First name: __________________________

Last name: __________________________

UCR student ID: ____________________

- This quiz is closed book, closed notes and 30 minutes long
- Read the questions carefully
- No electronic equipment allowed (cell phones, tablets, computers, . . .)
- Write legibly and try to be brief and to the point; what can’t be read will not be graded
- No code: use pseudocode or English to describe your algorithms
- Always remember to analyze the time complexity of your solution
- If you have a question about the meaning of a question, raise your hand
Problem 1. (42 points: 6 points if correct, 3 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

\[\sqrt{n} \log_2 n^3 \in O(n \log_2 n) \quad \square \text{True} \quad \square \text{False} \]

\[9^{\log_3 n} \in \Omega(n^2 \log_2 n) \quad \square \text{True} \quad \square \text{False} \]

\[\log_2 2^n \in \Theta(\sqrt{n} \log_3 3^\sqrt{n}) \quad \square \text{True} \quad \square \text{False} \]

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the the set of edges visited during the execution of these algorithms are called tree or discovery edges; non-tree edges are the others (also called back edges in DFS, cross edges in BFS).

Given the spanning tree \(T \) formed by the discovery (tree) edges of a BFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \) \quad \square \text{True} \quad \square \text{False} \]

An edge \(e \) whose removal disconnects the graph is called a bridge; if BFS is run on a connected undirected graph \(G \), it is a possible for a bridge in \(G \) to be a cross (non-tree) edge \quad \square \text{True} \quad \square \text{False} \]

For a connected undirected graph \(G \), the absence of back (non-tree) edges with respect to a DFS tree implies that \(G \) is acyclic \quad \square \text{True} \quad \square \text{False} \]

If one runs a DFS on a connected undirected graph, the number of back (non-tree) edges is exactly \(m - n + 1 \) \quad \square \text{True} \quad \square \text{False} \]
Problem 2. (24 points: 8 points each)

For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. topological ordering of a directed acyclic graph \(G = (V, E) \)

2. strongly connected component in a directed graph \(G = (V, E) \)

3. spanning tree of an undirected graph \(G = (V, E) \)
Problem 3. (34 points)

Suppose you are given an array $A = \{a_1, a_2, \ldots, a_n\}$ of n distinct integers. You are told that the sequence of values a_1, a_2, \ldots, a_n is unimodal, that is for some index $p \in [1, n]$, the values in the array increase up to position p in A, and then decrease the remainder of the way until position n. Give an algorithm to find the position p in $O(\log n)$ time. You can assume n to be a power of 2. Explain why your algorithm runs in $O(\log n)$ time.