node and the cluster head is wireless, the commu-

nication channel of the cluster head is the bottleneck of the
total data transmission of all the sensors in the cluster. In
LEACH, all the sensors in the cluster share the communication
channel of cluster head evenly (for example TDMA schedule),
namely, they share the same communication bandwidth of
transmission data to the cluster head.

Figure 4. Dynamic Bandwidth Assignment model

 As different sensors usually collect different data, it is
highly possible that the compression qualities at different
sensors are different even given same compression rate. Since
LEACH assigns same transmission bandwidth for all the
sensors in the cluster, the compression rates for these sensor
nodes are the same. Therefore, the compression qualities of
different sensors cannot be maximized and balanced well in
LEACH.
 In applications where similar compression qualities are
required for all the sensors, different compression rate should
be assigned to different sensors in order to maximize the
overall compression qualities. As all the sensor nodes share
the communication channel of the cluster head, we can take
better advantage of it. We can let the cluster head assign its
communication channel unevenly and dynamically to different
sensors. For those sensors with low compression qualities,
cluster head assigns more bandwidth to them; for those
sensors with high compression qualities, less bandwidth are
assigned. Therefore, with different transmission bandwidth,
similar compression qualities of sensors are achieved.
 This can be done by changing the channel schedule. For
example, in TDMA mechanism, sensors that need more
bandwidth can use the communication channel longer.

B. Dynamic Bandwidth Assignment (DBA)
 Here we introduce the Dynamic Bandwidth Assignment
Algorithm (Figure 4) for sensor information transmission and
compression qualities balancing in sensor networks.

Our algorithm works as follows: After setting up of a
cluster (with k sensors), the cluster head collects the
compression quality of each sensor Q1, Q2…Qk, and the
bandwidth assigned to them B1,B2…Bk of last transmission
between these sensors and the cluster head.

Then the average compression quality for all these sensors
are computed QA= ∑i=1…k Qi/k. For data transmitted later, the
cluster head assigns bandwidth to sensor i as Bi – α(Qi-QA),
where α is the bandwidth adjusting parameter.

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

Compression Ratio (%)

C
om

pr
es

si
on

 E
rro

r

SBR
ALVQ

Figure 5 Varying Compression Rate

0 50 100 150 200 250 300
0

5

10

15

Original Data Size (KB)

Tr
an

sm
itt

ed
 D

at
a

Si
ze

 (K
B)

SBR
ALVQ

Figure 6 Transmitted Data Size

0.5 1 1.5 2

30

35

40

45

50

55

Codebook Size (KB)

C
om

pr
es

si
on

 E
rro

r

p p

SBR
ALVQ

Figure 7 Varying Codebook Size

Figure 8 Maximum Errors on Synthetic Dataset

Figure 9 Average Errors on Synthetic Dataset

Figure 10 Maximum Errors on Real World Dataset

Figure 11 Average Errors on Real World Dataset

150

250

350

450

550

650

750

32 48 64 80 96
Bandwidth(kbps)

M
ax

 E
rr

or

LEACH
DBA

Figure 12 Maximum Errors with Varied Bandwidth

100

200

300

400

32 48 64 80 96
Bandwidth(kbps)

M
ax

 E
rr

or

LEACH
DBA

Figure 13 Average Errors with Varied Bandwidth

With the dynamic bandwidth assignment to different
sensors, those sensors with low approximation quality can get
more bandwidth and those with high quality will get less
bandwidth. Therefore, the compression qualities for all the
sensor nodes are balanced well.

VI. EXPERIMENTAL EVALUATION

A. Description of the Dataset
We provide a thorough experimental evaluation of our

ALVQ and DBA technique on real world data set. To better
demonstrate the advantage of DBA, we evaluate our DBA
algorithm on synthetic dataset, too.

For synthetic data set, there are totally 300k synthetic data
records generated for 8 sensors. To simulate the real sensor
measurements at different spots, we generate data records with
different variation for different sensors. In addition, some
sharp changes are embedded to simulate the exception or
abnormal events in the environment.

