Problem 1. [Greedy] (25 points)
Prove (or disprove) the following statement on the optimal substructure of any shortest path on a weighted graph \(G = (V, E) \). \textbf{Fact:} Let \(p = \{e_1, e_2, \ldots, e_{k-1}\} \) be the shortest path from \(v_1 \) to \(v_k \) in \(G \), composed of the following \(k-1 \) edges \(e_1 = (v_1, v_2), e_2 = (v_2, v_3), \ldots, e_{k-1} = (v_{k-1}, v_k) \). Then, \(\{e_i, \ldots, e_j\} \) must be the shortest path from \(v_i \) to \(v_{j+1} \) for all choices of \(1 \leq i < j < k \).

\textbf{Answer:} Let us decompose shortest path \(p \) into three sub-paths, namely \(\{e_1, e_2, \ldots, e_{i-1}\}, \{e_i, e_{i+1}, \ldots, e_j\} \) and \(\{e_{j+1}, e_{j+1}, \ldots, e_{k-1}\} \) where \(1 \leq i < j < k \). If \(i = 1 \) the first subpath would be empty. If \(j = k-1 \) the third subpath would be empty.

The total weight of \(p \) is the sum of the weights of the three sub-paths. If there was a better path from \(v_i \) to \(v_{j+1} \), then we could replace \(\{e_i, e_{i+1}, \ldots, e_j\} \) in \(p \) with a cheaper path, which would imply that \(p \) was not optimal. This is a contradiction, thus \(\{e_i, e_{i+1}, \ldots, e_j\} \) is the shortest path from \(v_i \) to \(v_{j+1} \).

Problem 2. [Greedy] (25 points)
You are given two unsorted arrays \(A = \{a_0, a_1, a_2, \ldots, a_n\} \) and \(B = \{b_0, b_1, b_2, \ldots, b_n\} \) composed of distinct positive integers. Give a \(O(n \log n) \)-time greedy algorithm that determines an ordering of the elements of \(A \) and \(B \) such that \(W = \prod_{i=1}^{n} a_i b_i \) is maximized. Explain why your algorithm runs in \(O(n \log n) \)-time, and prove the greedy choice property for your algorithm. No need to prove the optimal substructure.

\textbf{Answer:} Here is the algorithm:

- **Algorithm** \textsc{Greedy}(\(A : \text{array}, B : \text{array} \))
 - \textbf{sort} \(A \) and \(B \) in decreasing order
 - \textbf{return} \((A, B) \)

The algorithm is \(O(n \log n) \) because of the sorting step. Next we prove that \textsc{Greedy} has the greedy choice property for this problem.

\textbf{Proof:} The usual exchange argument. Consider any indices \(i \) and \(j \) such that \(i < j \), and consider the terms \(a_i^{b_i} \) and \(a_j^{b_j} \). We want to show that the objective function \(W \) will not get worse by taking \(a_i^{b_i} \) and \(a_j^{b_j} \) instead. In other words, we need to show that \(a_i^{b_i} a_j^{b_j} \geq a_i^{b_j} a_j^{b_i} \). Since \(A \) and \(B \) are sorted in decreasing order and \(i < j \) we have \(a_i \geq a_j \) and \(b_i \geq b_j \). Since \(a_i \) and \(a_j \) are positive and \(b_i - b_j \) is nonnegative, we have \(a_i^{b_i-b_j} \geq a_j^{b_i-b_j} \). Multiplying both sides by \(a_i^{b_j} a_j^{b_j} \) yields \(a_i a_j^{b_j} \geq a_i a_j^{b_j} \).

Problem 3. [Dynamic Programming][Design] (25 points)
You are given a directed graph \(G = (V, E) \), two vertices \(s \) and \(t \), and an integer \(k \). We want to compute the number of paths in \(G \) from \(s \) to \(t \) that have exactly \(k \) edges. The path does not have to be \textit{simple}, i.e., vertices can be used more than once. Give a dynamic-programming algorithm that runs in time \(O((n + m)k) \). Analyze the time- and space-complexity of your algorithm.

\textbf{Answer:} Define \(M[v, i] \) be the number of paths from \(s \) to \(v \in V \) that have exactly \(i \) edges, \(0 \leq i \leq k \). The recurrence relation is

\[M[v, i] = \begin{cases} 1 & \text{if } v = t \text{ and } i = 0 \\ 0 & \text{if } v \neq t \text{ and } i = 0 \\ \sum_{w: (w, v) \in E} M[w, i - 1] & \text{if } i > 0 \end{cases} \]

The algorithm initializes \(M[v, 0] \) for all \(v \) as above, then, for \(i = 1, 2, \ldots, k \), computes \(M[v, i] \) using the recurrence above. There are \(k \) iterations. Each iteration does constant work for each edge and vertex of \(G \), so the total time per iteration is \(O(n + m) \). The space-complexity is \(O(nk) \). The time-complexity is \(O((n + m)k) \).
Problem 4. [Dynamic Programming][Knowledge] (25 points)

We want to extend the LCS dynamic programming algorithm we covered in class to find the longest common subsequence between three strings X, Y and Z.

Let X_i be a prefix of string X of length i, Y_j be a prefix of string Y of length j, and Z_k be a prefix of string Z of length k. If we define $C[i, j, k]$ to store the length of the longest common subsequence between X_i, Y_j, and Z_k, then

$$C[i, j, k] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \text{ or } k = 0 \\
C[i - 1, j - 1, k - 1] + 1 & \text{if } i > 0, j > 0, k > 0 \text{ and } X[i] = Y[j] = Z[k] \\
\max\{C[i - 1, j, k], C[i, j - 1, k], C[i, j, k - 1]\} & \text{otherwise}
\end{cases}$$

The time complexity of this algorithm is $O(lmn)$. The space complexity of this algorithm is $O(lmn)$.