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In this paper, we study the tagSNP selection problem on multiple populations using the pairwise r2 linkage disequilibrium criterion.
We propose a novel combinatorial optimization model for the tagSNP selection problem, called the minimum common tagSNP selection
(MCTS) problem, and present efficient solutions for MCTS. Our approach consists of three main steps including (i) partitioning the
SNP markers into small disjoint components, (ii) applying some data reduction rules to simplify the problem, and (iii) applying either
a fast greedy algorithm or a Lagrangian relaxation algorithm to solve the remaining (general) MCTS. These algorithms also provide
lower bounds on tagging (i.e. the minimum number of tagSNPs needed). The lower bounds allow us to evaluate how far our solution
is from the optimum. To the best of our knowledge, it is the first time tagging lower bounds are discussed in the literature. We assess
the performance of our algorithms on real HapMap data for genome-wide tagging. The experiments demonstrate that our algorithms
run 3 to 4 orders of magnitude faster than the existing single-population tagging programs like FESTA, LD-Select and the multiple-
population tagging method MultiPop-TagSelect. Our method also greatly reduces the required tagSNPs compared to LD-Select on a
single population and MultiPop-TagSelect on multiple populations. Moreover, the numbers of tagSNPs selected by our algorithms are
almost optimal since they are very close to the corresponding lower bounds obtained by our method.

1. INTRODUCTION

The rapid development of high-throughput genotyping
technologies has recently enabled genome-wide associa-
tion studies to detect connections between genetic vari-
ants and human diseases. Single-nucleotide polymor-
phism (SNP) is the most frequent form of polymorphism
in the human genome. Common SNPs with minor-allele
frequency (MAF) of 5% have been estimated to occur
once every ∼600 bps 18, and there are more than 10 mil-
lion verified SNPs in dbSNP 11. Given these numbers, it
is currently infeasible to consider all the available SNPs
to carry out association studies. This motivates the selec-
tion of a subset of informative SNPs, called tagSNPs.

The selection of tagSNPs in silico is a well-
studied research topic. Existing computational
methods for tagSNP selection can be classified
into two categories: haplotype-based methods
1, 12, 17, 19, 24, 28, 31, 32, 34 and haplotype-independent
methods 5, 15, 16, 20–22, 25, 27, 26. The haplotype-based
methods require phased multi-locus haplotypes, whereas
the haplotype-independent methods do not require hap-
lotype information. The main shortcoming of haplotype-
based methods is that the preprocessing step (i.e. the in-
ference of haplotypes from genotypes) is computationally
demanding. In addition, since there is not an authoritative
inference method, the haplotypes generated by the exist-
ing haplotype inference methods are often quite differ-
ent 7, 32, 35. Consequently, the tagSNPs selected by the
haplotype-based methods would be quite different. Re-
cently, Carlson et al. 5 proposed a haplotype-independent
method that employs the r2 linkage disequilibrium (LD)
statistical criterion to measure the association between

SNPs. The tagSNPs selected by this method are shown
to be effective in disease association mapping studies,
because the measure r2 is directly related to the statisti-
cal power of association mapping. Because this method
has comparable performance at a lower computational
cost than many other methods 33, 27, tagging approaches
based on r2 LD statistics have gained popularity among
researchers in the SNP community 2, 5, 8, 22, 26, 33.

Most approaches using the r2 criterion require that
tagSNPs be defined within a single population, because
LD patterns (see the caption of Figure 1(A) for a def-
inition) are quite susceptible to population stratification
5. In two populations with different evolutionary histo-
ries, a pair of SNPs having remarkably different allele
frequencies and very weak LD may show strong LD in
the admixed population (see such an example in Table 1).
Recent study 6 shows that the LD patterns and allele
frequencies across populations are very different 6, 29 in
fact. For example, among the populations collected in the
HapMap project (i.e. YRI, CEU, CHB and JPT), 81% of
the SNPs in YRI population have a near perfect proxy
(i.e. SNPs that have r2 ≥ 0.8 with other SNPs), while
in the other three populations, 91% of the SNPs have a
near perfect proxy 9. Therefore, tagSNPs picked from the
combined populations or one of the populations might not
be sufficient to capture the variations in all populations.
In order to maintain the power of association mapping,
we need generate a common (or universal) tagSNP set to
type all the populations with sufficient accuracy.

A simple approach to select a universal tagSNP set
is to tag one population first and then select a supple-
mentary set for each of the other populations one by one
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Table 1. r2 statistics for a pair of SNP markers in a single and admixed populations. One SNP has alleles denoted as
A and a while the other SNP has alleles denoted as B and b. Population 3 is an even mixture of populations 1 and 2.

Population 1
B b

A 0.9025 0.0475 0.95
a 0.0475 0.0025 0.05

0.95 0.05 r2 = 0

Population 2
B b

A 0.0025 0.0475 0.05
a 0.0475 0.9025 0.95

0.05 0.95 r2 = 0

Population 3
B b

A 0.4525 0.0475 0.5
a 0.0475 0.4525 0.5

0.5 0.5 r2 = 0.6561

2, 23, 22. For instance, we can select a tagSNP set for non-
African populations and a supplement for populations
with significant African ancestry 23. However, this se-
quential approach might not give a satisfactory solution,
as the tagSNP set selected for one population might be far
from being adequate to type the SNPs of the remaining
populations. As a result, the supplementary tagSNP sets
are large and the total number of tagSNPs chosen is far
from the optimum. Moreover, the performance of the ap-
proach is sensitive to the specific order of the input pop-
ulations. In order to generate the smallest set of tagSNPs
on K populations, one would have to execute the tag-
ging procedure K! times considering all possible order-
ings, which would be extremely inefficient for genome-
wide tagging. We can improve the performance of the
tagging approach by evaluating multiple populations at
the same time. When choosing tagSNPs, we prefer those
with “good properties” with respect to the collection of
populations as a whole. An example of our tagging strat-
egy is given in Figure 1.
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Fig. 1. (A). LD patterns in two populations. The vertices denote the
SNP markers and the edges denote pairs of markers with strong LD (i.e.
the r2 measure between the markers is greater than a given threshold).
(B). Tagging results of the above simple sequential approach. We first
choose markers 3 and 6 to tag population 1 and then choose an addi-
tional marker 5 to tag population 2. Three markers are selected in total
to tag both populations. (C). Tagging results of an improved approach.
We select markers 4 and 6 considering both populations simultaneously.
Only two markers are selected in total to tag both populations.

