Probabilistic Models and Parameter Inference

CS234

Chapter 1, 3 and 11 of Durbin et al.

February 6, 2019

Roadmap

• i.i.d. probabilistic model
• ML and MAP parameters inference
• Probabilistic profiles (matrix profiles)
• Markov models
• Hidden Markov models
• From alignments to HMMs
Probabilistic models

• A *model* is a mathematical formulation of an hypothesis about the phenomenon under study
• The *parameters* \(\theta \) of the model can be
 – probabilities associated with (groups of) symbols of the alphabet \(\Sigma \)
 – any other entity which completely characterizes the model
• Examples: iid model, Markov model
• Since the true parameters \(\theta_0 \) are *unknown*, we also need a probabilistic model for them

Example (mixing source)

• Suppose we have a set of dice with 4 faces \(\{A,T,C,G\} \)

• 90% of them have distribution
 \[D_1 = \{p_A=0.25, p_C=0.25, p_G=0.25, p_T=0.25\} \]

• 10% of them have distribution
 \[D_2 = \{p_A=0.20, p_C=0.28, p_G=0.30, p_T=0.22\} \]
Example (mixing source)

• The source generates a string as follows
 1. select randomly one die
 2. roll it, append the symbol to \(x \)
 3. put the die back
 4. repeat 1-3 until all symbols have been generated

• \(\theta_0 = \{ \)
 \(.9 \{ p_A = 0.25, p_C = 0.25, p_G = 0.25, p_T = 0.25 \}, \)
 \(.1 \{ p_A = 0.20, p_C = 0.28, p_G = 0.30, p_T = 0.22 \} \} \)

Example

• Now suppose that we do NOT know \(\theta_0 \)
• We observe a string generated by the unknown model, say \(x = \text{"GTAAACTAGGC..."} \)

• Questions:
 – How do we choose a “good” model?
 – How do we infer “good” estimates of \(\theta_0 \)?
 – How much data do we need?
Inference

- Probabilities and/or other parameters of the model are typically estimated from a training set
- The training set can be composed positive and negative examples
- Limited training data can lead to overfitting
- An estimate θ is consistent, if, when $|x| \to \infty$, we have $\theta \to \theta_0$

Maximum likelihood

- Given training data x, a model M with parameters θ, the maximum likelihood estimate for θ is

 $$\theta_{ML} = \arg\max_\theta P(x|M,\theta)$$

 where $P(x|M,\theta)$ is the probability that the dataset x has been generated by the model M with parameters θ
- ML is consistent, but gives poor results with limited data
Example (DNA)

\[x_1 = \text{CCACCCCTTTTGTGGGGCTTCTATTTTCAAGG} \]
\[x_2 = \text{TTGTTCTCTCCTGCATGTGTCGCGCATGTGC} \]
\[x_3 = \text{TTCTAAAAGGGGCTATATCGAGAAAAGAAG} \]
\[x_4 = \text{GTGTAATGTTGTGCTACCTACGTATTA} \]

- \(\Sigma = \{A, C, G, T\} \)
- Maximum likelihood estimate for the parameter set \(\{p_A, p_C, p_G, p_T\} \) for the Bernoulli model is
 \[p_A = \frac{f(A)}{n} = \frac{28}{120} = 0.233 \]
 \[p_C = \frac{24}{120} = 0.2 \]
 \[p_G = \frac{28}{120} = 0.233 \]
 \[p_T = \frac{40}{120} = 0.333 \]

Additional Issues

- How can we incorporate prior knowledge in the analysis process?
- How can we compare different models?
- Harder: How much data we need to be confident in our estimate?
Bayes Theorem

• Gives the \textit{posterior probability} of an event

\[P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)} \]

• Useful to get better estimates of the parameters using prior knowledge
• Useful to compare different models and select the best

Example (alternative iid sources)

• Suppose we have two dice with 4 faces \{A, T, C, G\}

• D_1=\{p_A=0.25, p_C=0.25, p_G=0.25, p_T=0.25\}\n
• D_2=\{p_A=0.20, p_C=0.28, p_G=0.30, p_T=0.22\}
Example (alternative iid sources)

• The source generates a string as follows
 1. select randomly one die \[P(D_1) = P(D_2) = 1/2 \]
 2. roll it, append the symbol to \(x \)
 3. repeat 2. until all symbols have been generated

• We observe a string generated by the model, say \(x = \) “GTAAACTAC...”

