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ABSTRACT
Recent proteome-wide screening efforts have made available
genome-wide, high-throughput protein-protein interaction
(PPI) maps for several model organisms. This has enabled
the systematic analysis of PPI networks, which has become
one of the primary challenges for the system biology com-
munity. Here we address the problem of predicting the func-
tional classes of proteins (i.e., GO annotations) based solely
on the structure of the PPI network. We present a maximum
likelihood formulation of the problem and the corresponding
learning and inference algorithms. The time complexity of
both algorithms is linear in the size of the PPI network and
experimental results show that their accuracy in the func-
tional prediction outperforms current existing methods.

1. INTRODUCTION
High-throughput protein-protein interaction (PPI) net-

works with various levels of proteome coverage are currently
available for several model organisms, namely S. cerevisiae

[19], D. melanogaster [7, 6], C.elegans [12], H. sapiens [15]
and H. pylori [14]. PPI data can be obtained through a
variety of sophisticated assays, like co-immunoprecipitation,
yeast two hybrid, tandem affinity purification and mass spec-
trometry. A PPI network is usually represented by a node-
labeled undirected graph where vertices correspond to pro-
teins and edges denote physical interactions.

Since the main mechanism by which cells are able to pro-
cess information is through protein-protein interactions, PPI
data has been essential to obtain new knowledge and insights
in a wide spectrum of biological processes. In this paper, we
focus on the problem of predicting the functional category
of proteins solely based on the topological structure of the
PPI network. The rationale of this approach is based on the
observation that a protein is much more likely to interact
with another protein in the same functional class than with
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a protein with a different function (see, e.g., [10, 21, 18, 13]).
The prediction of functional classes can be useful either for
proteins for which there is little or non-existing functional
information (e.g., for predicting the involvement of a protein
in specific pathway), or to confirm existing annotations pro-
vided by other methods. Motivated by the expectation that
in the near future massive PPI networks will be available,
here we propose a computationally efficient method that ac-
curately determines the functional categories and will be
capable to scale gracefully with the size of the network.

A variety of algorithmic techniques have been proposed in
the literature to solve the problem of functional prediction
with a wide range of computational complexity. Perhaps
the most computationally efficient algorithm is based on
the majority rule where the function of an unknown protein
is simply determined by the most common function among
its interacting partners [17]. A slightly more sophisticated
majority-based method is the χ2-method proposed in [8]. At
the other end of the computational complexity spectrum, the
authors of [21, 10] propose to assign proteins to functional
classes so that the number of protein interactions among dif-
ferent functional categories is minimized. The optimization
problem, known as generalized multicut, is NP complete.

The functional flow algorithm introduced in [13] lays some-
where in the middle of the complexity spectrum. The idea is
to treat proteins with known function as infinite sources of
(functional) flow. The flow is propagated through the net-
work in a series of discrete steps. At the end, the function of
unknown proteins is assigned based on the largest amount
of flow received. The authors of [13] show that functional
flow algorithm outperforms the generalized multicut algo-
rithm, the majority rule-based algorithm and also its gener-
alization to more distant neighbors [13]. The authors of [2]
show that functional flow also outperforms the χ2-method.
Because of this, the performance of functional flow is the
reference for our algorithm. Experimental results will show
that our method achieves a better prediction accuracy than
functional flow.

Perhaps the most similar method to the one we propose
here is described in [4, 5], where the authors propose a prob-
abilistic model based on the theory of Markov random fields.
In their follow-up papers [3], Deng et al show how to inte-
grate in their Markov random field additional information,
namely gene expression data, protein complex information,
domain structures to increase the prediction accuracy. The
relationship between this work and [4, 5] will be discussed
in greater detail later in paper. Here, however, we want to
emphasize that the method presented in this manuscript is



computationally more efficient than Deng et al. Unfortu-
nately, the accuracy of their prediction cannot be directly
compared with ours because these methods predict multiple
functional classes for each protein. The approach in [11] is
essentially similar to [5].

More recent papers tackle slightly different albeit related
problems. In [18] the authors predict functional linkages
between proteins based on the integration of four kinds of
evidence, namely gene co-expression, gene co-inheritance,
gene co-location and gene co-evolution. In [9], the authors
predict protein interactions based on the cellular localization
of proteins.