For real world data set, we utilize Atmo - a real dataset of
atmospheric data collected at 32 sites in Washington and
Oregon. More specifically, each of the 32 sites maintains the
average temperature on an hourly basis for 208 days between

June 2003 and June 2004. We connect these sites by a network
(like in Figure 3) according their positions, and use the DBA
technique to minimize the compression error given a
bandwidth constraint.

B. Data Compression w ithin a Sensor

 and SBR [6] on the

 and codebook 2KB, we
va

We compare the performance of ALVQ
Atmo data set using the same network constraints and com-
pression parameters. The main objective of our experimental
work is to quantify the advantage of ALVQ, namely, quantify
the advantage of employing LVQ learning process in the
construction of the codebook, and the transmission of com-
pressed updates. We only compare with SBR because (1) The
two techniques (SBR and ALVQ) are using the same frame-
work and (2) the experimental results of [5] show that SBR
outperforms other techniques in the sensor networks’ setting.

1) Varying the Compression Rate
With 3.6k data items in the buffer
ry the compression rate from 4% to 20%. Figure 5 shows

that the compression precision decreases gradually as the
compression rate increases for both SBR and ALVQ. In
addition, ALVQ improves the overall precision over SBR by

75
125
175
225
275
325
375

1 3 5 7 9 11 13 15
Time (1000s)

A
ve

ra
ge

 E
rr

or

LEA H C
DBA

50

250

450

650

850

1050

1250

1 3 5 7 9 11 13 15
Time (1000s)

M
ax

 E
rr

or

LEA H C
DBA

300
320
340
360
380
400
420
440

1 3 5 7 9 11 13 15

Time (1000s)

A
ve

ra
ge

 E
rro

r

LEACH
DBA

300
400
500
600
700
800
900

1 3 5 7 9 11 13 15
Time (1000s)

M
ax

 E
rr

or

LEA CH
DBA

an average of 15% for all the compression rates, which is due
to the higher accuracy of the codebook in ALVQ.

2) Comparing the Transmission Data Size
 As time goes on, more data is received and transmitted to
th ion rate as 5%,

size from 0.1KB to 2 KB while
fix and data file size to 10KB.
Fi

 Qualities in WSN
We compare the performances of DBA and LEACH under

bot data set,

 world Atmo dataset having 32 sensors, we
var en sensors from 32

bp

d for
istorical information c on in sensor networks. Our

method splits the riable length and
en

tion in the
se

upported by NSF grant 0330481.

[1] : AScalable

ACM SIGMOD, 2000.

[5]

[9]

 hanced

[12]

[13]

e base station. We fix the SBR compress
codebook size as 2KB and try to find the minimum size of
transmitted data by ALVQ to achieve the same compression
error. Figure 6 shows that with the same error constraint,
ALVQ transfers less data than SBR, which means ALVQ
achieves a higher compression rate and uses less network
communications than SBR.

3) Varying the Codebook Size
We varied the codebook
ing the compression rate to 5%

gure 7 shows that the higher the codebook size, the more
precise compression is achieved for both SBR and ALVQ.
This is because data can be aggregated more accurately if we
have more patterns in the codebook. On average, our ALVQ
algorithm improved the compression precision of SBR by
around 15% for different codebook sizes.

C. Maximizing Overall Data Compression

the same network settings. The main objective of our work is
to quantify the advantage of DBA algorithm over LEACH,
namely, quantifying how well DBA algorithm can maximize
and balance the compression qualities among different sensors.

1) Data Compression at different time moments
 We evaluate the performances of DBA and LEACH on

h synthetic and real world data sets. For synthetic
it is assumed that the data record is generated every second
and the sensors transfer their compressed information every
1000 seconds. The bandwidth between sensors is set as 64
Kbps which is a typical sensor node setting. For real world
data set, each measuring site is taken as a sensor and the 32
sites are assigned to 4 clusters (with 8 sensors each) according
to their positions. We try to compare the maximum and
average compression errors within a cluster under DBA and
LEACH model. As is shown in Figure 8, 9, 10 and 11, the
DBA algorithm is always consistent with small error as time
goes on, while the LEACH approach which just divides the
bandwidth evenly to all the sensors is sometimes good (if all
the sensors need the same bandwidth), but sometimes very bad.
This is because LEACH can not adjust bandwidth to achieve
global optimization as in DBA for biased data distribution
among sensors.