Previous work on tagSNP selection based on the link-
age disequilibrium criterion. There is a large body of
scientific literature on the problem of selecting tagSNPs
based on the r2 LD criterion. Carlson et al. suggested a
greedy procedure called LD-Select, which works as fol-
lows: (i) select the SNP with the maximum number of
proxies, (ii) remove the SNP and its proxies from con-
sideration, and (iii) repeat the above two steps until all
SNPs have been tagged 5. This algorithm is very simple,
however it may miss solutions with the smallest number
of tagSNPs in general, as shown in 26. More recently,
Qin et al. implemented a comprehensive search algo-

rithm called FESTA, which first breaks down a large set
of markers into disjoint pieces (called precincts), and then
performs an exhaustive search on each piece if the esti-
mated computational cost is below a certain threshold 26.
FESTA usually gives a better solution than LD-Select, but
due to the fact that it employs exhaustive search, it is too
slow to be practical for genome-wide tagSNP selection.

The above methods are only applicable to single
population tagSNP selection. Recently, Howie et al.
presented an algorithm for multiple populations, called
MultiPop-TagSelect. MultiPop-TagSelect combines the
tagSNPs selected for each population by LD-Select to
produce a universal tagSNP set for a collection of pop-
ulations 13. The algorithm works reliably, and it could in
principle be used with any tagSNP selection method for
single populations. However, its accuracy highly depends
on the performance of the single-population tagSNP se-
lection method. Magi et al. 22 also designed a software
tool called REAPER which is rather similar to LD-Select
if applied to a single population. To select a univer-
sal tagSNP set for several populations, it first selects a
tagSNP set for one population, and then it selects a sup-
plement for the remaining populations one by one. As
mentioned above, the performance of the method cru-
cially depends on the choice of the initial tagSNP set and
the ordering of the populations. It is not clear, moreover,
how one should select tagSNPs for the first population so
as to minimize the size of the final solution.

Our contribution on tagSNP section based on the link-
age disequilibrium criterion. In this paper, we take a
different approach to the multi-population tagSNP selec-
tion problem. Contrary to the previous methods, we do
not generate a tagSNP set for each individual population
separately, but rather we evaluate all the populations at
the same time. The method that we propose could be used
to generate a universal or cosmopolitan tagSNP set for
multi-ethnic, ethic-unknown or admixed populations 13.

The main idea of our approach is to transform a
multi-population tagSNP selection problem, called the
minimum common tagSNP selection (MCTS) problem (to
be defined more precisely later in the paper), into a mini-
mum common dominating vertex set problem on multiple
graphs. Each graph corresponds to one of the populations
under consideration. The vertices in a graph correspond
to the SNP markers of the population, and there is an
edge between two markers when they are in strong LD
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(according to some given threshold). To find an optimal
solution MCTS, we first decompose it into disjoint sub-
problems, each of which is essentially a connected com-
ponent of the union grapha and represents a precinct as
defined in 26. Then, for each precinct, we apply three
data reduction rules repeatedly to further reduce the size
of the subproblem, until none of the rules can be applied
anymore. Finally, the reduced subproblems are solved by
either a simple greedy approach (similar to cosmopolitan
tagging 2) or a more sophisticated Lagrangian relaxation
heuristic. Both algorithms will be explained in detail later
in the paper. Along with the solution produced by our
algorithm, we also obtain lower bounds on the minimum
number of tagSNPs required, which allows us to quantita-
tively assess how close our solution is from the optimum.

We evaluate the performance of our method on real
HapMap data for genome-wide tagging. The experi-
mental results demonstrate that our algorithms run 3 to
4 orders of magnitude faster than the existing single-
population tagging programs like FESTA, LD-Select
and the multiple-population tagging method MultiPop-
TagSelect. Our method also greatly reduces the required
tagSNPs compared to LD-Select on a single population
and MultiPop-TagSelect on multiple populations. More-
over, the numbers of tagSNPs selected by our algorithms
are almost optimal since they are very close to the corre-
sponding lower bounds provided by our method. For ex-
ample, the gap between our solution and the lower bound
is 1061 SNPs with r2 threshold being 0.5 and 142 SNPs
with the r2 threshold being 0.8, given the entire human
genome with 2,862,454 SNPs (MAF being 5%).

The rest of the paper is organized as follows. In
Section 2, we first propose a combinatorial optimization
model for the MCTS problem and then present a com-
putational complexity result. In Section 3, we introduce
three rules to reduce the size of the problem, and devise
a greedy tagging algorithm, called GreedyTag, and a La-
grangian relaxation heuristic, called LRTag. After show-
ing the experimental results in Section 4, we conclude
the paper with some remarks about the performance of
our tagging method in Section 5. Due to page limit, some
of the illustrative figures and tables are given in the ap-
pendix.
2. FORMULATION OF THE MCTS

PROBLEM

Consider K distinct populations and a set V of biallelic
SNP markers v1, v2, . . . , vn. Since the r2 coefficient is
unreliable for rare SNPs when the sample size is small 5,
we will consider only SNPs with MAF ≥ 5%. The set of
SNPs might be different from population to population.
We use Vi ⊆ V to denote the SNP set in population i.
Clearly, we have V = V1 ∪ V2 ∪ · · · ∪ Vk.

For a pair of SNP markers vj1 and vj2 in a population
i (for any 1 ≤ i ≤ K), the r2 coefficient between them is
denoted by r2

i (vj1 , vj2). Markers vj1 and vj2 are said to
be in high LD in population i, if r2

i (vj1 , vj2) ≥ γ0, where
γ0 is a pre-defined threshold (γ0 will be set to 0.5 or
higher in our study). Moreover, vj1 (or vj2) is considered
being the tagSNP or proxy for vj2 (or vj1 , respectively) in
population i. For convenience, we define Ei to be the set
containing all the high-LD marker pairs in population i,
i.e. Ei = {(vj1 , vj2)|r2

i (vj1 , vj2) ≥ γ0, vj1 , vj2 ∈ Ei}.
Now we can formally define the MCTS problem.

MINIMUM COMMON TAGSNP SELECTION(MCTS)
Instance: A collection of K populations and a set V of
biallelic SNP markers. Each population i (1 ≤ i ≤ K)
has its marker set Vi ⊆ V and LD patterns Ei =
{(vj1 , vj2)|r2

i (vj1 , vj2) ≥ γ0, vj1 , vj2 ∈ Vi}, where γ0

is a pre-defined threshold.
Feasible solution: A subset T ⊆ V such that for any
marker v ∈ Vi, v /∈ T from some population i, there
exists a marker v′ in T ∩ Vi with (v, v′) ∈ Ei (that is,
r2
i (v, v′) ≥ γ0).

Objective: Minimize |T|.

It is easy to observe that any feasible solution to the
MCTS problem is a common dominating vertex set in the
graphs {Gi|1 ≤ i ≤ K}, where Gi = (Vi, Ei). In partic-
ular, the smallest set of tagSNPs for a single population
is a minimum dominating vertex set of the corresponding
graph. Obviously, the MCTS problem is NP-hard, since
it is a generalization of the minimum dominating vertex
set problem, which is known to be NP-hard 4.

Theorem 2.1. The MCTS problem is NP-hard.