2. PROBLEM DEFINITION AND MODEL
FORMULATION

We denote by G(V,E) the PPI network under analysis,
where V represents the set of proteins and E is the set of
edges (interactions). For reason that will be clear later in the
paper, we assumeG to be directed (i.e., each undirected edge
in the original PPI is represented by two directed edges, ex-
cept for self-loops). We denote the set of k given functional
classes as F = {C1, C2, . . . , Ck}. Each functional class can
be thought as one of k possible colors that can be used to
color the graph. Function f : V → F captures the notion
of functional class for all the proteins in V . When the func-
tion of a protein v ∈ V is known, say Ci, then we will have
f(v) = Ci. If the function of v is unknown, then f(v) = ∅.
We define W = {v ∈ V : f(v) ∈ F} to be the set of proteins
whose function is known and U = V \W to be the set of the
proteins whose function is unknown. The functional anno-
tation problem can be informally stated as follows. Given
a PPI network G(W ∪ U,E) where W is annotated with
functional classes, find the correct functional classes for the
vertices in U .

The model used here to tackle the problem is entirely
probabilistic and it is based on two simple observations.
First, a simple statistical analysis on the available PPI data
[16] and the associated GO functional annotations [1] reveals
that the distribution associated with the functional classes
is highly skewed. For example, in the S. cerevisiae net-
work, the function “catalytic activity” is assigned to 1,514
proteins, whereas the function “protein tag” is only assigned
to 5 proteins. This observation constitutes our prior knowl-
edge on the probability of a randomly chosen protein to per-
form a certain function and can be captured by the notion
of prior distribution. We denote the prior distribution by
P : F → [0, 1], where P(Ci) is the probability of a randomly
chosen protein to have function Ci.

Second, our model has to incorporate the connectivity
structure of the PPI networks. It is well-known that a pro-
tein is more likely to interact with another protein perform-
ing the same function [10, 21, 18, 13]. We model this pref-
erence using conditional probability distributions. If pro-
tein t ∈ W has function Ci and protein s ∈ U interacts
with t, then the probability that s performs function Cj
is given by P(Cj |Ci). We expect P(Ci|Ci) to be higher
than P(Cj |Ci),∀j 6= i, because s is more likely to per-
form the same function of t. This can be easily general-
ized to multiple interacting partners. Suppose we want to
predict the function of protein s ∈ U and that we know
that t1, t2, t3, . . . , tm ∈ W interact with s, as well as their
functions f(t1), f(t2), f(t3), . . . , f(tm). If we assume that

f(t1), f(t2), f(t3), . . . , f(tm) are independent and distributed
according to the conditional multinomial distribution
[P(C1|f(s)),P(C2|f(s)),P(C3|f(s)), . . . ,P(CK |f(s))], then
the most likely function for s is the one that maximizes

L(s) = P(f(s))
Y

t∈{t1,t2,...,tm}

P(f(t)|f(s))

= P(f(s))
Y

t∈V :(s,t)∈E

P(f(t)|f(s))

We call L(s) the local likelihood of protein s.
Note that a necessary condition to predict the functional

class for s ∈ U is to know the functional classes of the neigh-
bors of s. Very often, however, the functions of the neighbors
turns out to be unknown. Clearly, the assignment of a func-
tion to protein s may affect the prediction of the functions
for the neighbors of s, and vice versa. Because of this, a
purely local strategy is insufficient. To address this prob-
lem, we need to introduce the concept global likelihood of a
PPI Network as L(G) =

Q

v∈V L(v).
The free variables in the global likelihood function L(·) are

f(ui), for all proteins ui ∈ U with unknown function. We
seek the assignment to f(ui) such that the global likelihood
L(G) is maximized, which is equivalent to maximizing

l(G) =
X

v∈V

log(P(f(v))) +
X

(v,w)∈E

log(P(f(w)|f(v)))

Now we are ready to give a formal summary of the opti-
mization problem associated with our model. We are given a
directed PPI network G(W ∪U,E) where U is the set of pro-
teins with unknown functions and W is the set of proteins
with known functions, a set of functions F , a prior distribu-
tion P with

P

Ci∈F P(Ci) = 1, and the conditional distri-

butions P(Ci|Cj) such that
P

Ci∈F P(Ci|Cj) = 1, ∀Cj ∈ F .

The problem is to predict the functional class f(u) for each
protein in set U , such that the global log likelihood l(G) is
maximized.