• What is the probability that \(x \) has been generated by, say, probability distribution \(D_1 \)?

Example

\[
P(D_1 \mid x) = \frac{P(x \mid D_1)P(D_1)}{P(x)}
\]

where

\[
P(x) = P(x \mid D_1)P(D_1) + P(x \mid D_2)P(D_2)
\]
Bayesian Inference

- When parameters are in the continuous domain
 \[P(\theta | x) = \frac{P(x | \theta)P(\theta)}{P(x)} = \frac{P(x | \theta)P(\theta)}{\int P(x | \sigma)P(\sigma) \, d\sigma} \]

- \(P(\theta) \) represents any prior knowledge we have regarding the parameters
- \(P(\theta | x) \) represents the probability that \(\theta \) is correct given that we have observed data \(x \)

Bayesian Inference

- Given two estimates \(\theta_1 \) and \(\theta_2 \), we can compare \(P(\theta_1 | x) \) to \(P(\theta_2 | x) \)
- We can define the “best” model, the one that maximizes \(P(\theta | x) \) (maximum a posteriori estimation, or MAP)
- Equivalent to minimize
 \[-\log P(\theta | x) = -\log P(x | \theta) - \log P(\theta) + \log P(x) \]
- Note that \([\log P(x)] \) can be regarded as a constant
Bayesian Inference

- ML estimation

\[\theta^{ML} = \arg \min_{\theta} \{-\log P(x \mid \theta)\} \]

- MAP estimation

\[\theta^{MAP} = \arg \min_{\theta} \{-\log P(x \mid \theta) - \log P(\theta)\} \]

Probabilistic profiles
Profiles

- Position weight matrices, or profiles, are $|\Sigma| \times m$ matrices containing real numbers in the interval $[0,1]$, such that each column sums to 1

 - e.g.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.26</td>
<td>0.22</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>C</td>
<td>0.17</td>
<td>0.18</td>
<td>0.59</td>
<td>0.00</td>
</tr>
<tr>
<td>G</td>
<td>0.09</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T</td>
<td>0.48</td>
<td>0.45</td>
<td>0.41</td>
<td>0.00</td>
</tr>
</tbody>
</table>

 - Notion of consensus

Profiles

- To measure the distance between profiles one can use the relative entropy

- For example, one can measure the distance between a profile P, and the profile $Q=\{1/4\}$

- The higher the distance from the “null-profile” Q, the more informative is P
Entropy

The entropy $H(p)$ of a discrete probability distribution $p = \{p_1, p_2, \ldots, p_k\}$ is defined by

$$H(p) = E(-\log p) = -\sum_{i=1}^{k} p_i \log p_i$$

If the base of the log is 2, $H(p)$ is measured in bits. It reaches the maximum when $p_i = 1/k$ for all i.

Sequence Logos

A sequence logo showing the most conserved bases around the start codon from a set of human transcripts. The y-axis represents the information content, which is computed from the entropy: the taller is a nucleotide, the more informative it is.
Relative Entropy

The relative entropy $H(p \parallel q)$ between two discrete probability distributions $p = \{p_1, \ldots, p_k\}$ and $q = \{q_1, \ldots, q_k\}$ is defined by

$$H(p \parallel q) = \sum_{i=1}^{k} p_i \log \frac{p_i}{q_i}$$

Also called cross-entropy or Kullback-Liebler distance. It is easy to verify that $H(p, q) \geq 0$ with equality iff $p = q$.

Proof: First note that $\log x \leq x - 1$ for all real numbers x with equality iff $x = 1$.

$$H(p \parallel q) = \sum_{i=1}^{k} p_i \log \frac{p_i}{q_i} \geq \sum_{i=1}^{k} p_i \left(1 - \frac{q_i}{p_i} \right) =$$

$$= \sum_{i=1}^{k} (p_i - q_i) = \sum_{i=1}^{k} p_i - \sum_{i=1}^{k} q_i = 1 - 1 = 0$$

Note that $H(p \parallel q) = 0$ iff $\frac{q_i}{p_i} = 1$ for all i.

