Dynamic Programming

CS218, Winter 2020

Outline

• Intro
• 0-1 Knapsack
• Longest common subsequence
• Bellman-Ford (single source shortest path)
• Floyd-Warshall (all pairs shortest path)
Two key ingredients

- Two key ingredients for an optimization problem to be suitable for a dynamic programming solution

1. optimal substructure

2. overlapping sub-problems

Each substructure is optimal (principle of optimality)

Sub-problems are dependent
Three basic components

- The development of a dynamic programming algorithm has three basic components
 - a recurrence relation (for defining the value/cost of an optimal solution)
 - a tabular computation (for computing the value of an optimal solution)
 - a trace-back procedure (for delivering an optimal solution)

0-1 Knapsack
The Knapsack Problem

- A thief robbing a store finds n items
- The ith item is worth b_i and weighs w_i pounds
- Thief’s knapsack can carry at most W pounds
- b_i, w_i and W are integers
- Problem: What items to select to maximize profit?

The 0-1 Knapsack Problem

- Each item must be either taken or left behind (a binary choice of 0 or 1)
- Exhibits *optimal substructure* property (next)
- 0-1 knapsack problem however cannot be solved by a greedy strategy
- Can be solved (less) efficiently by *dynamic programming*
0-1 Knapsack Problem

- Let $x_i = 1$ denote item i is in the knapsack, $x_i = 0$ denote item i is not in the knapsack.
- Problem stated formally as follows:

$$
\text{maximize } \sum_{i=1}^{n} b_i x_i \quad \text{(total profit)}
$$

subject to $\sum_{i=1}^{n} w_i x_i \leq W \quad \text{(weight constraint)}$

Optimal substructure property

- Let x_1 be first binary choice.
- $((1,2,\ldots,n), W)$ is the original problem.
- (S', W') is the sub-problem, where $S' = \{2,3,\ldots,n\}$, $W' = W - w_1 x_1$.

<table>
<thead>
<tr>
<th>items:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>soln for (S', W'):</td>
<td>\cdot</td>
<td>x_2</td>
<td>x_3</td>
<td>...</td>
<td>x_n</td>
</tr>
</tbody>
</table>

| soln for (S, W): | x_1 | ? | ? | ... | ? |

For x_2, x_3, \ldots, x_n is an optimal solution to (S', W') if and only if

$x_1, x_2, x_3, \ldots, x_n$ is an optimal solution to (S, W).

Proof. Exercise!
Define the problem recursively ...

- Consider the first item \(i = 1 \)

1. If it is selected (in the knapsack)

 \[
 \text{maximize} \quad \sum_{i=2}^{n} b_i x_i \quad \text{subject to} \quad \sum_{i=2}^{n} w_i x_i \leq W - w_1
 \]

2. If it is not selected (not in the knapsack)

 \[
 \text{maximize} \quad \sum_{i=2}^{n} b_i x_i \quad \text{subject to} \quad \sum_{i=2}^{n} w_i x_i \leq W
 \]

- Compute both cases, select the better one.
Recursive Solution

- Let us define $P[i,k]$ as the maximum profit possible using items $\{i, i+1, \ldots, n\}$ and residual (knapsack) capacity k
- We can define $P[i,k]$ recursively as follows

$$
P[i,k] = \begin{cases}
0 & i = n \text{ and } w_i > k \\
b_n & i = n \text{ and } w_i \leq k \\
P[i+1,k] & i < n \text{ and } w_i > k \\
\max\{P[i+1,k], \ b_i + P[i+1,k-w_i]\} & i < n \text{ and } w_i \leq k
\end{cases}
$$

0-1 knapsack (recursive) in Python

```python
def knapsack(items, i, k):
    n = len(items)
    if i == n:
        return b(items[n-1]) if w(items[n-1]) <= k else 0
    if w(items[i-1]) > k:
        return knapsack(items, i+1, k)
    else:
        return max(knapsack(items, i+1, k),
                   b(items[i-1]) + knapsack(items, i+1, k-w(items[i-1])))
```

Remark: $i < n$
Recursive Solution

- We can write an algorithm for the recursive solution based on the four cases
- Recursive algorithm will take $O(2^n)$ time
- Inefficient because $P[i,k]$ for the same i and k will be computed many times
- Example
 - $n=5$, $W=10$, $w=[2, 2, 6, 5, 4]$, $b=[6, 3, 5, 4, 6]$
Dynamic Programming Solution