3. RELATION TO PREVIOUS WORK
Our model implicitly defines a Markov random field (MRF),

a probabilistic model which is also used in [4, 5]. In Deng et

al.’s works [4, 5], a distinct MRF is built for each functional
class in F . Each protein in the PPI network is associated to
an indicator random variable for that function of interest.
More specifically, each protein is associated with a unary po-
tential eφ(Xi), which has value eφ(1) if the protein has that
function and eφ(0) otherwise. Each edge of the PPI graph is
associated with a binary potential eψ(Xi,Xj), which can take
three possible values, namely eψ(1,1) if both of the proteins
have the function, eψ(0,1) if one of the proteins has the func-
tion, and eψ(0,0) if neither of the proteins has the function.
Given the parameters θ = {φ(0), φ(1), ψ(1, 1), ψ(0, 1), ψ(0, 0)},
the global Gibbs distribution of the entire network is simply
the product of the unary potentials and the binary potentials
normalized by a constant factor depending on the parame-
ters, as follows.

P{X1,X2, X3, . . . ,Xn|θ} = e
Pn

i=1 φ(Xi)+
P

(i,j)∈E ψ(Xi,Xj)/Z(θ)

Note that in our model, the prior probability P(f(vi)) corre-
sponds to the unary potential in Deng’s model, whereas the
product P(f(vi)|f(vj))P(f(vj)|f(vi)) corresponds to the bi-
nary potential.



Despite the similarities, there are significant differences
between Deng et al.’s model and ours. First, instead of
building a distinct MRF for each function, we only have one
unified probabilistic model for all the functions in F which
allows us to capture the correlations between the functions.
Second, the use of conditional distributions dramatically
simplifies the process of estimating the parameters, which
boils down to a simple count of relevant statistics (details to
be explained in Section 4). The semantics of the conditional
distributions also naturally gives rise to the efficient itera-
tive algorithm that we will develop later. Finally, since we
are modeling from the conditional distributions, the normal-
ization factor of the global Gibbs distribution in our model
is always one irrespective of the parameters we use.

A less obvious connection can be established between our
model and the generalized multi cut approach by Vazquez et

al. [21]. Recall that in this latter approach, the objective is
to assign functional annotations to unknown proteins in such
a way that one minimizes the number of times neighboring
proteins have different annotations. A formal description
of the generalized multi cut problem follows. Let I be the
standard indicator function which is equal to 1 if the boolean
expression is true and 0 otherwise. Given a PPI network
G(U ∪W,E) we seek annotations to the proteins in U such
that

P

(u,v)∈E I(f(u) 6= f(v)) is minimized.

Fact 1. The generalized multi cut problem is a special

case of our optimization problem when the prior distribution

is uniform and most of the mass of the conditional probabil-

ities is concentrated around P(Ci|Ci).

Proof. Let us consider the following prior distribution and
conditional distributions.

P(Ci) = 1/|F| ∀Ci ∈ F

P(Cj |Ci) = ǫ ∀Ci, Cj ∈ F , Ci 6= Cj

P(Ci|Ci) = 1 − (|F| − 1)ǫ ∀Ci ∈ F

where 0 < ǫ < 1 is an arbitrarily small number. Then, the
global log likelihood for the graph can be written as

l(G(V, E))

=
X

v∈V

log(P(f(v))) +
X

(v,w)∈E

log(P(f(w)|f(v)))

=
X

v∈V

log(1/|F|) +
X

(v,w)∈Ef(w) 6=f(v)

log(P(f(w)|f(v)))

+
X

(v,w)∈Ef(w)=f(v)

log(P(f(w)|f(v)))

= |V | log(1/|F|) +
X

(v,w)∈Ef(w) 6=f(v)

log(ǫ)

+
X

(v,w)∈Ef(w)=f(v)

log(1 − (|F| − 1)ǫ)

= |V | log(1/|F|) + |E| log(1 − (|F| − 1)ǫ) (1)

+(log(ǫ) − log(1 − (|F| − 1)ǫ))
X

(v,w)∈E

I(f(v) 6= f(w))

Note that the first two terms of (2) are constant and that
the third term increases as the quantity

P

(v,w)∈E I(f(v) 6=

f(w)) decreases because log(ǫ)−log(1−(|F|−1)ǫ) is negative
for a sufficiently small ǫ. Therefore, under this particular
prior distribution and conditional distributions, maximizing
the global log likelihood in our problem is equivalent to min-
imizing the objective function in the generalized multicut
problem.