Example: CRP binding sites

- \(S^+ = \{TTGTG GC, ACGT GAT, CTGTGAC, TTTTGAT, ATGTGAG, ATGAGAC, AAGTGTC, TTGTGAG, TTGTGAG, ATTTGCA, CTGTAAC, CTGTGCG, CTGTAAC, ATGCAAA, TTGTGAC, GTGTTAA, GCCTGAC, ATTTGAA, TTGTGAT, TTGTGAT, TTGTGAT, TTGTGAT, TTGTGAA, ATTTATT, GTGTGAA, \} \)

Cyclic AMP receptor protein TFs in E.coli [Stormo & Hartzell, 89]

Training (CRP sites)

- Assume a Bernoulli model for each position

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.350</td>
<td>0.043</td>
<td>0.000</td>
<td>0.043</td>
</tr>
<tr>
<td>C</td>
<td>0.170</td>
<td>0.087</td>
<td>0.043</td>
<td>0.043</td>
</tr>
<tr>
<td>G</td>
<td>0.130</td>
<td>0.000</td>
<td>0.780</td>
<td>0.000</td>
</tr>
<tr>
<td>T</td>
<td>0.350</td>
<td>0.870</td>
<td>0.170</td>
<td>0.910</td>
</tr>
</tbody>
</table>

- Assume the uniform Bernoulli model for the non-sites \(S^- \), that is \(p_A = 0.25 \), \(p_C = 0.25 \), \(p_T = 0.25 \), \(p_G = 0.25 \) for all the positions
Testing

• Suppose you get $x = \text{TGTGAC}$
 Is x more likely to belong to S^+ or to S^-?
 In other words, it is more likely to be generated from the Bernoulli model for S^+ or from the uniform Bernoulli model (for S^-)?
• Let’s compute the probability

$$P(x = TTGTGAC \mid S^+) = 0.35 \times 0.87 \times 0.78 \times 0.91 \times 0.83 \times 0.83 \times 0.3 = 0.045$$
$$P(x = TTGTGAC \mid S^-) = (0.25)^7 = 0.0000061$$

Likelihood ratio

Definition:

$$LR(x) = \frac{P(x \mid S^+)}{P(x \mid S^-)}.$$

In the previous example

$$LR(TTGTGAC) = 732$$

Idea: To test a sequence x, compare $LR(x)$ to a specified "threshold" T, and declare x to be a site (i.e., positive) if $LR(x) > T$
Log-likelihood ratio

Definition:

\[LLR(x) = \log_2 \frac{P(x \mid S+)}{P(x \mid S-)} \]

Tip: it is convenient to store the matrix profiles in log form, so that the one just add the entries (instead of multiplying) and we avoid underflow errors.

About the distribution of \(S^- \):

- When we have no negative training set, one choice is to assume the uniform distribution
- A better choice is to estimate the background distribution from the entire genome, or large portion of it
- A uniform distribution would be OK for \(E.coli \), but not for the malaria parasite \(P.falciparum \) which has \(p_A + p_T = 0.81 \)
Information content of profiles

- Remember that the relative entropy is zero only when \(P \) and \(Q \) are the same distribution.
- In general, the higher the relative entropy between \(P \) and \(Q \), the better.
- If one assume independence, the total relative entropy is the sum of the relative entropy for each position.

Information content for CRP

- The information content of our previous example is shown below (in bits):

| 0.12 | 1.3 | 1.1 | 1.5 | 1.2 | 1.1 | 0.027 |

- It is interesting to go back to the original profiles and see why the positions in the middle are the most informative.
Markov Models

Markov models

• A Markov model is defined by
 – the order $h > 0$
 – the states, which correspond to strings in Σ^h
 – the stationary probabilities $P(x)$, which are the probabilities of the states in the limit
 – the transition probabilities $a_{y,c}$, which represent the probabilities of observing/generating symbol c
 having seen/generated the context y in Σ^h
First order Markov model