- The inefficiency could be overcome by computing each $P[i,k]$ once and storing the result in a table for future use.
- The table is filled for $i=n,n-1,\ldots,2,1$ in that order for $1\leq k\leq W$.
- First row (initialization)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>w_{n-1}</th>
<th>w_n</th>
<th>w_{n+1}</th>
<th>\ldots</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[n,k]$</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>b_n</td>
<td>b_n</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Example

$n=5$, $W=10$, $w = [2, 2, 6, 5, 4]$, $b = [2, 3, 5, 4, 6]$
Example

$n = 5, W = 10, w = [2, 2, 6, 5, 4], b = [2, 3, 5, 4, 6]$

\[
P[i, k] = \max \{P[i+1,k], b_i + P[i+1,k-w_i] \}\]
Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6] \)

\[
P[i,k] = \max\{P[i+1,k], \ b_i + P[i+1,k-w_i]\}
\]
Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6] \)

\[
\begin{array}{cccccccccc}
\hline
i/k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
5 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
4 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 10 & 10 & \\
3 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 10 & 11 & \\
2 & 0 & 0 & 3 & 3 & 6 & 6 & 9 & 9 & 9 & 10 & 11 \\
1 & 0 & 0 & 3 & 3 & 6 & 6 & 9 & 9 & 11 & 11 & 11 \\
\hline
\end{array}
\]

\(x = [0,0,1,0,1] \quad x = [1,1,0,0,1] \)

0-1 knapsack in Python (dyn prog)

```python
def knapsack(items, w):
    P, n = {}, len(items)
    for j in range(w+1):
        P[n, j] = b(items[n-1]) if w(items[n-1])<=j else 0
    for i in range(len(items)-1, 0, -1):
        for j in range(w+1):
            if w(items[i-1])>j:
                P[i, j] = P[i+1, j]
            else:
                P[i, j] = max(P[i+1, j],
                              b(items[i-1])+P[i+1, j-w(items[i-1])])
    return P
```

Time- and space-complexity

- Time complexity: $O(nW)$
- Technically, this is not a polynomial time algorithm
- These class of algorithms are called pseudo-polynomial
- Space complexity: $O(nW)$

Longest common subsequence
Longest Common Subsequence

A sequence $Z = \langle z_1, z_2, \ldots, z_k \rangle$ is a subsequence of a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$ if Z can be generated by striking out some (or none) elements from X.

For example, $\langle b, c, d, b \rangle$ is a subsequence of $\langle a, b, c, a, d, c, a, b \rangle$.

Longest Common Subsequence

The longest common subsequence problem is the problem of finding, for given two sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$, a maximum-length common subsequence of X and Y.
Longest Common Subsequence

- For example, given
 \[X = B \ D \ C \ A \ B \ A \]
 \[Y = A \ B \ C \ B \ D \ A \ B \]
- \[Z = \text{LCS}(X, Y) = BCBA \]
- \[X = \begin{array}{cccccc}
 & & & & & \\
 & B & D & C & A & B \\
 & A & B & C & B & D & A & B \\
\end{array} \]

Optimal Substructure

Theorem. Let \(Z = <z_1, \ldots, z_k> \) be any LCS of \(X \) and \(Y \).

1. If \(x_m = y_n \), then \(z_k = x_m = y_n \) and \(Z_{k-1} \) is an LCS of \(X_{m-1} \) and \(Y_{n-1} \).
2. If \(x_m \neq y_n \), then \(z_k \neq x_m \) implies that \(Z \) is an LCS of \(X_{m-1} \) and \(Y \).
3. If \(x_m \neq y_n \), then \(z_k \neq y_n \) implies that \(Z \) is an LCS of \(X \) and \(Y_{n-1} \).

Proof: (case 1: \(x_m = y_n \))

If \(z_k \neq x_m \), we could append \(x_m = y_n \) to \(Z \) to obtain a CS of \(X \) and \(Y \) of length \(k+1 \), which contradicts the optimality of \(Z \). Thus we must have that \(z_k = x_m = y_n \).

Let \(Z_{k-1} \) be a length-\((k-1)\) common subsequence of \(X_{m-1} \) and \(Y_{n-1} \). \(Z_{k-1} \) must be an LCS of \(X_{m-1} \) and \(Y_{n-1} \). If \(W \) is a common subsequence of \(X_{m-1} \) and \(Y_{n-1} \) longer than \(k-1 \), appending \(x_m = y_n \) to \(W \) would make \(W \) longer than \(Z \).
Optimal Substructure

Theorem. Let $Z = <z_1, ..., z_k>$ be any LCS of X and Y.
1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}

Proof: (case 2: $x_m \neq y_n$ and $z_k \neq x_m$)

Since Z does not end in x_m, then Z is a common subsequence of X_{m-1} and Y.