We introduce some additional notations to be used
later. To differentiate the occurrences of a marker in dif-
ferent populations, we use vi

j to represent the jth marker
appearing in the ith population. Given a marker vj ∈ V ,
we define the following two sets:

N i(vj) = {vi
j′ |(vj , vj′) ∈ Ei, vj , vj′ ∈ Vi} ∪ {vi

j |vj ∈ Vi}
N∗(vj) =

⋃
1≤i≤K N i(vj)

(1)
The set N i(vj) represents the subset of markers in strong-
LD with vj in population i, and the set N∗(vj) represents
the union of such subsets for all the populations. Note
that, N i(vj) is empty if vj 6∈ Vi. Given a marker vj ∈ Vi

in population i, we define the following set:

C(vi
j) = {vj′ |(vj , vj′) ∈ Ei, vj , vj′ ∈ Vi} ∪ {vj} (2)

The set C(vi
j) is the subset of markers each of which can

tag the occurrence vi
j , whereas N∗(vj) is the subset of

occurrences that the marker vj can tag.

aGiven graphs Gi = (Vi, Ei)(1 ≤ i ≤ k), the union graph is defined as G = (V, E), where V =
S

i Vi and E =
S

i Ei.
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Based on the above definitions, the MCTS problem
can also be viewed as the following set cover problem.
Given the universe U =

⋃
1≤i≤K{vi

j |vj ∈ Vi} and the
collection C = {N∗(vj)|vj ∈ V }, find a subcollection of
sets from C to cover U . Clearly, the number of sets in a
minimum set cover is equal to the number of markers in
a minimum tagSNP set.

Consequencely, approximation algorithms that solve
set cover can be applied to MCTS. In practice, greedy
algorithms are commonly used for set cover due to their
simplicity and effectiveness. The simplest greedy algo-
rithm for set cover, which picks the set that covers the
most number of uncovered elements each time, achieves
an approximation ratio of log(m), where m is the num-
ber of elements to be covered 30. This implies a log(Kn)
approximation algorithm for MCTS, |U| ≤ Kn.

However, the approximation ratio of log(Kn) could
be too large in practice, due to the fact that V may contain
millions of markers and n = |V |. Therefore, the solution
produced by the above greedy approach may not be suf-
ficiently small. We aim to design efficient heuristics to
provide better solutions.

3. OPTIMIZATION TECHNIQUES TO
SOLVE THE MCTS PROBLEM

In principle, a minimum common tagSNP set can be
found by exhaustive search. In reality, there are mil-
lions of markers, and it is infeasible to conduct the ex-
haustive search. Since human chromosomes consist of
high-LD regions (i.e. haplotype blocks) interspersed with
recombination hotspots, we partition the markers into
precincts such that markers in strong LD belong in the
same precinct. In this way, we could narrow down the
search space and improve the efficiency of our algorithm.

In order to deal with multiple populations, we extend
the concept of precinct defined originally in 26. We say
that two markers are in the same precinct if and only if
they are in strong LD in some population. Based on the
simple observation that no marker in a precinct can tag
a marker in another tag a marker in another precinct, we
can obtain a minimum tagSNP set for the combining the
minimum tagSNP sets for each precinct. The precincts
can be easily identified by running a breath first search
(BFS) in the union graph G. By partitioning the mark-
ers into precincts, we decompose the original problem
into a set of disjoint subproblems of much smaller sizes.
We then select tagSNPs for each precinct independently,
which could save a lot of running time.

3.1. Data Reduction Rules
We introduce three simple data reduction rules to further
reduce the subproblem sizes and improve efficiency.
Rule 1: Pick all irreplaceable markers. If a marker vj

has no proxy from population i (that is, vj is a singleton

in Gi = (Vi, Ei)), then marker vj must be in the mini-
mum tagSNP set.

Rule 2: Remove less informative markers. Given two
markers vj′ and vj , if N∗(vj′) ⊆ N∗(vj), we say that
vj is more informative than vj′ . Similarly, given a set
of markers vj1 , vj1 ,. . . , vjk

, if N∗(vj1) ⊆ N∗(vj2) ⊆
. . . ⊆ N∗(vjk

), vjk
is called the maximally informative

SNP marker in the set. It is clear that we can discard less
informative SNPs and only keep those maximally infor-
mative ones without degrading the quality of the solution.

Rule 3: Remove less stringent occurrences. Given two
occurrences vi′

j′ and vi
j , if Ci

j ⊆ Ci′
j′ , we say that vi′

j′ is
less stringent than vi

j . Similarly, given a set of occur-
rences vi1

j1
, vi2

j2
,. . . , vik

jk
, if Cik

jk
⊆ . . . ⊆ Ci2

j2
⊆ Ci1

j1
, the

occurrence vik
jk

is called the most stringent occurrence in
the set. Observe that the markers selected to tag the most
stringent occurrences will also tag the less stringent oc-
currences. Therefore, we consider only the most stringent
occurrences and discard the others.

The above rules can also be viewed as data reduc-
tion rules applied to a 0/1 matrix obtained as follows.
Given the notations of the occurrence set U , the marker
set V and the neighborhood collections C introduced in
previous section, the rows in the matrix represent U , the
columns denote V , and each cell (i, j) indicates whether
the marker corresponding to column j can tag the occur-
rence corresponding to row i (i.e. the value of a cell is
set to 1 if the marker can tag the occurrence, and 0 other-
wise). Thus, Rule 2 (or Rule 3) is equivalent to redundant
column deletion (or row deletion, respectively).

The above rules can be applied repeatedly and in any
combination whenever applicable. The reduced problem
obtained after the application of the above data reduc-
tion rules will be subject to our greedy algorithm or La-
grangian relaxation (LR) algorithm, as explained next.

3.2. A Greedy Algorithm for MCTS

Greedy algorithms are often desirable due to their sim-
plicity and efficiency. The greedy algorithm, GreedyTag,
below is adapted from the greedy algorithm for the set
cover problem as presented in 30. By first applying the
above data reduction rules, we will show later in the pa-
per that GreedyTag greatly outperforms the other greedy
algorithms such as LD-Select and MultiPop-TagSelect.
Moreover, a lower bound, called GreedyTag lb, is pro-
duced by GreedyTag, which is equal to the number of
tagSNPs selected by data reduction Rule 1. Even though
the lower bound is is somewhat loose since we only con-
sider Rule 1, it turned out to be pretty tight in our ex-
periments on real data (see Section 4 for more details).
Due to space constraint, we present the pseudo-code of
GreedyTag in the appendix.
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3.3. A Lagrangian Relaxation Algorithm
for MCTS

A subset T of SNPs can be denoted by its characteristic
vector t = t1t2 . . . tn, where ti = 1 if vi ∈ T , and ti = 0
otherwise. It is thus easy to formulate the following inte-
ger linear program for MCTS.