Let y be a pattern of size m

$$P(y) = P(y_m|y_{m-1}...y_1) \cdot P(y_{m-1}|y_{m-2}...y_1) \cdot ... \cdot P(y_2|y_1) \cdot P(y_1)$$

$$= a_{y_m|y_{m-1}} \cdot a_{y_{m-1}|y_{m-2}} \cdot ... \cdot a_{y_2|y_1} \cdot P(y_1)$$

$$= P(y_1) \prod_{j=2}^{m} a_{y_j|y_{j-1}}$$

First order Markov model

Each arc has associated a transition probability. Outgoing arcs sum to 1.
First order Markov model

A first order MM can be described by a $|\Sigma|+1 \times |\Sigma|$ transition matrix, as in the following example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>A</td>
<td>0.05</td>
<td>0.40</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>0.06</td>
<td>0.29</td>
<td>0.46</td>
</tr>
<tr>
<td>G</td>
<td>0.25</td>
<td>0.26</td>
<td>0.32</td>
<td>0.17</td>
</tr>
<tr>
<td>T</td>
<td>0.33</td>
<td>0.31</td>
<td>0.05</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Example: CpG islands

- CpG islands are stretches of CG dinucleotides repeating over and over
- Often occur adjacent to gene-rich areas, forming a barrier between the genes and “junk” DNA
- CpG island are believed to help regulate gene activity (via DNA methylation)
Example: CpG islands

- Training set
 - S+: 48 sequences putatively labeled as CpG islands
 - S-: other sequences from the rest of the genome
 - Total 60K bases

- Estimate the transition probabilities for two Markov models of order one (ML estimates)

\[a_{s,t}^+ = \frac{f^+(st)}{\sum_{t' \in \Sigma} f^+(st')} \quad a_{s,t}^- = \frac{f^-(st)}{\sum_{t' \in \Sigma} f^-(st')} \]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0.180</td>
<td>0.274</td>
<td>0.426</td>
<td>0.120</td>
</tr>
<tr>
<td>C</td>
<td>0.171</td>
<td>0.368</td>
<td>0.274</td>
<td>0.188</td>
</tr>
<tr>
<td>G</td>
<td>0.161</td>
<td>0.339</td>
<td>0.375</td>
<td>0.125</td>
</tr>
<tr>
<td>T</td>
<td>0.079</td>
<td>0.335</td>
<td>0.384</td>
<td>0.182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0.300</td>
<td>0.205</td>
<td>0.285</td>
<td>0.210</td>
</tr>
<tr>
<td>C</td>
<td>0.322</td>
<td>0.298</td>
<td>0.078</td>
<td>0.302</td>
</tr>
<tr>
<td>G</td>
<td>0.248</td>
<td>0.246</td>
<td>0.298</td>
<td>0.208</td>
</tr>
<tr>
<td>T</td>
<td>0.177</td>
<td>0.239</td>
<td>0.292</td>
<td>0.292</td>
</tr>
</tbody>
</table>
Example: CpG islands

• How do we use the two models?
• Given a string y we compute the log likelihood ratio

$$S(y) = \log \frac{P(y \mid S^+)}{P(y \mid S^-)} = \sum_{i=2}^{m} \log \frac{a_{y[i-1], y[i]}^+}{a_{y[i-1], y[i]}^-}$$

• If $S(y) > 0$ then y is likely to be CpG island

Example: CpG islands

• How can we find a CpG island in a long string?
• We could use a sliding window, but how to choose the size of window?
• Can we combine the two models in one?
• The answer to all of these questions is to use an HMM
Hidden Markov Models

- HMMs were introduced in the ‘70s for speech recognition
- HMMs have shown to be good models for biosequences
- In Comp Bio, they are used mainly
 - for searching databases & alignment
 - for sequence analysis (classification)

Example: CpG islands
Example: CpG islands

• Now we have two states for each symbol, for example “A” can be recognized/generated both by A^+ or A^-
• Within each group of states (+ or -), each group behave as the original MM model
• There is also a (small) probability to switch to the other state
• Since we can expect CpG island smaller than the “sea” then $P(S^-|S^+) > P(S^+|S^-)$