Z is a *longest* common subsequence because if there was a common subsequence W of X_{m-1} and Y with length greater than k, W would also be a common subsequence of X_m and Y, contradicting the optimality of Z. (case 3 is symmetric to case 2)

Recursive Formulation

- Define $c[i, j] =$ length of LCS of X_i and Y_j

\[
c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0, \\
(c[i-1, j-1] + 1) & \text{if } i, j > 0 \text{ and } x_i = y_j, \\
\max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j.
\end{cases}
\]

- We want $c[m,n]$
- This gives a recursive algorithm and solves the problem
- But is it efficient?
Example

\[
c[\alpha, \beta] = \begin{cases}
0 & \text{if } \alpha \text{ empty or } \beta \text{ empty,} \\
c[prefix\alpha, prefix\beta] + 1 & \text{if end}(\alpha) = \text{end}(\beta), \\
\max(c[prefix\alpha, \beta], c[\alpha, prefix\beta]) & \text{if end}(\alpha) \neq \text{end}(\beta).
\end{cases}
\]

LCS in Python

```python
def LCS(X,Y):
    c = {}
    for i in range(len(X)+1):
        for j in range(len(Y)+1):
            if i == 0 or j == 0:
                c[i,j] = 0
            elif X[i-1] == Y[j-1]:
                c[i,j] = c[i-1,j-1] + 1
            else:
                c[i,j] = max(c[i-1,j],c[i,j-1])
    #...continues

Remark: c[i,j] contains the length of an LCS of X[i] and Y[j]

Time: \(O(mn)\)
Reporting the LCS in Python

```python
...continued
i, j = len(X), len(Y)
LCS = []
while c[i, j]:
 while c[i, j] == c[i-1, j]:
 i -= 1
 while c[i, j] == c[i, j-1]:
 j -= 1
 i -= 1
 j -= 1
 LCS.append(X[i])
LCS.reverse()
return LCS

Remark: append matches
Time: O(m+n)
```

Longest Common Subsequence

![Longest Common Subsequence Diagram]
LCS algorithm

- Time complexity: $O(nm)$
- Space complexity: $O(nm)$
- Space can be reduced to linear by observing that we just need the previous row to compute the current row
- The length of the LCS can be computed easily in linear space, but how to traceback?

LCS in linear space

We calculate the optimal LCS path from $(0,0)$ to $(n,m)$ that crosses through $(i,m/2)$ where $i$ ranges from $[0,n]$

Define $length(i)$ as the length of the LCS path from $(0,0)$ to $(n,m)$ that passes through cell $(i, m/2)$, for all choices of $i$
LCS in linear space

- $\text{prefix}(i) = |\text{LCS}(x_{1\ldots\frac{m}{2}}, y_{1\ldots i})|$
- $\text{suffix}(i) = |\text{LCS}(x_{\frac{m}{2}+1\ldots m}, y_{i+1\ldots n})|$
  $= |\text{LCS}(x^{R}_{1\ldots\frac{m}{2}}, y^{R}_{1\ldots n-i})|$
- $\text{length}(i) = \text{prefix}(i) + \text{suffix}(i)$ is the length of the LCS path that passes through cell $(i, \frac{m}{2})$

Define $(\text{mid}, \frac{m}{2})$ as the vertex that contains the optimal LCS path (assume for simplicity there is only one), that is $\text{mid} = \text{argmax}_{0 \leq i \leq n} \text{length}(i)$
Computing Prefix($i$)

Compute $\text{prefix}(i)$ from $0 \to m/2$ where $\text{prefix}(i)$ is the length of the LCS path from (0,0) to ($i$,m/2)

![Diagram showing the LCS path from (0,0) to (i,m/2).]

Computing Suffix($i$)

Compute $\text{suffix}(i)$ from $m/2 \to m$ where $\text{suffix}(i)$ is the length of the LCS path from (n,m) to ($i$,m/2)

![Diagram showing the LCS path from (n,m) to (i,m/2).]
Finding the middle point

- Find the value \( mid \) that maximizes \( \{ prefix(i) + suffix(i) \} \) that is
  \[
  mid = \arg\max_{0 \leq i \leq n} \{ prefix(i) + suffix(i) \}
  \]
- You now have a middle vertex of the maximum path \((mid, m/2)\)
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

\[ \text{Area} = mn \]

Time = Area: Second Pass

- On second pass, the algorithm covers only 1/2 of the area

\[ \text{Area} = \frac{mn}{2} \]
Time = Area: Third Pass

- On third pass, only 1/4th is covered

Area = \( mn/4 \)

Time/space complexity

- \( nm(1 + \frac{1}{2} + \frac{1}{4} + ... ) \leq 2nm \)

- Time complexity \( O(nm) \)

- Space complexity \( O(n+m) \)
Bellman-Ford

Bellman-Ford Algorithm

• Dijkstra’s algorithm does not work when the weighted graph contains negative edges
  – we cannot be greedy anymore on the assumption that the lengths of paths will not decrease in the future
• Bellman-Ford algorithm detects negative cycles (returns \textit{false}) or returns the shortest path-tree
Bellman-Ford Algorithm

- Use \( d[f] \) labels (like in Dijkstra and Prim)
- Initialize \( d[s]=0, d[f]=\infty \) otherwise
- Perform \(|V|-1\) rounds
- In each round, attempt an edge relation for \( all \) the edges in the graph
- An extra round of edge relaxation can tell the presence of a negative cycle

---

**Algorithm Bellman-Ford**\( (G(V,E),s) \)