The generalized multicut problem is NP complete [13] be-
cause it is a generalization of the multi-way cut problem [20],
which is known to be NP complete. Since our problem is a
generalization of the generalized multicut problem, it is NP
complete as well.

4. PARAMETER LEARNING
The prior distribution and the conditional distributions

are multinomial distributions whose parameters can be learned
from the structure of the given PPI network and the func-
tional annotations on W . We need to determine k − 1 pa-
rameters for the prior and k(k − 1) parameters for the k
conditional distributions. We obtain these parameters using
the maximum likelihood estimation method.

Let F (W,E′) be the subgraph of G(V,E) induced by the
setW of known functions, where E′ = {(u, v)|(u, v) ∈ E, u ∈
W, v ∈W}. The global likelihood for the subgraph F (W,E′)
is defined as follows.

L(F (W,E′))

=
Y

v∈W

P(f(v))
Y

(u,v)∈E′

P(f(v)|f(u))

=
Y

Ci∈F

P(Ci)
P

v∈W I(f(v)=Ci) (2)

Y

Ci∈F

Y

Cj∈F

P(Cj |Ci)
P

(vi,vj)∈E′ I(f(vi)=Ci,f(vj)=Cj)

The first term in (3) is maximized when P(Ci) =
P

v∈W I(f(v) = Ci)/|W | for all Ci ∈ F . The second term
in equation (3) is maximized when P(Cj |Ci) =
P

(vi,vj)∈E′ I(f(vi)=Ci,f(vj)=Cj)
P

(vi,vj)∈E′ I(f(vi)=Ci)
for all Cj ∈ F . Therefore,

the maximum likelihood estimates for the parameters are

P(Ci) =
X

v∈W

I(f(v) = Ci)/|W | Ci ∈ F

P(Cj |Ci) =

X

(vi,vj)∈E′

I(f(vi) = Ci, f(vj) = Cj)

X

(vi,vj)∈E′

I(f(vi) = Ci)
Ci, Cj ∈ F

As a common practice in Bayesian statistics, we apply
(uniform) Dirichlet priors to our estimators. This prevents
the problem of handling zero probabilities. The time com-
plexity of the learning phase is O(|E| + |W |), whereas the
space complexity is O(k2).

5. INFERENCE OF FUNCTIONAL CLASSES
Since we determined that our problem is NP complete, it

is rather unlikely that we will find a polynomial time algo-
rithm that can solve the problem optimally. To this end,
we designed a statistically based iterative algorithm (SBIA
for short), which turns out to perform well in practice. Our
algorithm consists of two phases, namely the initialization



phase and the iterative phase. The initialization phase con-
sists of two steps. In the first step, we estimate the param-
eters for the prior distribution and the conditional distribu-
tions as described in Section 4. In the second step, we assign
an initial functional class to each protein in V , as follows.

For each unknown protein v ∈ U , we assign

f0(v) = argmaxCi∈F P(Ci)
Y

(v,t)∈E,t∈W

P(f0(t)|Ci).

In other words, we predict the initial function for v to be
the one that maximizes the local likelihood of v (ignoring
neighbors with unknown functions). If v ∈ W , then we set
f0(v) to be the function corresponding to annotation in the
original data.

In the second phase, we iteratively re-evaluate our predic-
tions. For clarity of exposition we use superscripts to de-
note the iteration number, i.e., fn(v) denotes the predicted
functional class for v made in the nth iteration. For each
unknown protein v ∈ U , we set

fn(v) = argmaxCi∈F P(Ci)
Y

(v,t)∈E

P(fn−1(t)|Ci).

That is, we adjust our prediction for protein v to be the
function that maximizes the local likelihood with respect to
the functions predicted for its neighbors in the previous step.
Again, if v ∈W , then fn(v) = fn−1(v).

We stop the iterative process as soon as the difference
between the value of the global likelihood in two consecutive
steps drops below a given threshold. The pseudo-code in
Figure 1 summarizes the algorithm. The time complexity of
the algorithm is O(d|E|), where d represents the number of
iterations (usually d ≤ 5 in our experiments).

6. EXPERIMENTAL RESULTS
The dataset used in our experimental studies is the most

well-characterized PPI network available at the time of writ-
ing, namely the network for S. cerevisiae, which is composed
of 4,959 proteins and 17,511 interactions. The network was
obtained from the DIP database [16]. We also extracted a
high confidence yeast PPI network, which is a subset of the
yeast PPI network in which interactions that are confirmed
by only a single experiment have been removed. This latter
network has 1,735 proteins and 2354 interactions. The func-
tional annotations were obtained from the Gene Ontology
(GO) hierarchy [1].