HMM state paths

• It is no longer possible to tell what state the system is by looking at the symbol
• We use π to denoted be the sequence of states (we use integers to denote the states)
• The chain of states follow the transition probabilities
 $$a_{s,t} = P(\pi_i = t | \pi_{i-1} = s)$$
• As before, we introduce the probabilities $a_{0,i}$ from the start state and $a_{s,0}$ to the end state
HMM

• We can formalize the decoupling of symbol from states by introducing the *emission* probabilities

• **Definition**: a state *emits* a symbol based on the following probability distribution

\[e_s(b) = P(y_{i|j} = b \mid \pi_i = s) \]

• In the CpG island examples, these probabilities were all 0 or 1

CpG islands with emission prob.
Mixing source

- Suppose we have a set of dice with 4 faces \{A, T, C, G\}
- 90% of them have distribution \\
 \{p_A=0.25, p_C=0.25, p_G=0.25, p_T=0.25\}
- 10% of them have distribution \\
 \{p_A=0.20, p_C=0.28, p_G=0.30, p_T=0.22\}
- Can we model this generative process with an HMM?

Example
HMMs

• Why “hidden”? Because if we use the previous HMM as a generative model for a string, for example GCAGTCGATA..., the states are kept hidden

• How do we generate a string from a HMM?
 – Choose a new state based on the transition probabilities
 – Choose a symbol based on the emission probabilities

HMMs

• Given a string y of size m generated by a HMM using the path π, we have

$$P(y, \pi) = a_{0,\pi_1} \prod_{i=1}^{m} e_{\pi_i}(y_{[i]}) a_{\pi_i,\pi_{i+1}}$$

where we require $\pi_{m+1} = 0, \pi_0 = 0$

• For example the sequence C+G−C−G+ for the CpG island example has probability $a_{0,C+}a_{C+,G}a_{G-,C}a_{C-,G+a_{G+,0}}$ because the emission probabilities are 1

• In general, however, we do not know the path
Most probable path (*decoding*)

- **Problem**: Given a string y generated by a given HMM find the most probable state path, that is

$$\pi^* = \arg\max_\pi P(y, \pi)$$

- π^* can be found recursively, using Viterbi algorithm

Viterbi algorithm

- Suppose the probability $v_s(i)$ of the most probable path ending in state s at position i for y is known for all the states s, then we can compute $v_t(i+1)$ as follows

$$v_t(i+1) = e_t(y_{[i+1]}) \max_s (v_s(i) \cdot a_{s,t})$$

- Use dynamic programming to tabulate the values of matrix v
- Numerical instabilities can be solved using logarithms
Viterbi algorithm: dyn programming

- Initialization
 \[v_o(0) = 1, v_s(0) = 0 \text{ for } s > 0 \]
- Recursive step
 \[v_t(i) = e_t(y_{ij}) \max_s(v_s(i-1) a_{s,t}) \]
 remember the argmax with a back pointer
- Termination
 \[P(y, \pi^*) = \max_s(v_s(m) a_{s,0}) \]
 find \(\pi^* \) by traceback
Computing $P(y)$

- **Problem**: Given a string y and a hidden Markov model M find the probability that y has been generated by M
- Recall the expression for first order MM

\[
P(y) = P(y_{[1]}) \prod_{i=2}^{m} a_{y_{[i-1]}, y_{[i]}}
\]
- What about HMMs, when we don’t know the path?

Computing $P(y)$

- Because many state paths can generate to the same sequence, we must add them all

\[
P(y) = \sum_{\pi} P(y, \pi) = \sum_{\pi} \left(a_{0, \pi_1} \prod_{i=1}^{m} e_{\pi_i} (y_{[i]}) a_{\pi_i, \pi_{i+1}} \right)
\]
Computing $P(y)$ for an HMM

• How to compute $P(y)$?
• The number of paths can be exponential in the length of the string
• One approximation is to use only the most probable path π^*
• Alternatively, one can use the forward algorithm, which is a dynamic programming algorithm similar to Viterbi