```plaintext
for each vertex \(u \) in \(V \)
 \(d[u] \leftarrow \infty \)
 \(d[s] \leftarrow 0 \)
for \(i \leftarrow 1 \) to \(|V|-1\) do
 for each edge \((u,v) \) in \(E \) do
 if \(d[v] > d[u] + w(u,v) \) then
 \(d[v] \leftarrow d[u] + w(u,v) \)
 for each edge \((u,v) \) in \(E \) do
 if \(d[v] > d[u] + w(u,v) \) then
 return \(FALSE \)
return \(d[], TRUE \)
```
Iteration 0

Iteration 1
Iteration 2

Iteration 3
Bellman-Ford is a dynamic programming algorithm. Subproblems: paths composed by increasing # of edges

Let \( d(i, j) \) = “cost of the shortest path from source \( s \) to vertex \( i \) that uses at most \( j \) edges/hops”

\[
d(i, j) = \begin{cases} 
0 & \text{if } i = s, j = 0 \\
\infty & \text{if } i \neq s, j = 0 \\
\min_{(k,i) \in E} \{d(k, j-1) + w(k,i), d(i, j-1)\} & \text{if } j > 0
\end{cases}
\]
Let $d(s,v)$ be the length of the (correct) shortest path from $s$ to $v$.

**Lemma:** Assuming there are no negative-weight cycles reachable from $s$, $d[v] = d(s,v)$ holds upon termination of Bellman-Ford for all vertices $v$ reachable from $s$.

**Proof:**
Consider an (acyclic) shortest path $p$, where $p = \langle v_0, v_1, \ldots, v_k \rangle$, $v_0 = s$ and $v_k = v$. The path $p$ has $k \leq |V| - 1$ edges, otherwise $p$ has a cycle. We prove by induction that for $i=0,1,\ldots,k$ we have $d[v_i] = d(s,v_i)$ after the $i$-th pass over the edges of $G$ and that equality is maintained thereafter (path-relaxation property).

**Basis:** $d[v_0] = d(s,v_0) = 0$.

**Inductive step:** assume $d[v_{i-1}] = d(s,v_{i-1})$ after $(i-1)$-st pass. Edge $(v_{i-1},v_i)$ is relaxed at iteration $i$, and therefore $d[v_i] = d(s,v_i)$ and the equality is maintained thereafter.

---

**Correctness**

**Theorem:** Algorithm BF returns the correct TRUE/FALSE value (depending whether a negative cycles exists or not in the graph).

**Case 1:** There is no reachable negative-weight cycle from $s$.

Upon termination of BF, we have for all $(u, v)$:

\[
\begin{align*}
    d[v] &= d(s,v) \\
    \leq d(s,u) + w(u,v) \\
    = d[u] + w(u,v)
\end{align*}
\]

by previous Lemma if $v$ is reachable

$d[v] = d(s,v) = \infty$ otherwise

by triangle inequality

So, algorithm returns TRUE.
Case 2: There exists a $s$-reachable negative-weight cycle $c = \left< v_0, v_1, \ldots, v_k \right>$, where $v_0 = v_k$. Proof by contradiction.

We have $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$

(*)

Suppose algorithm returns TRUE. Then, $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$ for $i = 1, \ldots, k$. Summing the inequality around the cycle, we get

$$\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

But, $\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$ because $v_0 = v_k$ and each vertex in $c$ appears exactly once.

We can show no $d[v_i]$ is infinite. Hence, $0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$.

Contradicts (*). Thus, algorithm returns FALSE.

All-pair shortest path
All-pairs shortest path