We used cross validation to quantitatively evaluate the
prediction accuracy of our algorithm and to compare its
performance with other methods. In each experiment, we
randomly removed the functional annotation to a percent-
age p of known proteins, where p ranges from 5% to 95%.
This new set of “unknown” proteins served as the test set,
called hereafter T . We use W \T to denote the set of known
proteins after p% of them have been “un-labelled” and U to
denote the set of the remaining unknown proteins. Clearly,
the SBIA’s learning phase (i.e., the computation of the prior
and the conditional probabilities) is carried out only on the
proteins in W \ T . Learning on the original set W would
constitute “cheating”.

So far, in our model we assumed that each protein can
perform only one function. This is, however, not true for
some proteins. A protein may participate in multiple bio-
logical processes and as a result, it will carry out multiple

functions. In the yeast network, 488 proteins out of 3,022
are annotated with two or more top level functions. To han-
dle this issue, the nodes in W \ T that are associated with
multiple functions are replicated, so that each copy carries
out exactly one of the annotated functions. Each copy has
the same interaction partners of the original protein.

As said, the goal is to predict a function for each of the
proteins in set T∪U , based on the functional classes in W \T
and the topology of the graph. For each protein in T , we
declare a prediction to be correct if the predicted function
is one of the functions the protein was originally assigned.
The prediction accuracy is calculated as the ratio between
the number of correct predictions and the total number of
proteins in the set T . Since the prediction accuracy varies
slightly every time we randomly select T , we replicate the
same experiments ten times and compute the average accu-
racy. We also record the standard deviation, represented by
the error bars in the figures.

We compared the accuracy of our method against that
of functional flow [13] and against that of the naive ap-
proach. We chose to compare SBIA against the functional
flow method because papers [2, 13] report that functional
flow outperforms both majority-rule based methods [17, 8]
as well as methods based on the generalized multicut [21,
10]. As said, a direct comparison between our method and
MRF-based methods [4, 5, 11] is not feasible because these
latter approaches predict more than one functional class for
each protein. The naive method simply predicts the func-
tion of a protein to be the most probable functional class
according to the prior, i.e., argmaxCi∈FP(Ci). Clearly, the
expected prediction accuracy of the naive approach is equal
to the ratio between the number of proteins annotated with
the most probable function and the total number |W | of
known proteins.

We carried out two sets of experiments. In the first set,
we considered the seventeen top level molecular functions
defined in GO. In the yeast PPI network, 3,022 proteins out
of 4,959 are annotated with one or more top level functions.
The most frequent function is “catalytic activity”, which oc-
curs 1,514 times. Thus, the expected prediction accuracy
for the naive approach is 0.501 or 50%. In the high confi-
dence yeast PPI network 1,325 proteins are annotated. The
most frequent function in this network is again “catalytic
activity”, which is assigned to 568 proteins. The statistics
of the networks constituting the dataset are summarized in
Table 1.

Figure 2-left and 3-left summarize the results of the first
set of experiments on the seventeen functional classes in
the top level of the GO hierarchy. The figures show that
SBIA always outperforms functional flow, especially when
p is large. In the yeast network, the prediction accuracies
of the functional flow algorithm even falls below that of the
naive approach when p is greater than 55%. SBIA, how-
ever, still retains good prediction accuracy until p becomes
higher than 70%, and then asymptotically converges to that
of the naive approach. Notice that the initialization phase
of SBIA already achieves a good prediction accuracy. When
p is less than 80%, the iterative phase improves the predic-
tion accuracy even more, along with the global likelihood
of the graph. The number of iterations executed is usually
rather small, less than 5. When p is greater than 80%, the
information left in the network is highly incomplete, and
as expected the performance of our algorithm falls back to



SBIA:
• Input:

1. G(V,E), where V = U ∪W . W is the set of known problems and U is the set of unknown proteins.
2. F , the set of functions.
3. f : W → F , the annotations on the proteins in W .

• Output:
1. f : U → F , the predicted function for the proteins in U .