Minimize |T | = ∑
1≤j≤n tj

subject to
∑

vj′∈ C(vi
j)

tj′ ≥ 1 1 ≤ i ≤ K and 1 ≤ j ≤ n

tj ∈ {0, 1}, 1 ≤ j ≤ n
(3)

Our second algorithm for MCTS is based on the La-
grangian relaxation framework. We assign a non-negative
vector λ = λ11λ12 . . . λK,n of Lagrangian multipliers to
the inequalities, and obtain the following relaxed integer
program.

Minimize L(t,λ)
=P1≤j≤n tj+

P
1≤i≤K,1≤j≤n λi,j(1−

P
v

j′∈ C(vi
j
) tj′ )

subject to tj ∈ {0, 1}, λi,j ≥ 0, 1 ≤ i ≤ K, 1 ≤ j ≤ n
(4)

For a given λ, define L(λ) = min L(t,λ). Observe that
the size of any feasible tagSNP set T would be an upper
bound for L(λ) in (4), and any L(λ) would be a lower
bound for |T |. Hence, we look for max L(λ), which
gives the best lower bound for min |T |.

For any given λ, we can easily obtain L(λ) in (4) as
follows. For convenience, we define s(tj)(1 ≤ j ≤ n)
as:

s(tj) = 1−
∑

1≤i≤K, v
j′∈ C(vi

j)

λi,j′ = 1−
∑

vi
j′∈ N∗(vj)

λi,j′

which are the Lagrangian costs associated with tj in (4).
Rearranging the terms in (4), we have the objective func-
tion L(t,λ) =

∑
1≤i≤K,1≤j≤n λi,j +

∑
1≤j≤n s(tj) · tj .

In order to minimize the objective function, we have to
set tj = 0 if s(tj) > 0, tj = 1 if s(tj) < 0, and tj an
arbitrary value if s(tj) = 0.

The vector t obtained above may not be a feasible so-
lution to (3). In other words, some occurrence might not
be tagged by any marker in T = {vj |tj = 1, 1 ≤ j ≤ n}
induced by the characteristic vector t. We will adopt
a strategy reduced cost heuristic (RCH) introduced by
Balas and Ho 3 to deal with this issue (the details are
given in the pseudo-code in the appendix).

Next we need find a good multiplier vector λ, i.e.
one that gives a near optimal lower bound. We utilize a
standard optimization technique called subgradient opti-
mization 3, which iteratively updates the solution toward
the subgradient direction to reach the optimum. We can
define

S(λi,j) = 1−
∑

vj′∈ C(vi
j)

tj′

which simplifies L(t,λ) =
∑

1≤j≤n tj +∑
1≤i≤K,1≤j≤n S(λi,j) · λi,j . Obviously, ∇λ =

(∇λ11,∇λ12, ...,∇λK,n) where∇λi,j = S(λi,j). Start-
ing from a initial setting λ0, we sequentially generate
λ1,λ2,λ3, . . ., based on the following formula

λk+1 = max{0,λk + αk
|T ∗| − L∗

||∇λk||2 ∇λk} (5)

where T ∗ is the smallest feasbile tagSNP set found so far
(i.e. the best upper bound for max L(t)), L∗ is the largest
of max L(t) found so far (i.e. the best lower bound for
max L(t)), and {α0, α1, . . .} is a decreasing sequence of
pre-defined scalars.

The pseudo-code for the Lagrangian relaxation algo-
rithm, LRTag, is given in the appendix. In the algorithm,
we start from a initial setting of λ0, generate a solution to
t0 and extend it to a valid tagSNP set as mentioned above.
Then we update λ0 into λ1 according to the formula (5).
We repeat the process until we cannot improve λ or a pre-
defined number of maximum iterations is reached. Over
the entire iterative process, the smallest feasible set of
tagSNPs found by LRTag would be output as a solution
to the MCTS problem, and the largest L(t) would be a
lower bound for tagSNP selection, called LRTag lb.

4. EXPERIMENTAL RESULTS

In our experiments, we test the algorithms GreedyTag and
LRTag on the Hapmap populations, and compare their
performance and efficiency with single-population tag-
ging programs LD-Select and FESTA, and a multiple-
population tagging program MultiPop-TagSelect. For
convenience, we will also denote by GreedyTag the car-
dinality of a feasible tagSNP set obtained by the Greedy-
Tag algorithm. We use similar notations for LRTag, LD-
Select, FESTA and MultiPop-TagSelect.

Both of our algorithms calculate lower bounds on the
minimum number of required tagSNPs, one of which is
found by GreedyTag (i.e. GreedyTag lb) and the other by
LRTag (i.e. LRTag lb). We define gap as the difference
between the highest lower bound and the cardinality of
the smallest tagSNP set found by our algorithms, which
will be used to measure the quality of the solutions.

We apply all the methods on the entire human
genome data involving chromosomes 1 through 22 and
on all ENCODE regions (ENm010, ENm013, ENm014,
ENr112, ENr113, ENr123, ENr131, ENr213, ENr232
and ENr321) genotyped by the HapMap project (release
#19, NCBI build 34, October 2005). For the ENCODE
data, we estimate the r2 statistics by using a two-marker
EM algorithm to compute the maximum-likelihood val-
ues of the four gamete frequencies, which is also com-
monly adopted by LD-Select and HaploView 2. For
the entire human genome data, we directly download
the r2 statistics from the HapMap website 10, generated
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by HaploView to save computational cost. Note that,
HaploView only calculates LD for markers up to 250
kbps apart, which is reasonable because the LD for mark-
ers that are farther than 250 kbps would normally be very
weak anyway, and high LD in such a case can happen
only purely by chance. In order to save running time for
dealing with the entire human genome data, we prune the
LD pattern data downloaded from the HapMap website
by keeping only entries with r2 no less than 0.5.

We ran all the programs on a 32-processor SGI Al-
tix 4700 supercomputer system with 1.6HZ CPU and 64
GB shared memory in the Computer Science Department,
University of California - Riverside. Our GreedyTag and
LRTag algorithms used up to 15 threads in parallel, while
each of the other programs is single-threaded.b

4.1. Tagging the ENCODE Regions

A dense set of SNPs across ten large genomic regions
have been produced by the HapMap ENCODE project.
These regions serve as the foundation to evaluate the de-
velopment of methodologies and technologies for detect-
ing functional elements in human DNA. Each region is
about 500Kb in length and has an SNP density about 1
SNP per 600 bps.

Tagging ENCODE regions for a single population. We
tag each HapMap population separately by LD-Select,
FESTA, and our new algorithms GreedyTag and LRTag.
For illustration purposes, we only show the results for
tagging the CEU population and compare the perfor-
mance of the above algorithms in Table 2.

When the r2 threshold is set as 0.5, the number of
tagSNPs selected by our algorithm is on the average 9.3%
of the total number of markers (the actual percentage
number ranges from 5.1% to 15.3%). With a more strin-
gent r2 threshold of 0.8, the average number of tagSNPs
rises to 17.6% of the total number of markers (ranging
from 11.4% to 24.9%). The same trend was observed
when applying our algorithms on the other populations
(results are not shown due to space constraint).