2) Varying the Bandwidth of Channel
 With the real

y the communication bandwidth betwe
k s to 96 kbps. Figure 12 and Figure 13 show that DBA
outperforms LEACH in maximum and average compression
errors under all circumstances. As the bandwidth become
smaller, the advantage of DBA over LEACH is more obvious
although the compression errors for both model increase.

VII. CONCLUSIONS

We present a new data compression technique, designe
h ompressi

collected data into va
codes each of them by an artificially constructed codebook.

The values of the codebook are extracted from the training
dataset and maintained dynamically as data changes. The LVQ
learning process is employed to polish the codebook in the
codebook construction step and codebook’s updates are
compressed to save bandwidth for sensor data transmission. In
the last section, we propose a DBA algorithm to dynamically
adjust communication bandwidth in order to maximize and
balance compression qualities of different sensors.

In our experiments on synthetic datasets and real datasets,
we show that both our ALVQ technique and DBA algorithm
improve the overall precisions of the approxima

nsor networks.

ACKNOWLEDGMENT
This work was s

REFERENCES
 J. Chen, D.J. Dewitt, F. Tian, and Y. Wang. “NiagaraCQ

Continuous Query System for Internet Databases.” In Proceedings of

[2] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. “Multi-
Dimensional Regression Analysis of Time-Series Data Streams.” In
Proceedings of VLDB, 2002.

[3] R. Cheng, D. V. Kalashnikov, and S. Prab-hakar. “Evaluating
Probabilistic Queries over Imprecise Data.” In Proceedings of ACM
SIGMOD Conference, 2003.

[4] V. Cherkassky and F. Mulier. “Learning from data: Concepts, Theory
and Methods.” John Wiley & Sons, 1998.
C. Liu, K. Wu, J. Pei, “A Dynamic Clustering and Scheduling Approach
to Energy Saving in Data Collection from Wireless Sensor Networks” In
 Proceedings of SECON, 2005

[6] A. Deligiannakis, Y. Kotidis and N. Roussopoulos. “Compressing
Historical Information in Sensor Networks.” In Proceedings of ACM
SIGMOD, 2004.

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless sensor networks.” In
Proceeding of the Hawaii International Conference System Sciences,
Hawaii, January 2000.

[8] T. Kohonen. “Self-Organizing Maps.” pringer-Verlag, 1995
T.Kohonen, “Improved versions of learning vector quantization.” In
Proceedings of the International Conference on Neural Networks, 1990.

[10] A. Manjeshwar and D. P. Agrawal, “TEEN : A Protocol for En
Efficiency in Wireless Sensor Networks.” In Proceedings of the 1st
International Workshop on Parallel and Distributed Computing Issues
in Wireless Networks and Mobile Computing, CA, 2001.

[11] A. Manjeshwar and D. P. Agrawal, “APTEEN: A Hybrid Protocol for
Efficient Routing and Comprehensive Information Retrieval in Wireless
Sensor Networks.” In Proceedings of the 2nd International Workshop on
Parallel and Distributed Computing Issues in Wireless Networks and
Mobile computing, FL, 2002.
M. Younis, M. Youssef and K. Arisha, “Energy-Aware Routing in
Cluster-Based Sensor Networks.” In MASCOTS, TX, 2002.
F. Ye, G. Zhong, J. Cheng, S. Lu and L. Zhang, “PEAS: A Robust
Energy Conserving Protocol for Long-lived Sensor Networks,” In
International Conference on Network Protocols, Paris, France, 2002.

[14] M. Ruhl, H. Hartenstein, "Optimal Fractal Coding is NP-Hard", In Data
Compression Conference, Snowbird, Utah, 1997.

	III. DICTIONARY LOOKUP SCHEMES
	Acknowledgment
	References