• Initialization phase
1. Estimate Pri(C), P (Ci|Cj), C,Ci, Cj ∈ F as suggested in section 4.
2. For v in V :

IF (v ∈ U) f(v) = argmaxf(v)∈FPri(f(v))
Q

(v,t)∈E,t∈W P (f(t)|f(v)) ;
• Iterative phase

1. DO:
FOR v in W : f ′(v) = f(v)
FOR v in U : f ′(v) = argmaxf ′(v)∈FPri(f

′(v))
Q

(v,t)∈E P (f ′(t)|f ′(v))

L(G) = (
Q

v∈V Pri(f(v))) · (
Q

(v,w)∈E P (f(w)|f(v)))

L′(G) = (
Q

v∈V Pri(f
′(v))) · (

Q

(v,w)∈E P (f ′(w)|f ′(v)))

IF L′(G) >= L(G):
FOR v in V : f(v) = f ′(v)

WHILE (L′(G) > L(G))
2. RETERN f : U → F

Figure 1: Pseudo code of our Statistically Based Iterative Algorithm(SBIA)

Table 1: The statistics of the PPI networks used in the experiments. |V | is the number of proteins in the
network, |E| is the number of interactions, |W | is the number of known proteins, and naive expected is the
expected prediction accuracy of the naive approach (see text).

17 functional classes 190 functional classes
organism |V | |E| |W | naive expected |W | naive expected

yeast 4,959 17,511 3,022 0.5010 2930 0.1939
yeast high confidence 1,735 2,354 1,325 0.4286 1278 0.1979
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Figure 2: Prediction accuracies on the yeast PPI network with respect to the 17 functional classes at the first
level of the GO hierarchy (right) and 190 functional classes at the second level of the GO hierarchy (left). The
x-axis represents the percentage of known proteins on which the algorithms are tested. The “naive expected”
line indicates the expected prediction accuracy of the naive approach. “SBIA initial” refers to the accuracy
of SBIA after the initialization phase, whereas “SBIA final” shows the final accuracy of SBIA. “Functional
flow” denotes the prediction accuracy of the functional flow algorithm
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Figure 3: Prediction accuracy on the yeast high confidence PPI network (see caption of Figure 2 for more
details). LEFT: 17 functional classes, RIGHT: 190 functional classes.

that of the naive approach. Due to the higher quality of the
data in the yeast high confidence network, the improvement
in accuracy of our algorithm and functional flow relative to
the naive approach is almost doubled.

In the second set of experiments, we considered all the 190
molecular functions comprising the second level of the GO
hierarchy. In the yeast network, 2,930 proteins out of 4,959
yeast proteins are annotated with one or more second level
molecular functions. The most prevalent function is “hydro-
lase activity”, which appears 568 times. Hence the expected
prediction accuracy for the naive approach is 0.1939. In the
high confidence yeast network, 1,278 out of 1,735 proteins
are annotated. The most prevalent function is“protein bind-
ing”, which is annotated to 253 proteins. The statistics are
summarized in Table 1.

Figure 2-right and 3-right summarize the second set of
experimental results. In Figure 3-right, the functional flow
algorithm outperforms SBIA by 2-3% on average. We sus-
pect that this is due to the relatively small size of the net-
work (containing about 1,300 characterized proteins) under
consideration and the large number of functions (k = 190).
Recall that the number of parameters of our model is Θ(k2).
In this case, we believe that there is not enough data for the
accurate estimation of the parameters for the prior distri-
bution and the conditional distributions. For the yeast PPI
network, the result is similar to that in the previous set of
experiments. SBIA still outperforms functional flow, but the
difference between the two approaches is not as strong as in
the previous case.

7. CONCLUSIONS
We developed an efficient algorithm to assign functional

GO terms to uncharacterized proteins on a PPI network
based solely on the topology of the graph and the functional
labels of known proteins. The statistical model proposed
in this paper is a generalization of the GenMultiCut model
and resemble the MRF-based model by Deng et.al. The
similarity with the work of Deng et.al. is, however, super-
ficial as we discussed in details in the paper. In particular,
the structure of our model allows one to obtain easily and

efficiently the maximum likelihood estimation of the under-
lying parameters, which is tipically not possible for a general
MRF. Based on our statistical model, we presented efficient
learning and inference algorithms. Our inference algorithm
is an iterative algorithm, where each iteration runs in time
linear in the size of the input. According to our experimen-
tal results, our algorithm converges very quickly to a local
optimum. More importantly, our method gives consistently
better predictions when compared with previous known al-
gorithms.
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