On each ENCODE region, we observe that the gap
between LRTag lb and LRTag is at most one with the
r2 threshold being 0.5, and there is no gap when the r2

threshold is set as 0.8. This demonstrates that our al-
gorithm LRTag found near-optimal solutions in all test
cases. In general, LRTag and GreedyTag always gen-
erated the smallest sets of tagSNPs, FESTA selected at
most three more tagSNP, and LD-Select might select up
to eight more tagSNPs.

Since our algorithms and FESTA are all near-
optimal, we compare the time efficiency of these pro-
grams in Table 3. Because LD-Select takes genotype data

as input and the other programs take pairwise LD data as
input, we do not compare LD-Select’s running times di-
rectly with those of the others here (generally speaking, it
takes LD-Select from 30m to 2h on an ENCODE region).
From Table 3, we can see that the running time of FESTA
varied widely from 1s to 64h on different regions, while
our algorithms GreedyTag and LRTag consistently took
1-2s on all regions. In conclusion, our algorithms were
3 to 4 orders of magnitude faster than FESTA in most of
the cases, and found slightly smaller sets of tagSNPs.

Tagging ENCODE regions for multiple populations.
We tag each and the entire ENCODE regions for all four
HapMap populations by MultiPop-TagSelect, GreedyTag
and LRTag. The tagging results of these methods on each
ENCODE region are summarized in Table 4. We also
highlight the results for region ENm013 and for the en-
tire ENCODE region in Figure 2.

With the r2 threshold set as 0.5, the number of
tagSNPs selected by our algorithms is on the average
18.3% of the total number of markers (the actual per-
centage number ranges from 11.0% to 34.5%). With a
more stringent r2 threshold of 0.8, the average number
of tagSNPs increases to 33.7% (ranging from 24.0% to
50.5%). We observe that LRTag always performs the best
in these tests, followed by the GreedyTag algorithm, and
MultiPop-TagSelect always performs worst. When r2

threshold is set as 0.5, LRTag requires 16.4% fewer mark-
ers on the average than MultiPop-TagSelect. When the
r2 threshold is 0.8, LRTag usually requires 5.1% fewer
markers on the average than MultiPop-TagSelect.

The gap between LRTag lb and LRTag is at most two
for each ENCODE region and totally six for all ENCODE
regions with the r2 threshold being 0.5. There is no gap
with the r2 threshold being 0.8.

4.2. Genome-wide Tagging

Because both LD-Select and MultiPop-TagSelect (writ-
ten in Perl) took more than 20 hours to tag a single chro-
mosome, we re-implemented their algorithms in C++,
called LD-Select* and MultiPop-TagSelect*, respectively,
in order give a fair comparison of the programs. Since
FESTA’s “greedy-exhaustive hybrid search” is very com-
putational demanding and hard to emulate, we exclude
FESTA from the following comparative study.

Tagging the human genome for a single population.
We apply LD-Select*, GreedyTag and LRTag on each
HapMap population separately. For illustration purposes,
we only discuss the results for tagging the CEU popu-
lation and compare the performance of the above three
algorithms. The details can be found in Table 5 given in
the appendix.

bNote that if a program runs in time of t with 15 threads, then its running time with one thread would be 15t. This transformation can be used to
compare the running times of our programs and those of the other programs on a single thread mode.
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Table 2. Summary of tagSNPs identified by FESTA, LD-Select, GreedyTag and LRTag for a single population, CEU, on all
ENCODE regions.

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321
# SNP 525 692 904 947 1080 864 990 612 457 544
r2 ≥ 0.5

# precinct 39 27 47 52 40 30 83 42 64 52
# tagSNP (upper bound)

LD-Select 62 38 65 84 77 69 112 62 72 68
FESTA 57 35 63 76 73 65 107 61 70 65
GreedyTag 56 35 63 76 73 62 107 61 70 64
LRTag 56 35 63 76 73 62 107 61 70 64

# tagSNP (lower bound)
LRTag lb 55 35 63 76 73 62 107 60 70 64
GreedyTag lb 50 33 63 72 69 54 101 55 70 62

Gap 1 0 0 0 0 0 0 1 0 0
r2 ≥ 0.8

# precinct 116 69 121 139 131 129 175 105 106 107
# tagSNP (upper bound)

LD-Select 123 82 129 152 146 139 189 110 115 109
FESTA 122 79 129 152 143 139 186 110 114 109
GreedyTag 122 79 129 152 143 139 186 110 114 109
LRTag 122 79 129 152 143 139 186 110 114 109

# tagSNP (lower bound)
GreedyTag lb 122 79 129 152 143 139 186 110 114 109
LRTag lb 122 79 129 150 143 139 186 107 110 109

Gap 0 0 0 0 0 0 0 0 0 0

Table 3. The time efficiency of FESTA, GreedyTag and LRTag for selecting tagSNPs from a single population, CEU,
on all ENCODE regions. The running times are obtained on a 32-processor SGI Altix 4700 supercomputer system.

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321
r2 ≥ 0.5

FESTA 3h14m 3h16m 4h51m 3h18m 14h24m 64h4m 5h13m 2h24m 1h38m 45m19s
GreedyTag 1s 1s 1s 1s 1s 1s 1s 1s 1s 1s
LRTag 1s 1s 1s 2s 1s 2s 1s 1s 1s 1s

r2 ≥ 0.8
FESTA 1s 3s 28m20s 44m6s 12m8s 50m16s 3s 1s 2s 1s
GreedyTag <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s
LRTag <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s

Table 4. Summary of tagSNPs identified by MultiPop-TagSelect, GreedyTag and LRTag for all HapMap populations on
ENCODE regions.

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321
# SNP 783 1063 1261 1158 1485 1221 1186 900 777 1025
r2 ≥ 0.5

# precinct 65 38 48 44 67 38 73 56 126 53
# tagSNP (upper bound)

MultiPop-TagSelect 206 150 201 238 260 181 306 200 286 233
GreedyTag 179 117 164 184 228 141 257 173 268 193
LRTag 179 117 164 184 228 141 257 173 268 193

# tagSNP (lower bound)
LRTag lb 178 117 162 182 226 141 256 173 268 193
GreedyTag lb 169 107 149 168 218 139 250 173 264 189

Gap 1 0 2 2 0 0 1 0 0 0
r2 ≥ 0.8

# precinct 156 111 146 101 209 106 194 170 210 191
# tagSNP (upper bound)

MultiPop-TagSelect 338 275 321 425 454 329 462 324 402 396
GreedyTag 322 255 305 391 437 300 445 318 392 377
LRTag 322 255 305 389 437 300 445 318 392 377

# tagSNP (lower bound)
LRTag lb 322 255 305 389 437 300 445 318 392 377
GreedyTag lb 319 253 303 374 435 300 443 318 392 377

