Problem 1. (10 points)

Using the Master method, give an asymptotic tight bound for $T(n)$ defined by the following recurrence relation

$$T(n) = \begin{cases}
2 & n = 2 \\
4T\left(\sqrt{n}\right) + \log^2 n & n > 2
\end{cases}$$

Answer: Let $n = 2^k$ (that is, $\log_2 n = k$). Then

$$T(n) = 4T\left(n^{1/2}\right) + \log^2 n$$
$$T(2^k) = 4T\left(2^{k/2}\right) + k^2$$

Let $S(k) = T(2^k)$. We have

$$S(k) = \begin{cases}
2 & k = 1 \\
4S(k/2) + k^2 & k > 1
\end{cases}$$

We can apply case 2 of the Master Theorem. In fact,

$$k^2 \in \Theta \left(k^{\log_2 4} \log^t k\right)$$

for $t = 0$. Therefore $S(k) \in \Theta (k^2 \log k)$.

Hence, $T(2^k) \in \Theta (k^2 \log k)$, which implies that $T(n) \in \Theta \left(\log^2 n \log \log n\right)$.

Problem 2. (10 points)

We have seen in class that the procedure MERGE in the Mergesort algorithm takes two sorted arrays of size n and produces one fully sorted array of size $2n$ in $O(n)$ time. Use the decision tree method to prove a $2n - o(n)$ lower bound\(^1\) for the problem of merging two sorted arrays, each containing n items.

Answer:

First recall that the Stirling approximation is $n! = \sqrt{2\pi n}(n/e)^n(1 + O(1/n))$.

Note that when we pick n elements for first sorted list, this determined a single, unique second list for the other n elements. Therefore the number of possible ways to divide $2n$ numbers into two sorted lists is the same as the number of ways to select n elements of out $2n$, which is $\binom{2n}{n}$. We have

$$\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{(n!)^2} = \ldots = \frac{2^n}{\sqrt{\pi n}}(1 + O(1/n))$$

\(^1\)The little-oh notation is used here to denote an upper bound that is not asymptotically tight. Formally, we say that $f(n) \in o(g(n))$ if for any positive constant c we can find a constant n_0 such that $0 \leq f(n) < cg(n)$ for all $n \geq n_0$.

by using Stirling’s approximation for the numerator and the denominator. The height of the
decision tree is therefore
\[\log_2 \left(\frac{2^{2n}}{\sqrt{\pi n}} (1 + O(1/n)) \right) = \log_2 2^{2n} - \log_2 \sqrt{\pi n} + \log_2 (1 + O(1/n)) = 2n - o(n) \]

Problem 3. (10 points)
Show how to implement a queue using two stacks \(S_1 \) and \(S_2 \) so that the amortized cost of
each operation on the queue is \(O(1) \). (1) Give the pseudocode for the \textsc{Enqueue}(x) operation
and the \textsc{Dequeue}() operation (you can omit error checking for underflow and overflow of
the stacks). (2) Use the accounting method to charge each operation a constant amortized
cost and prove that a sequence of \(n \) \textsc{Enqueue} and \textsc{Dequeue} cost \(O(n) \) time overall.

Answer: We can implement a queue in the following way.

\textsc{Enqueue}(x)
1. \textsc{Push}(S_1, x)

\textsc{Dequeue}()
1. \textsc{if} \(S_2 \neq \emptyset \)
2. \textsc{then return Pop}(S_2)
3. \textsc{else}
4. \textsc{while} \(S_1 \neq \emptyset \) \textsc{do}
5. \textsc{Push}(S_2, \textsc{Pop}(S_1))
6. \textsc{return Pop}(S_2)

Note that each element is first pushed in \(S_1 \), then is moved to \(S_2 \), and eventually gets
popped. Since each \textsc{Pop} and \textsc{Push} in the stacks costs constant time, we count the overall
number of \textsc{Pop} and \textsc{Push}.

The following is our charging scheme. We charge $4 for \textsc{Enqueue} and $0 for \textsc{Dequeue}.
Out of $4, $1 pays for the \textsc{Push} in \textsc{Enqueue}(x) and $3 are left as credit. When \(x \) is popped
from \(S_1 \) and pushed in \(S_2 \) we remove $2 from the credit. When \(x \) is finally popped from \(S_2 \)
we use the remaining $1 to pay for the \textsc{Pop}.

A series of \(n \) \textsc{Enqueue} and \textsc{Dequeue} operations would take $4n in the worst case \(O(n) \)
overall) and therefore the amortized cost of each operation is \(O(1) \).