“Forward” algorithm

• Suppose the probabilities $f_s(i) = P(y_{[1,i]}, \pi_i=s)$ are known for all states s, then we can compute $f_t(i+1)$ as follows

$$f_t(i+1) = e_t(y_{[i+1]}) \sum_s f_s(i) a_{s,t}$$

• Again, use dynamic programming to tabulate the matrix f
• Use log space
“Backward” algorithm

• Later we will need the probability of producing the entire y with the i-th symbol of y emitted moving through state s, that is $P(y, \pi_i = s)$

\[
P(y, \pi_i = s) = P(y_{[1:i]}, \pi_i = s) \cdot P(y_{[i+1:m]} | y_{[1:i]}, \pi_i = s)
\]
\[
= P(y_{[1:i]}, \pi_i = s) \cdot P(y_{[i+1:m]} | \pi_i = s)
\]
\[
= f_s(i) \cdot b_s(i)
\]
where we set $b_s(i) = P(y_{[i+1:m]} | \pi_i = s)$

• In fact, every symbol after $y_{[ij]}$ depends only on the state π_i

• Problem: find $b_s(i)$
“Backward” algorithm

• Suppose the probabilities
 \(b_s(i) = P(y_{[i+1,m]} | \pi_i = s) \) are known for all states \(s \),
 then we can compute \(b_t(i-1) \) as follows
 \[
 b_t(i-1) = \sum_s a_{t,s} e_s(y_{[i]}) b_s(i)
 \]
• Use dynamic programming to tabulate the matrix \(b \) (this time starting at the end of the sequence)
• Use log space

Computing the posterior probs

Observe that

\[
P(\pi_i = s | y) = \frac{P(y, \pi_i = s)}{P(y)} = \frac{f_s(i) b_s(i)}{P(y)}
\]

where \(P(y) \) can be obtained either in the forward or the backward algorithm
Parameters estimation

Two are the main issues:

1) The design of the structure: order, states and how they are connected

2) The assignment of the parameters value: transition $a_{s,t}$ and emission probabilities $e_s(b)$

If the state paths are known

- When all the paths are known, estimation is simple: count the number of times a particular transition or emission is used in the training set
- The max likelihood estimation ($h=1$) are

$$a_{s,t} = \frac{f(st)}{\sum_{t' \in \Sigma} f(st')} \quad e_s(b) = \frac{f_s(b)}{\sum_{c \in \Sigma} f_s(c)}$$
If paths are unknown

- A closed-form equation to estimate parameter values is not available anymore
- An iterative procedure must be used
- Several algorithms for optimization of continuous function can be used
- Baum-Welch algorithm [BW 72] is the “standard” learning method for HMMs

Baum-Welch

Key observations:

- If we knew the paths, we could compute transition and emission probabilities
- If we knew the transition and emission probabilities, we could compute the paths (e.g., the most probable paths)
Baum-Welch

Iterative process involving repeating 1&2:

1) Compute the most probable paths from the current values of $a_{s,t}$ and $e_s(b)$

2) Estimate the new parameters using

$$a_{s,t} = \frac{f(st)}{\sum_{t' \in \Sigma} f(st')} \quad e_s(b) = \frac{f_s(b)}{\sum_{c \in \Sigma} f_s(c)}$$

Baum-Welch

- It can be proved that at each iteration of overall likelihood of the model is increased

- We hope it will converge to the global maximum (likelihood)

- Unfortunately, one could get stuck in a local maximum: the one you end up with depends on the initial assignments of the parameters
Baum-Welch

- The “actual” counts $f(st)$ and $f_s(b)$ are not available because we don’t know the paths

- Baum-Welch replaces the actual counts $f(st)$ and $f_s(b)$ with the expected counts, based on the current parameters

\[
P(\pi_i = s, \pi_{i+1} = t \mid y) = \frac{P(\pi_i = s, \pi_{i+1} = t, y)}{P(y)}
\]

\[
= \frac{P(y_{[i,j]}, y_{[j+1,m]}, \pi_i = s, \pi_{i+1} = t)}{P(y)}
\]

\[
= \frac{P(y_{[i+1,m]}, \pi_{i+1} = t \mid y_{[i,j]}, \pi_i = s) \cdot P(y_{[i,j]}, \pi_i = s)}{P(y)}
\]

\[
= \frac{P(y_{[i+1,m]}, \pi_{i+1} = t \mid \pi_i = s) \cdot P(y_{[i,j]}, \pi_i = s)}{P(y)}
\]

\[
= \frac{b_j(i+1) \cdot a_{st} \cdot e_r(y_{[i+1]}) \cdot f_s(i)}{P(y)}
\]
Baum-Welch

