Outline

- Worst case time-complexity
- Asymptotic notation
- Lower bounds
- Discrete Math & Recurrence Relations
- Amortized Analysis
Various algorithmic “complexities”

• We can “rank” algorithms depending on several factors
 – running time ("time complexity")
 – memory requirements ("space complexity")
 – power consumption
 – I/O utilization
 – ease of implementation
 – …
Worst Case Time-Complexity

- **Definition:** The *worst case time-complexity* of an algorithm A is the *asymptotic* running time of A as a *function of the input size*, when the input is the one that makes the algorithm *slower* in the limit.

- How do we measure the running time of an algorithm?

Usage of Python

- We will use Python code (when possible) to describe algorithms (sometimes w English).
- Python is
 - High-level (easy to use and learn)
 - Object-oriented
 - Interpreted (but can be compiled)
 - Portable
 - Free/open-source
Python: an example

• Algorithm for finding the maximum element of an array

```python
def iMax(A):
    currentMax = A[0]
    for i in range(1,len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax
```

… more python-ish

• Algorithm for finding the maximum element of an array

```python
def iMax(A):
    currentMax = A[0]
    for x in A[1:]:
        if currentMax < x:
            currentMax = x
    return currentMax
```
Input size and basic operation examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input size measure</th>
<th>Basic operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching for key in a list of (n) items</td>
<td>Number of items in the list, i.e., (n)</td>
<td>Key comparison</td>
</tr>
<tr>
<td>Multiplication of two matrices</td>
<td>Matrix dimensions or total number of elements</td>
<td>Multiplication of two numbers</td>
</tr>
<tr>
<td>Checking primality of a given integer (n)</td>
<td>size of (n) = number of digits (in binary representation)</td>
<td>Division</td>
</tr>
<tr>
<td>Typical graph problem</td>
<td>#vertices and/or #edges</td>
<td>Visiting a vertex or traversing an edge</td>
</tr>
</tbody>
</table>

Example (Max iterative)

```python
def iMax(A):
    currentMax = A[0]
    for i in range(1, len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax
```

The program executes \(n-1 \) comparisons (irrespective from the type of input) where \(n = \text{len}(A) \) therefore the worst case time-complexity is \(O(n) \)
Example (Max recursive)

```python
def rMax(A):
    if len(A) == 1:
        return A[0]
    return max(rMax(A[1:]),A[0])
```

The program executes \(n - 1 \) comparisons (irrespective from the type of input) therefore the worst case time-complexity is \(O(n) \)

Asymptotic notation
The “Big-Oh” Notation

• **Definition:** Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if there are positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$.

![Diagram illustrating the “Big-Oh” notation](image)
Asymptotic Notation

• Special classes of algorithms
 – constant: \(O(1) \)
 – logarithmic: \(O(\log n) \)
 – linear: \(O(n) \)
 – quadratic: \(O(n^2) \)
 – cubic: \(O(n^3) \)
 – polynomial: \(O(n^k), k \geq 0 \)
 – exponential: \(O(a^n), n > 1 \)

Big Omega

• Definition: Given two functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(\Omega(g(n)) \) if and only if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \geq c \, g(n) \) for \(n \geq n_0 \)

• Property: \(f(n) \) is \(\Omega(g(n)) \) iff \(g(n) \) is \(O(f(n)) \)
Big Theta

- **Definition**: Given two functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Theta(g(n))$ if and only if there are positive constants c_1, c_2 and n_0 such that $c_1 g(n) \leq f(n) \leq c_2 g(n)$ for $n \geq n_0$

- **Property**: $f(n)$ is $\Theta(g(n))$ if and only if "$f(n)$ is $O(g(n))$ AND $f(n)$ is $\Omega(g(n))$"

Asymptotic Analysis of Running Time

- Comparing the asymptotic running time
 - an algorithm that runs in $O(n)$ time is **better** than one that runs in $O(n^2)$ time
 - similarly, $O(\log n)$ is **better** than $O(n)$
 - hierarchy of functions: $\log n < n < n^2 < n^3 < 2^n$

- **Caution**: Beware of very large constant factors. An algorithm running in time $1,000,000 n$ is still $O(n)$ but might be less efficient on your data set than one running in time $2n^2$, which is $O(n^2)$
Time analysis for iterative algorithms

Steps

1. Decide on parameter n indicating input size
2. Identify algorithm’s basic operation
3. Determine worst case(s) for input of size n
4. Set up a sum for the number of times the basic operation is executed
5. Simplify the sum using standard formulas and rules
Example of Asymptotic Analysis

```python
def prefixAverages1(X):
    A = []
    for i in range(len(X)):
        a = 0
        for j in range(i+1):
            a += X[j]  # step
        A.append(a/float(i+1))
    return A
```

