CS 218, Spring 18

Entrance Quiz B

Name (first last) ...

Student ID ...

• This quiz is closed book, closed notes and 30 minutes long
• Read the questions carefully
• No electronic equipment allowed (cell phones, tablets, computers, . . .)
• Write legibly. What can’t be read will not be graded
• Use pseudocode (or English) to describe your algorithms
• Always remember to analyze the time complexity of your solution
• If you have a question about the meaning of a question, raise your hand
Problem 1. (42 points: 6 points if correct, 3 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

\[4^{\log_2 n} \in \Omega(n^2 \log n) \]
\[\log_3 3^{n^2} \in \Theta(n \log_2 2^n) \]
\[\sqrt{n} \log_3 n^2 \in O(n \log_3 n) \]

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the the set of edges visited during the execution of these algorithms are called tree or discovery edges; non-tree edges are the others (also called back edges in DFS, cross edges in BFS)

Given the spanning tree \(T \) formed by the discovery (tree) edges of a DFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \)

An edge \(e \) whose removal disconnects a graph is called a bridge; if DFS is run on a connected undirected graph \(G \), every bridge in \(G \) is a discovery (tree) edge in the DFS tree

For a connected undirected graph \(G \), the presence of a back (non-tree) edge in any DFS visit of \(G \) implies that \(G \) has a cycle

If one runs a BFS on a connected undirected graph, the number of cross (i.e., non-tree) edges is exactly \(m - n + 1 \)
Problem 2. (24 points: 8 points each)

For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. A transitive closure of an undirected graph $G = (V, E)$ is a graph $G = (V, E')$ where $(u, v) \in E'$ if there is a path from u to v in G.

2. The topological ordering of a directed acyclic graph $G = (V, E)$ is an ordering of its vertices, say $\{v_1, v_2, \ldots\}$, such that for every directed edge $(v_i, v_j) \in E$, we have that $i < j$.

3. A spanning tree of an undirected graph $G = (V, E)$ is any acyclic subgraph of G, i.e., $T = (V, E')$ such that $E' \subseteq E$ and T acyclic.

4. A cycle in an undirected graph $G = (V, E)$ is a set of edges $\{(u_1, u_2), (u_2, u_3), \ldots, (u_{l-2}, u_{l-1}), (u_{l-1}, u_l)\}$ where $u_l = u_1$.

5. A binary heap is a nearly complete binary tree where all nodes are either greater than or equal to (or less than or equal) to each of its children.
Problem 3. (34 points)

Given a sorted (low to high) array of distinct integers $A = \{a_1, a_2, \ldots, a_n\}$, describe an $O(\log n)$ algorithm to determine whether there exists an index i such that $a_i = i$. For example, in $\{-10, -3, 3, 5, 7\}$, $a_3 = 3$. In $\{2, 3, 4, 5, 6, 7\}$, there is no such i. Explain briefly how the algorithm works, and why your solution takes $O(\log n)$ time.

Answer: The key observation is that since a_i are sorted and distinct, $a_i - i$ is sorted as well, so we can use binary search. In fact, the algorithm works exactly like binary search.

Algorithm `Search` (A : array, i : integer, j : integer)

if ($i = j$) then return ($A[i] = i$)

let $k \leftarrow \lfloor (j - i) / 2 \rfloor$

if ($A[k] > k$) then return `Search`($A, i, k - 1$)

else return `Search`(A, k, j)

We call the algorithm with `Search`($A, 1, n$). The complexity is $O(\log n)$ because it is modified binary search. Alternatively, one can solve $T(n) = T(n/2) + 1$.