• We want to compute the shortest path distance between every pair of vertices in a directed graph $G$ ($n$ vertices, $m$ edges)

• We want to know $D[i,j]$ for all $i,j$, where $D[i,j]=\text{shortest distance from }v_i \text{ to } v_j$

All-pairs shortest path

• If $G$ has no negative-weight edges, we could use Dijkstra repeatedly from each vertex
• Dijkstra runs in $O(m+n \log n)$ time
• It would take $O(n (m+n \log n))$ time, that is $O(n^2 \log n + nm)$ time, which could be as large as $O(n^3)$
All-pairs shortest path

- If $G$ has negative-weight edges (but no negative-weight cycles) we could use Bellman-Ford repeatedly from each vertex.
- Bellman-Ford runs in $O(nm)$.
- It would take $O(n^2m)$ time, which could be as large $O(n^4)$ time.

All-pairs shortest path

- We now see an algorithm to solve the all-pairs shortest path in $O(n^3)$ time.
- The graph can contain negative-weight edges (but no negative-weight cycles).
All-pairs shortest path

• Let $G=(V,E)$ a weighted directed graph

• Let $V=(v_1,v_2,...,v_n)$

• Define cost function $D^k_{i,j} =$ "the shortest distance from $v_i$ to $v_j$ using only vertices $\{v_1,v_2,...,v_k\}$"

A dynamic programming shortest-path

Initially we set

$$D^0_{i,j} = \begin{cases} 
0 & \text{if } i = j \\
\infty & \text{otherwise} \\
w((v_i,v_j)) & \text{if } (v_i,v_j) \in E 
\end{cases}$$
A dynamic programming shortest-path

\[ v_i \ldots v_k = \min \{ v_i \ldots v_{k-1}, v_{k-1} \ldots v_j \} \]

A dynamic programming shortest-path

- The cost of going from \( v_i \) to \( v_j \) using vertices \( 1, \ldots, k \) is the shorter between
  - (do not to use \( v_k \)) The shortest path from \( v_i \) to \( v_j \) using vertices \( 1, \ldots, k-1 \)
  - (use \( v_k \)) The shortest path from \( v_i \) to \( v_k \) using \( 1, \ldots, k-1 \) plus the cost of the shortest path from \( v_k \) to \( v_j \) using \( 1, \ldots, k-1 \)

Then

\[ D^k_{i,j} = \min \{ D^k_{i,j}, D^{k-1}_{i,k} + D^{k-1}_{k,j} \} \]
All-pairs shortest path

**Algorithm** AllPairs($G$):

*Input:* A weighted directed graph $G$ with $n$ vertices numbered $v_1, v_2, \ldots, v_n$

*Output:* A matrix $D$ such that $D[i, j]$ is distance from $v_i$ to $v_j$ in $G$

for $i$ = 1 to $n$
  for $j$ = 1 to $n$
    if $i = j$ then
      Set $D^0[i, j] := 0$ and continue looping
    else
      if $(v_i, v_j)$ is an edge in $G$ then
        Set $D^0[i, j] := w((v_i, v_j))$
      else
        Set $D^0[i, j] := +\infty$
    for $k$ = 1 to $n$
      for $j$ = 1 to $n$
        Set $D^k[i, j] := \min\{D^{k-1}[i, j], D^{k-1}[i, k] + D^{k-1}[k, j]\}$

Return $D^n$

• Floyd-Warshall’s algorithm computes the shortest path distance between each pair of vertices of $G$ in $O(n^3)$ time

• FYI: when the graph is sparse consider Johnson’s algorithm, which has complexity $O(n^2 \log n + nm)$ even if there are negative weights
Reading assignment

• Chapter 15, “Dynamic Programming”
• Section 15.4, “Longest common subsequence”
• Section 15.2, “Matrix chain multiplication”
• Section 24.1, “The Bellman-Ford algorithm”
• Section 25.2, “All-pairs shortest path”