...then the algorithm is $O(n^2)$

A faster algorithm

- Observe that

\[
A[i - 1] = \frac{(X[0] + X[1] + \cdots + X[i - 1])}{i} \\
A[i] = \frac{(X[0] + X[1] + \cdots + X[i - 1] + X[i])}{(i + 1)}.
\]
A linear-time algorithm

```python
def prefixAverages2(X):
    A, a = [], 0
    for i in range(len(X)):
        a = a + X[i]
        A.append(a/float(i+1))
    return A
```

A trickier example

- Analyze the worst-case time complexity of the following algorithm, and give a tight bound using the big-theta notation

```python
def weirdLoop(n):
    i = n
    while i >= 1:
        for j in range(i):
            print 'Hello'
        i = i/2
    return
```
Lower bounds: intro

- Most of the class will be devoted to solve certain problems as quickly as possible
- By showing faster and faster algorithms for a specific problem, we are making statements on how easy the problem is
- Sometimes we are interested to show how hard some problems are by proving lower bounds on their complexity
Lower bounds: intro

• This is considerably harder than proving upper bounds because it is no longer enough to examine a single algorithm.

• To prove that a problem P cannot be solved faster than $f(n)$ time for an input of size n, we must prove that every algorithm that solves P has a worst-case running time $\Omega(f(n))$.

Decision-tree model of computation

• Many sorting and searching algorithms are comparison-based, i.e., they sort/search by making comparisons between pairs of objects (examples: binary search, bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, …).

• We define the running time of a decision tree algorithm for a given input to be the number of queries in the path from the root to the leaf.
Decision-tree model

- Each internal node is a *query* (question about the input), edges represent possible answers (constant), each leaf is labeled with a possible output
- **Search**: suppose we want to determine, given a number \(x \), the position of \(x \) in the array \(A \), if any
- The binary search tree is an implicit decision-tree model

Comparison-based search

- Most lower bounds for decision trees are based on the following simple observation: *the answers to the queries must give you enough information to specify any possible output*
- If a problem has \(N \) different outputs, then any decision tree must have at least \(N \) leaves
- If every query has two possible answers, the height of the decision tree must be at least \(\Omega (\log N) \)
- In the search problem, there are \(n+1 \) possible outputs, any decision tree must have at least \(n+1 \) leaves, and thus any decision tree must have depth at least \(\Omega (\log n) \)
- This implies that the standard binary search algorithm is *optimal* (there is no faster algorithm in this model of computation)
Comparison-based sorting

• Let us derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements x_1, x_2, \ldots, x_n (distinct) by counting the number of comparisons
• Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

• The height of this decision tree is a lower bound on the running time
• Every possible input permutation must lead to a separate leaf output
• Since there are $n!$ leaves, the height is at least $\log(n!)$
The Lower Bound

- Any comparison-based sorting algorithms takes at least \(\log(n!) \) time.
- Because of the Stirling’s approximation:
 \[
 n! \approx n^n e^{-n} \sqrt{2\pi n}
 \]
 \[
 \ln(n!) \approx n \ln n - n
 \]
- Thus, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time in the worst case.
- Decision-tree describe almost all well-known sorting algorithms where the actual input values don’t matter, only their order.
- This lower bound does not apply to numbers in a fixed range (e.g., integers) one can sort faster (counting/bucket/radix sort).

Recipe to obtain lower bounds

- Determine the appropriate model of computation for the problem.
- If a decision tree model is appropriate
 - Determine the number of outcomes (leaves) of the tree.
 - The lower bound is the log of the number of leaves in the tree.
Recurrence Relations

Recurrence relation

- A recurrence relation is an equation that recursively define a sequence: each term of the sequence is defined as a function of the preceding term(s).
- For instance,

\[
 f(n) = \begin{cases}
 2 & n=1 \\
 f(n-1) + n & n>1
\end{cases}
\]
Recurrence relations: simple form

\[T(n) = \begin{cases}
 c & \text{if } n = n_0 \\
 a \cdot T(f(n)) + g(n) & \text{otherwise}
\end{cases} \]

MergeSort: sorting recursively

- MergeSort is a divide & conquer algorithm
 - Divide: divide an \(n \)-element sequence into two subsequences of approx \(n/2 \) elements
 - Conquer: sort the subsequences recursively
 - Combine: merge the two sorted subsequences to produce the final sorted sequence
MergeSort

def mergesort(A):
 if len(A) < 2:
 return A
 else:
 m = len(A)/2
 l = mergesort(A[:m])
 r = mergesort(A[m:])
 return merge(l,r)

Example

Figure 4.2: Merge-sort tree T for an execution of the merge-sort algorithm on a sequence with 8 elements: (a) input sequences processed at each node of T; (b) output sequences generated at each node of T.
Merge of MergeSort

```python
def merge(l, r):
    result, i, j = [], 0, 0
    while i < len(l) and j < len(r):
        if l[i] <= r[j]:
            result.append(l[i])
            i += 1
        else:
            result.append(r[j])
            j += 1
    result += l[i:]
    result += r[j:]
    return result
```

