Some practice problems

CS218, Winter 2020

Flow
Problem 1 (flow)

Let $G = (V,E)$ be a flow network with source s, sink t and integer capacities. Suppose that we are given a maximum flow f in G.

- Suppose that the capacity of a single edge $(u,v) \in E$ is increased by 1. Give a $O(n+m)$-time algorithm to update the max flow.
- Suppose that the capacity of a single edge $(u,v) \in E$ is decreased by 1. Give a $O(n+m)$-time algorithm to update the max flow.

Problem 1 solution

Answer:

1. Execute one iteration of Ford-Fulkerson. If (u,v) crosses a minimum cut, then the flow will change. In all cases one iteration is enough.
2. The flow f might not be a legal flow (capacities are not satisfied). Look for an augmenting path from u to v. If there is one, reroute the flow through the alternative path. If there is no augmenting path, reduce the flow using an augmenting path from u to s, and from t to v.
Problem 2 (flow)

Which of the following claims are true and which are false. Justify your answer by giving either a (short) proof or a counterexample.

1. In any maximum flow there are no cycles that carry positive flow. (A cycle \(e_1, \ldots, e_k \) carries positive flow iff \(f(e_1) > 0, \ldots, f(e_k) > 0 \).)
2. There always exists a maximum flow without cycles carrying positive flow.
3. If all edges in a graph have distinct capacities, there is a unique maximum flow.
4. If we increase all edge capacities by a positive number \(c \), the minimum cut(s) remains unchanged.
5. If we multiply all edge capacities by a positive number \(c \), the minimum cut(s) remains unchanged.

Problem 2 Solution

1. False. Build a flow network with \(V = \{s, u, v, t\} \) and \(E = \{(s, u), (u, v), (v, t)\} \) with capacities \(c(s, u) = 2, c(u, v) = 1, c(v, t) = 1 \). A max flow is \(f(s, u) = 2, f(u, v) = 1, f(v, t) = 1 \) of value \(|f| = 1 \).

2. True. Let \(f \) be a maximum flow and let \(C \) be a cycle with positive flow. Let \(\delta = \min_{e \in C} f(e) \). Reducing the flow of each edge in \(C \) by \(\delta \) maintains the value of the flow and sets the flow \(f(e) \) of at least one of the edges \(e \in C \) to zero.

3. False. Build a flow network with \(V = \{s, u, v, t\} \) and \(E = \{(s, u), (u, v), (v, t)\} \) with capacities \(c(s, u) = 1, c(u, v) = 2, c(v, t) = 3 \). A max flow is \(f(s, u) = 1, f(u, v) = 0, f(v, t) = 1 \) of value \(|f| = 1 \). Also another flow is \(c(s, u) = 1, c(u, v) = 0, c(v, t) = 1 \).

4. False. Build a flow network with \(V = \{s, u, v_1, v_2, v_3, t\} \) and \(E = \{(s, u), (u, v_1), (u, v_2), (u, v_3), (v_1, t), (v_2, t), (v_3, t)\} \) with capacities \(c(s, u) = 4, c(u, v_1) = 2, c(u, v_2) = 2, c(u, v_3) = 2, c(v_1, t) = 1, c(v_2, t) = 1, c(v_3, t) = 1 \). The minimum cut is between \(v_1, v_2, v_3 \) and \(t \), if we increase all the capacities by one, the new min cut is between \(s \) and \(t \).

5. True. The capacity of every cut is multiplied by \(c \), thus the minimum cut(s) remains unchanged.
Problem 3 (flow)

You are given a flow network G with source s, sink t and unit-edge capacities, i.e., $c(u,v) = 1$ for any $(u,v) \in E$. You are also given a parameter k. We want to delete k edges from G so as to reduce the max flow in G as much as possible. In other words, you should find a set of edges $F \subseteq E$ such that $|F| = k$ and the maximum flow in $G' = (V, E - F)$ is as small as possible. Give a polynomial time algorithm to solve this problem. Analyze the time complexity of your solution.

Algorithm: Compute the min s-t cut (A,B) of network G corresponding to a max flow f of value $|f|$. Consider the set F of directed edges from A to B. If $|F| \geq k$, then we can just remove any k edges from F, otherwise we just remove all edges in F (and some other edges in G to get to k). In any case, the cut (A,B) is still a min cut in the new network, so by the max-flow min-cut theorem, the new flow is $|f| - |F|$. Deleting k edges can’t reduce the value of the maximum flow more than that, so this is optimal. The value of the max flow is at most $n - 1$, since there are at most $n - 1$ edges out of s, each of which can carry at most 1 unit of flow. Each iteration takes $O(m)$ time, the total complexity of FF is $O(nm)$.

Problem 3 Solution