Problem 1. (42 points: 6 points if correct, 3 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

\[\log_3 3^n \in \Theta(\log_2 2^n) \quad \square \text{True} \quad \Box \text{False} \]

\[\sqrt{n} \log_2 n^2 \in O(n \log_2 n) \quad \square \text{True} \quad \Box \text{False} \]

\[9^{\log_3 n} \in \Omega(n^2 \log_2 n) \quad \Box \text{True} \quad \square \text{False} \]

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the set of edges visited during the execution of these algorithms are called \textit{tree} or \textit{discovery} edges; \textit{non-tree} edges are the others (also called \textit{back} edges in DFS, \textit{cross} edges in BFS)

If one runs a DFS on a connected undirected graph, the number of back (non-tree) edges is exactly \(m - n + 1 \)
\[\square \text{True} \quad \Box \text{False} \]

An edge \(e \) whose removal disconnects the graph is called a \textit{bridge}; if BFS is run on a connected undirected graph \(G \), it is a possible for a bridge in \(G \) to be a cross (non-tree) edge
\[\Box \text{True} \quad \square \text{False} \]

Given the spanning tree \(T \) formed by the discovery (tree) edges of a BFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \)
\[\square \text{True} \quad \Box \text{False} \]

For a connected undirected graph \(G \), the absence of back (non-tree) edges with respect to a DFS tree implies that \(G \) is acyclic
\[\Box \text{True} \quad \square \text{False} \]
Problem 2. (24 points: 8 points each)

For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. A strongly connected component S in a directed graph $G = (V, E)$ is a maximal subset of the nodes of V such that there is a directed path u to v (and vice versa) for all choices of $u, v \in S$.

2. The topological ordering of a directed acyclic graph $G = (V, E)$ is an ordering of its vertices, say $\{v_1, v_2, \ldots\}$, such that for every directed edge $(v_i, v_j) \in E$, we have that $i < j$.

3. A spanning tree of an undirected graph $G = (V, E)$ is any acyclic subgraph of G, i.e., $T = (V, E')$ such that $E' \subseteq E$ and T acyclic.
Problem 3. (34 points)

Suppose you are given an array $A = \{a_1, a_2, \ldots, a_n\}$ of n distinct integers. You are told that the sequence of values a_1, a_2, \ldots, a_n is unimodal, that is for some index $p \in [1, n]$, the values in the array increase up to position p in A, and then decrease the remainder of the way until position n. Give an algorithm to find the position p in $O(\log n)$ time. You can assume n to be a power of 2. Explain why your algorithm runs in $O(\log n)$ time.

Answer: The algorithm works like a binary search. Compare the elements $A[n/2]$, $A[n/2−1]$ and $A[n/2+1]$ to decide whether to search on the left, on the right, or whether we are done. More specifically

- if $A[n/2−1] < A[n/2] < A[n/2+1]$, then search recursively in the entries $A[n/2+1 \ldots n]$

The algorithm has the same structure of binary search, its recurrence relation is $T(n) = T(n/2) + O(1)$, which has solution $O(\log n)$.