Gap 0 0 0 0 0 0 0 0 0 0

With the r2 threshold set as 0.5, the number of
tagSNPs selected by our algorithms is 14.4% of the to-
tal number of markers on the average (the actual percent-
age ranges from 11.2% to 21.4%). With a more stringent
r2 threshold of 0.8, the average number of tagSNPs in-

creases to 26.6% (ranging from 22.2% to 35.5%). Sim-
ilar trends were observed when applying our algorithms
to the other populations (the results are not shown due to
space limitation).
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Fig. 2. (A). Tagging for HapMap populations on region ENm013 with 783 markers. (B). Tagging for HapMap populations on all ENCODE regions
with 10,859 markers. Here, “Grdy lb” stands for “GreedyTag lb”, “LRTag lb” stands for “LRTag lb”, “LR” stands for “LRTag”, “Greedy” stands for
“GreedyTag”, and “MPS” stands for “MultiPopTagSelect”.
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Fig. 3. (A). Tagging chromosome 3 for all HapMap populations with 196,535 markers. (B). Tagging the entire human genome for all HapMap
populations with 2,862,454 markers. See the caption of Figure 2 for the definitions of the legends in the subfigures.

We observe that LRTag always performs the best,
followed by the GreedyTag algorithm, and LD-Select*
always performs the worst. With the r2 threshold set as
0.5, LRTag usually requires 4.9% fewer tagSNPs (the ac-
tual percentage number ranges from 2.8% to 6.3%) on av-
erage than LD-Select* on each chromosome. When the
r2 threshold is increased to 0.8, LRTag usually requires
1.2% fewer tagSNPs (ranging from 0.07% to 1.5%) on
average than LD-Select*.

We can see that, on each chromosome, the gap be-
tween the lower bound from LRTag lb and the upper
bound obtained by LRTag is on the average 7 (the ac-
tual number ranges from 1 to 20) with the r2 threshold
set as 0.5 and less than 1 (ranging from 0 to 2 ) with
the r2 threshold set being 0.8. This demonstrates that
LRTag finds near-optimal solutions in all test cases even
for genome-wide tagging on a single population. In fact,
the performance of GreedyTag is not bad either.

Tagging the human genome for multiple populations.
Finally, we tag the entire human genome for all four
HapMap populations by MultiPop-TagSelect, GreedyTag
and LRTag. We summarize the tagging results of these
methods on each chromosome in Table 8 (given in the
appendix), and then highlight the results for chromosome
3 and all chromosomes in Figure 3.

With the r2 threshold set as 0.5, the number of
tagSNPs selected by our methods is on the average 27.3%
of the total number of markers (the actual percentage

ranges from 21.9% to 47.2%). With a more stringent
r2 threshold of 0.8, the average number of tagSNPs in-
creases to 46.0% (ranging from 29.4% to 60.4%). Based
on Table 8, we observe that LRTag always performs
slightly better than GreedyTag and significantly better
than MultiPop-TagSelect*. With the r2 threshold set as
0.5, LRTag requires 6.8% fewer tagSNPs on average (the
actual number ranges from 4.0% to 8.0%) than MultiPop-
TagSelect* on each chromosome. With the r2 threshold
set as 0.8, LRTag requires 3.6% fewer markers on average
(ranging from 2.7% to 4.3%) than MultiPop-TagSelect*.

The gap between the lower bound from LRTag lb
and upper bound of LRTag is on the average 48 for each
chromosome (the actual number ranges from 6 to 109)
with the r2 threshold set as 0.5, and 6.5 (ranging from 0
to 16) with the r2 threshold set being 0.8, as shown in
Table 8.

5. CONCLUSION

Our LRTag and GreedyTag algorithms run quickly on
ENCODE regions and the entire human genome for both
single and multiple populations. On an ENCODE region
with the r2 threshold being 0.5, it takes our algorithms no
more than 2 seconds to tag a single population (as shown
in Table 3) and less than 7 seconds to tag multiple pop-
ulations (as displayed in Table 9 in the appendix). On a
human chromosome, it takes no more than 4 minutes to
tag a single population (as shown in Table 6 in the ap-
pendix) and less than 12 minutes to tag on multiple pop-
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ulations (as displayed in Table 7 in the appendix). For
r2 thresholds greater than 0.5, our algorithms run faster.
Hence, for any given r2 threshold, it takes our algorithms
less than a minute to tag the entire ENCODE region and
less than an hour to tag the entire human genome.

If the number of populations of interest increases,
the genotyping density increases or the r2 threshold in-
creases, the number of required tagSNPs also increases.
For example, on multiple HapMap populations with the
r2 threshold being 0.5, we need to tag one SNP for about
every 6 SNPs on the densely genotyped ENCODE re-
gions. We need to tag one SNP for about every 4 SNPs
on sparsely genotyped HapMap chromosomes.

All the lower and upper bounds produced by the
discussed methods are shown in Figure 2 and Figure 3.
In the figures, we tag the ENCODE regions and human
genome on the HapMap populations with the r2 thresh-
olds being 0.5, 0.6, 0.7 and 0.8 separately. From all these
test cases, we observe that LRTag always chooses the
smallest set of tagSNPs, closely followed by GreedyTag,
while MultiPop-TagSelect chooses the largest set.

LRTag lb always provides the best lower bound and
LRTag the best upper bound among all methods consid-
ered. The simple greedy algorithm, GreedyTag, chooses
slightly more tagSNPs than LRTag and the lower bound
GreedyTag lb is slightly lower than LRTag lb, which in-
dicates that the data reduction rules in Section 3 are very
powerful.

When the r2 threshold increases, the size of the
precincts decreases. Consequently, the gap between the
lower bound and the upper bound decreases. For the en-
tire human genome with 2,862,454 markers, the gap be-
tween LRTag and LRTag lb is 1061 when the r2 thresh-
old is 0.5, and 142 when the r2 threshold increases to
0.8. The small gap shows that LRTag finds near-optimal
solutions for genome-wide tagging.
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APPENDIX

Algorithm 5.1 (GreedyTag: Greedy Algorithm for
TagSNP Selection in Multiple Populations)

Input: A set V of biallelic SNP markers and their pairwise r2

LD statistics in K distinct populations. A pre-defined threshold
γ0 for r2 LD statistics.
Output: A feasible tagSNP set T ⊆ V , and a lower bound LB.
Begin

Partition markers into precincts. Let the set of precincts be
P .
For each precinct p ∈ P {the following will be executed in
parallel on a multi-processor machine}

Let U be the set of SNPs and W the set of marker occur-
rences in p.

