Problem 1. (42 points: 6 points if correct, 3 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).
\[\sqrt{n} \log_2 n^3 \in O(n \log_2 n) \] □ True □ False
\[9^{\log_3 n} \in \Omega(n^2 \log_2 n) \] □ True □ False
\[\log_2 2^n \in \Theta(\sqrt{n} \log_3 3\sqrt{n}) \] □ True □ False

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is "depth first search"; BFS is "breadth first search"; in DFS/BFS the set of edges visited during the execution of these algorithms are called tree or discovery edges; non-tree edges are the others (also called back edges in DFS, cross edges in BFS)

Given the spanning tree \(T \) formed by the discovery (tree) edges of a BFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \) □ True □ False

An edge \(e \) whose removal disconnects the graph is called a bridge; if BFS is run on a connected undirected graph \(G \), it is a possible for a bridge in \(G \) to be a cross (non-tree) edge □ True □ False

For a connected undirected graph \(G \), the absence of back (non-tree) edges with respect to a DFS tree implies that \(G \) is acyclic □ True □ False

If one runs a DFS on a connected undirected graph, the number of back (non-tree) edges is exactly \(m - n + 1 \) □ True □ False
Problem 2. (24 points: 8 points each)

For each of the concepts listed below write a **precise** (possibly **formal**) definition. Do not explain or comment about the corresponding algorithm, if any.

1. The *topological ordering* of a directed acyclic graph $G = (V, E)$ is an ordering of its vertices, say $\{v_1, v_2, \ldots\}$, such that for every directed edge $(v_i, v_j) \in E$, we have that $i < j$.

2. A *strongly connected component* S in a directed graph $G = (V, E)$ is a maximal subset of the nodes of V such that there is a directed path u to v (and vice versa) for all choices of $u, v \in S$.

3. A *spanning tree* of an undirected graph $G = (V, E)$ is any acyclic subgraph of G, i.e., $T = (V, E')$ such that $E' \subseteq E$ and T acyclic.
Problem 3. (34 points)

Suppose you are given an array \(A = \{a_1, a_2, \ldots, a_n\} \) of \(n \) distinct integers. You are told that the sequence of values \(a_1, a_2, \ldots, a_n \) is unimodal, that is for some index \(p \in [1, n] \), the values in the array increase up to position \(p \) in \(A \), and then decrease the remainder of the way until position \(n \). Give an algorithm to find the position \(p \) in \(O(\log n) \) time. You can assume \(n \) to be a power of 2. Explain why your algorithm runs in \(O(\log n) \) time.

Answer: The algorithm works like a binary search. Compare the elements \(A[n/2], A[n/2-1] \) and \(A[n/2+1] \) to decide whether to search on the left, on the right, or whether we are done. More specifically

The algorithm has the same structure of binary search, its recurrence relation is \(T(n) = T(n/2) + O(1) \), which has solution \(O(\log n) \).