Then the expected number of times that $a_{s,d}$ is used can be obtained summing over all positions and over all the k sequences $\{x_1, x_2, \ldots, x_k\}$

$$A_{s,d} = \sum_{j=1}^{k} \frac{1}{P(x_j)} \sum_{i=1}^{|x_j|} f_s^j(i) \ a_{s,d} \ e_i(x_{j,i+1}) \ b_i^j(i+1)$$

where f_s^j is the forward variable for the j-th sequence, and b_i^j is the corresponding backward variable.

Baum-Welch

Similarly, the expected number of times that symbol b is emitted in state s in all the k sequences $\{x_1, x_2, \ldots, x_k\}$

$$E_s(b) = \sum_{j=1}^{k} \frac{1}{P(x_j)} \sum_{\{i=1\ldots|x_j|:x_{j,i}=b\}} f_s^j(i) \ b_s^j(i)$$

where the inner sum is only over the position of x_j for which the emitted symbol is b.
Baum-Welch

• New model parameters are calculated using the usual formula, but this time based on the expected number of times, instead of the actual count

\[a_{s,t} = \frac{A_{s,t}}{\sum_{t' \in \Sigma} A_{s,t'}} \quad e_s(b) = \frac{E_s(b)}{\sum_{c \in \Sigma} E_s(c)} \]

• Then we compute again \(A_{s,t} \) and \(E(b) \) based on the new parameters and iterate

Baum-Welch

• Initialize the model with some random parameters
• Iterative step
 – Set all \(A_{s,t} \) and \(E_s(b) \) variables to zero (or some pseudocount \(r \))
 – For each sequence \(j=1...k \)
 • Compute \(f_j(i) \) for sequence \(j \) using forward algorithm
 • Compute \(b_j(i) \) for sequence \(j \) using backward algorithm
 • Add the contribution of sequence \(j \) to \(A \) and \(E \)
 – Compute the new model parameters
 – Compute the new log likelihood of the model
• Termination
 – Stop when the change in the log likelihood is less than some predefined threshold or max iterations reached
Profile HMM

From “An Introduction to HMM…”
by A. Krogh, 1998

From alignments to HMMs

Alignment

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

Rigid pattern

[AT] [CG] [AC] [ACGT]* A [TG] [GC]

Avg length = (3+1+1)/3 = 1.666
Expgeom distr = 1/(1-.4) = 1.666

From A. Krogh [1998]
Duration modeling

• A typical scenario is to model a stretch of DNA for which the distribution does not change for a certain length

• The simplest model implies that
 \[P(m \text{ symbols}) = (1-p)p^{m-1} \]

• The geometric distribution is not always appropriate to model the length

Profile HMMs

• Profile which allows insertions and/or deletions

From A. Krogh [1998]
Example

Shaded areas are conserved and therefore chosen for the main states

From A. Krogh [1998]

Example

The profile HMM trained on the previous alignment. Dashed lines are low probability transition. Probabilities times 100 are shown in insert states

From A. Krogh [1998]
Example

The same profile HMM, but using a pseudo-count of one. We can use profile HMM to search in databases for similar sequences. To align a sequence to a HMM we use Viterbi’s algorithm.

From A. Krogh [1998]

HMMs for gene finding

From A. Krogh [1998]
HMMs for coding regions

HMMs for unspliced genes
A HMM for spliced genes

From A. Krogh [1998]

A sample of applications of HMMs

- Protein classification
- Alignment and searching (SAM)
- Gene finding (HMMer, HMMgene, Genie, Genscan)
- Splicing sites finding
- Promoter finding
- Translation initiation sites finding
- Prediction of secondary structure of proteins
- Modeling site dependence of evolutionary rates
- …