Step 1: Apply the three data reduction rules.
Tp ⇐ ∅; LBp ⇐ 0; UPDATED ⇐ true;
While UPDATED { execute the optimal rules iteratively}

UPDATED ⇐ false;
If ∃ an irreplaceable marker vj ∈ U {Rule 1}

U ⇐ U − {vj};
W ⇐ W −N∗(vj); {N∗(vj) is defined in Equation (1) }
Tp ⇐ Tp ∪ {vj}; LBp ⇐ LBp + 1;
UPDATED ⇐ true;

If ∃ a less informative marker vj ∈ U {Rule 2}
U ⇐ U − {vj}; UPDATED ⇐ true;

If ∃ a less stringent occurrence vi
j ∈ W {Rule 3}

W ⇐ W − {vi
j}; UPDATED ⇐ true;

For each vj ∈ U
D(vj) ⇐ N∗(vj) ∩W ;

Step 2: Select tagSNPs greedily.
While W is non-empty {there are markers to be tagged}

Let vj0 ⇐ argmaxvj∈U |D(vj)|;
Tp ⇐ Tp ∪ {vj0}; U ⇐ U − {vj0};
W ⇐ W −N∗(vj0);
For each vj ∈ U

D(vj) ⇐ D(vj) ∩W ;

T ⇐ S
p∈P Tp; LB ⇐P

p∈P LBp

Output T , LB {output the solution and lower bound}
End

Algorithm 5.2 (LRTag: Lagrangian relaxation Algorithm
for TagSNP Selection in Multiple Populations)

Input: A set V of n biallelic SNP markers and their pair-
wise r2 LD statistics in K distinct populations. A pre-defined
threshold γ0 for r2 LD statistics. A pre-defined initial scalar
α0 and threshold αmin for subgradient optimization. A pre-
defined maximum number Itermax of iterations and a pre-
defined threshold Kmax of maximum trials. Output: A fea-
sible tagSNP set T ⊆ V , and a lower bound LB.
Begin

Partition markers into precincts. Let the set of precincts be P
For each precinct p ∈ P {the following will be executed in parallel}

Let U be the SNP set and W be the marker occurrences set in p.

Step 1: Apply the three data reduction rules and obtain a tempo-
rary tagSNP set Tp and a lower bound LBp.
{The same as the rules in algorithm 5.1)}.

Step 2: Select tagSNPs under a LR framework.
Generate Lagrangian relaxation formula as in Equation (4);
k ⇐ 0; α ⇐ α0; Iter ⇐ 0;
Initialize λ being an arbitrary non-negative vector;
LBp1 ⇐ 0; Tp1 ⇐ U ;

While (α > αmin) and (Iter < Itermax)
Iter ⇐ Iter + 1; new LB ⇐P

1≤i≤K,1≤j≤n λi,j ;
new T ⇐ ∅;

{Calculate a new lower bound new LB}
For each vj ∈ U
sj ⇐ 1−P

vi
j′∈ N∗(vj) λi,j′ ; {N∗(vj) is given in Equation(1)}

If sj ≤ 0 tj ⇐ 1; Else tj ⇐ 0;
new LB ⇐ new LB + sj · tj ;

{Obtain a feasible tagSNP set new T by the RCH method 3}
For each vj ∈ U RCH sj ⇐ sj ;
For each vi

j ∈ W RCH λi,j ⇐ λi,j ;
For each vi

j ∈ W

If
P

vj′∈ C(vi
j) tj′ < 1 {C(vi

j) is defined in Equation (2) }
RCH sm ⇐ min{RCH sj′ : vj′ ∈ C(vi

j)};
RCH λi,j ⇐ RCH λi,j + RCH sm;
For each vj′ ∈ C(vi

j)

RCH sj′ ⇐ RCH sj′ −RCH sm;
If RCH sj′ ≤ 0 tj′ ⇐ 1;

For each vj ∈ U
If tj = 1 new T ⇐ new T ∪ {vj};

{Update the lower bound LBp1 and the tagSNP set Tp1 }
If new LB ≤ LBp1 k ⇐ k + 1;

If (k ≥ Kmax) α ⇐ α/2; k ⇐ 0;
Else LBp1 ⇐ new LB; k ⇐ 0;
If |new T | < |Tp1| Tp1 ⇐ new T ;

{Update the Lagrangian multipliers λ by the subgradient opti-
mization method }

For each vi
j ∈ W ∇λi,j ⇐ 1−Pvj′∈C(vi

j) tj′ ;

λ ⇐ max{0, λ + α
|Tp1|−LBp1
||∇λ||2 ∇λ};

{Combine the solutions from step 1 and step 2}
Tp ⇐ Tp ∪ Tp1; LBp ⇐ LBp + LBp1;

T ⇐ S
p∈P Tp; LB ⇐P

p∈P LBp

Output T , LB {output the solution and the lower bound}
End
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Table 5. Summary of the tag SNPs selected by LD-Select, GreedyTag and LRTag for a single population, CEU, on each human chromo-
some.

Chromosome 1 2 3 4 5 6 7 8 9 10 11
# SNP 151195 181499 143472 130823 138817 149514 113037 122646 100352 110942 104661
r2 ≥ 0.5

# precinct 15752 29426 12901 11906 11998 11831 10512 9900 9438 10153 9979
# tagSNP (upper bound)

LD-Select* 21865 36238 19063 17212 17765 17921 15418 15140 13800 14882 14307
GreedyTag 20806 35083 17984 16295 16769 16815 14584 14203 13066 14041 13600
LRTag 20800 35065 17977 16286 16756 16798 14577 14196 13058 14038 13589

# tagSNP (lower bound)
LRTag lb 20793 35059 17958 16279 16736 16784 14569 14182 13049 14031 13578
GreedyTag lb 20123 34202 17155 15675 15965 16086 14021 13568 12530 13477 13089

Gap 7 6 19 7 20 14 8 14 9 7 11
r2 ≥ 0.8

# precinct 35990 51098 31916 28650 29931 30632 26181 26120 23739 25186 23544
# tagSNP (upper bound)

LD-Select* 38944 54612 35092 31590 32978 33723 28754 28822 26008 27698 25826
GreedyTag 38534 54081 34602 31124 32502 33229 28362 28394 25666 27302 25485
LRTag 38534 54080 34601 31123 32501 33227 28362 28393 25665 27302 25484

# tagSNP (lower bound)
LRTag lb 38534 54080 34600 31123 32501 33225 28361 28391 25664 27301 25483
GreedyTag lb 38269 53687 34310 30824 32189 32962 28083 28110 25396 27077 25276

Gap 0 0 1 0 0 2 1 2 1 1 1
Chromosome 12 13 14 15 16 17 18 19 20 21 22
# SNP 100437 84184 68485 58491 57083 47505 62666 29341 51206 27955 26996
r2 ≥ 0.5

# precinct 9960 7476 6751 6740 7184 6764 6534 5291 5874 3270 3829
# tagSNP (upper bound)

LD-Select* 14243 10996 9703 9364 9962 8656 9115 6464 7972 4470 5029
GreedyTag 13554 10374 9215 8930 9503 8355 8652 6286 7637 4258 4831
LRTag 13548 10370 9212 8923 9500 8354 8649 6284 7634 4257 4831

