Problem 1: Isomorphism in suffix trees (25 points)

Provide a formal argument to support the fact below (ideally a proof). An example would not be sufficient. Your argument has to be general.

Fact: In a suffix tree T, the subtree rooted at a node u is isomorphic to the subtree rooted at a node v if and only if there is a directed path of suffix links from node u to node v and the number of leaves in the two subtrees is equal.

Problem 2: Suffix trees and MUMs (25 points)

Given strings x and y, a *maximal unique match* (MUM) is a substring w that occurs precisely once in both x and y and is not contained in any longer word with this property.

1. Given a threshold k, describe an algorithm that produces all the MUMs in x,y longer than k using the suffix tree T built on the concatenation $x$$_1$y$$_2$ where $$_1$, $$_2$ are unique separator symbols.

2. Given a threshold k, describe an algorithm that produces all the MUMs in x,y longer than k using only the suffix tree T built on the string $x$$. To save space, you are not allowed to build a suffix tree for y, or add the suffixes of y to the suffix tree of x.

Give the time complexity (i.e., time as a function of the input sizes $|x|$ and $|y|$) of your algorithms. Your algorithms have to be time-efficient. Also, how much is method (2) more space-efficient than method (1) to find MUMs?
Problem 3: LCP in suffix arrays (25 points)

An essential component in the procedure to search for a pattern y in the suffix array of x is the availability of longest common prefix (LCP) information between any two suffixes of x. In class, we have stated that if one has LCP for all adjacent (sorted) suffixes, he can get the LCP for any other pair of suffixes. Prove the following fact.

Fact: Let $LCP(i, j)$ be the length of the longest common prefix of the suffixes specified in position i and j in the suffix array of x. Then, when $j > i + 1$ we have $LCP(i, j) = \min_{k=i,...,j-1} LCP(k, k+1)$

Hint: Show that the right-hand side of the equation above is both a lower- and an upper-bound on the left-hand side.

Problem 4: Finding maximal repeats using suffix arrays (25 points)

A maximal repeat in a string x is a triple (i, j, l) such that x contains a repeat of length l starting at positions i and j, and this repeat cannot be extended further to the left or right. Formally, $x[i : i + l - 1] = x[j : j + l - 1]$, but $x[i - 1] \neq x[j - 1]$ and $x[i + l] \neq x[j + l]$. Given a string x, design an algorithm that finds the longest maximal repeat in x in time $O(|x|)$, using a suffix array.