This quiz is closed book, closed notes and 30 minutes long

Read the questions carefully

No electronic equipment allowed (cell phones, tablets, computers, …)

Write legibly. What can’t be read will not be graded

Use pseudocode (or English) to describe your algorithms

Always remember to analyze the time complexity of your solution

If you have a question about the meaning of a question, raise your hand
Problem 1. (42 points: 6 points if correct, 3 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

- \(4^{\log_2 n} \in \Omega(n^2 \log n)\) \(\Box\) True \(\Box\) False
- \(\log_3 3^{n^2} \in \Theta(n \log_2 2^n)\) \(\Box\) True \(\Box\) False
- \(\sqrt{n} \log_3 n^2 \in O(n \log_3 n)\) \(\Box\) True \(\Box\) False

The following questions are on graphs; assume that \(n = |V|\) is the number of vertices, and \(m = |E|\) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the the set of edges visited during the execution of these algorithms are called tree or discovery edges; non-tree edges are the others (also called back edges in DFS, cross edges in BFS)

- Given the spanning tree \(T\) formed by the discovery (tree) edges of a DFS traversal of a connected undirected graph \(G\) started from node \(s\), for each vertex \(v\), the path on tree \(T\) is the shortest path between \(s\) and \(v\) \(\Box\) True \(\Box\) False
- An edge \(e\) whose removal disconnects a graph is called a bridge; if DFS is run on a connected undirected graph \(G\), every bridge in \(G\) is a discovery (tree) edge in the DFS tree \(\Box\) True \(\Box\) False
- For a connected undirected graph \(G\), the presence of a back (non-tree) edge in any DFS visit of \(G\) implies that \(G\) has a cycle \(\Box\) True \(\Box\) False
- If one runs a BFS on a connected undirected graph, the number of cross (non-tree) edges is exactly \(m - n + 1\) \(\Box\) True \(\Box\) False
Problem 2. (24 points: 8 points each)
For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. spanning tree of an undirected graph $G = (V, E)$

2. cycle in an undirected graph $G = (V, E)$

3. binary heap
Problem 3. (32 points)

Given a sorted (low to high) array of distinct integers \(\{a_1, a_2, \ldots, a_n\} \), describe an \(O(\log n) \) algorithm to determine whether there exists an index \(i \) such that \(a_i = i \). For example, in \(\{-10, -3, 3, 5, 7\} \), \(a_3 = 3 \). In \(\{2, 3, 4, 5, 6, 7\} \), there is no such \(i \). Explain briefly how the algorithm works, and why your solution takes \(O(\log n) \) time.