# tagSNP (lower bound)
LRTag lb 13539 10363 9203 8920 9500 8353 8646 6283 7630 4256 4830
GreedyTag lb 13048 9988 8867 8589 9241 8180 8332 6190 7380 4125 4714

gap 9 7 9 3 0 1 3 1 4 1 1
r2 ≥ 0.8

# tagSNP (upper bound)
# precinct 23809 18509 16391 15629 16869 13942 15262 10019 13177 7390 8240

LD-Select* 25887 20221 17723 16908 18194 14778 16498 10494 14194 7912 8727
GreedyTag 25579 19967 17546 16722 18012 14670 16299 10420 14052 7844 8652
LRTag 25579 19967 17545 16722 18012 14669 16299 10420 14052 7844 8652

# tagSNP (lower bound)
LRTag lb 25578 19966 17545 16722 18012 14668 16299 10420 14051 7844 8652
GreedyTag lb 25387 19778 17405 16608 17836 14588 16181 10382 13943 7774 8601

Gap 1 1 0 0 0 1 0 0 1 0 0

Table 6. The speeds of GreedyTag and LRTag for tagging the human genome for a single population,
CEU, with the r2 threshold being 0.5. The running time is evaluated on a 32-processor SGI Altix 4700
supercomputer system.

Chromosome 1 2 3 4 5 6 7 8 9 10 11
LRTag 1m18s 1m44s 1m28s 1m12s 1m27s 3m7s 1m3s 1m15s 57s 1m6s 1m8s
GreedyTag 1m17s 1m41s 1m16s 1m15s 1m24s 3m11s 58s 1m16s 57s 1m6s 1m10s

Chromosome 12 13 14 15 16 17 18 19 20 21 22
LRTag 56s 50s 34s 28s 23s 46s 31s 9s 23s 11s 10s
GreedyTag 56s 50s 37s 27s 20s 47s 31s 10s 22s 11s 9s

Table 7. The speeds of GreedyTag and LRTag for tagging the entire human genome for all HapMap populations
with the r2 threshold being 0.5. The running time is evaluated on a 32-processor SGI Altix 4700 supercomputer
system.

Chromosome 1 2 3 4 5 6 7 8 9 10 11
LRTag 3m4s 2m2s 3m9s 2m51s 3m37s 11m4s 2m12s 3m45s 2m24s 2m49s 2m20s
GreedyTag 3m11s 1m13s 3m43s 2m46s 3m20s 10m45s 2m25s 2m52s 2m18s 2m55s 2m16s
Chromosome 12 13 14 15 16 17 18 19 20 21 22
LRTag 2m55s 2m11s 1m28s 1m 48s 1m10s 1m17s 27s 56s 25s 30s
GreedyTag 3m 2m27s 1m16s 52s 23s 1m9s 1m16s 27s 50s 25s 30s
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Table 8. Summary of the tagSNPs selected by MultiPop-TagSelect, GreedyTag and LRTag for all HapMap populations on each human
chromosome.

Chromosome 1 2 3 4 5 6 7 8 9 10 11
# SNP 216357 249136 196535 182273 187924 205496 155224 170136 138047 156089 144083
r2 ≥ 0.5

# precinct 16234 26836 12835 12251 12414 11862 10332 10101 9254 10220 9568
# tagSNP (upper bound)

MultiPop-TagSelect* 64892 126408 56978 52828 54087 54454 45943 46927 41341 45226 41556
GreedyTag 59126 122372 51266 47650 48661 48817 41169 42206 37289 40713 37365
LRTag 55016 117537 47450 44223 45186 44987 38150 39149 34439 37554 34590

# tagSNP (lower bound)
LRTag lb 54942 117511 47362 44141 45102 44878 38090 39076 34381 37486 34537
GreedyTag lb 53937 117155 46330 43239 44145 43845 37280 38161 33534 36713 33778

Gap 74 26 88 82 84 109 60 73 58 68 53
r2 ≥ 0.8

# precinct 42450 56135 35192 33434 33211 33228 28543 28948 25485 28277 25428
# tagSNP (upper bound)

MultiPop-TagSelect* 100062 155505 89195 82835 84998 86313 72024 74934 65442 70817 64679
GreedyTag 94797 150664 84091 78077 80188 80981 67818 70678 61708 66676 60721
LRTag 94797 150664 84090 78076 80186 80980 67817 70677 61706 66674 60718

# tagSNP (lower bound)
LRTag lb 94788 150660 84079 78072 80174 80964 67808 70667 61699 66663 60705
GreedyTag lb 94362 150393 83585 77674 79663 80507 67461 70285 61321 66291 60294

Gap 9 4 11 4 12 16 9 10 7 11 13
Chromosome 12 13 14 15 16 17 18 19 20 21 22
# SNP 141943 119080 94528 81687 79898 64645 89024 40549 70877 39400 39523
r2 ≥ 0.5

# precinct 10086 7810 6532 6667 7328 6952 6875 5127 6139 3290 3884
# tagSNP (upper bound)

MultiPop-TagSelect* 42362 33477 28465 27847 28987 23601 27109 15768 23243 13100 13895
GreedyTag 38563 30183 25706 25408 26432 21931 24789 14785 21319 12010 12980
LRTag 35493 27927 23932 23721 24791 20647 23174 14007 19994 11253 12174

# tagSNP (lower bound)
LRTag lb 35449 27881 23903 23686 24761 20636 23141 14001 19971 11238 12160
GreedyTag lb 34833 27306 23440 23229 24294 20366 22697 13814 19601 11035 12017

Gap 44 46 29 35 30 11 33 6 23 15 14
r2 ≥ 0.8

# precinct 27027 21084 17723 17526 18943 16278 17866 11289 15438 8366 9480
# tagSNP (upper bound)

MultiPop-TagSelect* 65521 52863 44226 42380 43913 34289 41893 22274 35251 19990 20624
GreedyTag lb 61828 49797 41867 40250 41726 32862 39833 21465 33676 19060 19742
LRTag lb 61826 49796 41867 40250 41724 32862 39833 21464 33675 19060 19741

# tagSNP (lower bound)
LRTag lb 61816 49791 41860 40247 41721 32860 39832 21464 33673 19059 19739
GreedyTag lb 61450 49498 41642 40029 41497 32740 39625 21377 33525 18996 19660

Gap 10 5 7 3 3 2 1 0 2 1 2

Table 9. The speeds of GreedyTag and LRTag for tagging the entire ENCODE region for all HapMap pop-
ulations with the r2 threshold being 0.5. The running time is evaluated on a 32-processor SGI Altix 4700
supercomputer system.

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321
LRTag 1s 4s 3s 5s 7s 5s 1s 1s 1s 2s
GreedyTag 1s 4s 4s 5s 7s 6s 1s 1s 1s 2s