MergeSort Analysis

- **Divide:** Just computes the middle of the subsequence, thus takes constant time:
 \[T(n) = \Theta(1) \]
- **Conquer:** We solve 2 subproblems of size approximately \(n/2 \):
 \[a = 2, \quad b = 2 \]
- **Combine:** Merge takes \(\Theta(n) \):
 \[C(n) = \Theta(n) \]
- Noting that \(\Theta(n) + \Theta(1) \) is still \(\Theta(n) \), we get:
 \[T(n) = \Theta(1) \quad \text{if } n = 1 \]
 \[2T(n/2) + \Theta(n) \quad \text{if } n > 1 \]
- Later we will see that:
 \[T(n) = \Theta(n \log n) \]
Solving recurrence relations: Methods

• Two methods for solving recurrences
 – Iterative substitution method
 – Master method

 (Recursion Tree)
 (Guess-and-Test method)
Mergesort recurrence relation

\[T(N) = 2T\left(\frac{N}{2}\right) + N \quad \text{for } N \geq 2 \]
\[T(1) = 1 \]

\[T(N) = 2 \left(2T\left(\frac{N}{4}\right) + \frac{N}{2} \right) + N \]
\[= 4T\left(\frac{N}{4}\right) + 2N \]
\[= 4 \left(2T\left(\frac{N}{8}\right) + \frac{N}{4} \right) + 2N \]
\[= 8T\left(\frac{N}{8}\right) + 3N \]
\[= \ldots \]
\[= 2^i T\left(\frac{N}{2^i}\right) + iN \]

The expansion stops for \(i = \log_2 N \), so that
\[T(N) = N + N \log_2 N \]
Verify the correctness

• How to verify the solution is correct?

• Use proof by induction!

• Important: make sure the constant c works for both the base case and the induction step

Proof by induction

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{otherwise} \end{cases}$$

Fact: $T(n) \in O(n \log_2 n)$.

Proof. Base case: $T(2) = 2T(1) + 2 = 4 \leq c(2 \log_2 2) = 2c$.

Hence, $c \geq 2$.

Induction hypothesis: $T(n/2) \leq c \frac{n}{2} \log_2 \frac{n}{2}$

Induction: $T(n) = 2T(n/2) + n$

$$\leq 2c \frac{n}{2} \log_2 \frac{n}{2} + n$$

$$= cn \log_2 \frac{n}{2} + n = cn \log_2 n - cn \log_2 2 + n$$

$$= cn \log_2 n + n(1 - c) \leq cn \log_2 n \text{ when } c \geq 1$$

Choose $c = 2$.
Towers of Hanoi

Goal: transfer all N disks from peg A to peg C

Rules:
- move one disk at a time
- never place larger disk above smaller one

Recursive solution:
- transfer $N - 1$ disks from A to B
- move largest disk from A to C
- transfer $N - 1$ disks from B to C

Total number of moves:
- $T(N) = 2T(N - 1) + 1$
Towers of Hanoi

```python
def hanoi(n, a='A', b='B', c='C '):
    if n == 0:
        return
    hanoi(n-1, a, c, b)
    print a, '->', c
    hanoi(n-1, b, a, c)
```

Towers of Hanoi: Recurrence Relation

Solve

\[
T(N) = \begin{cases}
2T(N-1) + 1 & N > 1 \\
1 & N = 1
\end{cases}
\]
Towers of Hanoi: Unfolding the relation

\[T(N) = 2 \left(2 \cdot T(N-2) + 1 \right) + 1 = \]
\[= 4 \cdot T(N-2) + 2 + 1 = \]
\[= 4 \left(2 \cdot T(N-3) + 1 \right) + 2 + 1 = \]
\[= 8 \cdot T(N-3) + 4 + 2 + 1 = \]
\[\vdots \]
\[= 2^i \cdot T(N-i) + 2^{i-1} + 2^{i-2} + \ldots + 2^1 + 2^0 \]

the expansion stops when \(i = N - 1 \)

\[T(N) = 2^{N-1} + 2^{N-2} + 2^{N-3} + \ldots + 2^1 + 2^0 \]

This is a geometric sum, so that we have:

\[T(N) = 2^N - 1 \in \Theta(2^N) \]

Problem

Problem: Solve exactly (by iterative substitution)

\[T(n) = \begin{cases}
4 & n = 1 \\
4T(n-1) + 3 & n > 1
\end{cases} \]
Problem

Problem: Solve exactly (by iterative substitution)

\[T(n) = \begin{cases}
4 & n = 1 \\
4T(n-1) + 3 & n > 1
\end{cases} \]

Solution: \(T(n) = 4^n + 4^{n-1} - 1 \)

Another example

\[T(N) = 2T(\sqrt{N}) + 1 \quad T(2) = 0 \]

\[
\begin{align*}
2T(N^{1/2}) + 1 \\
2(2T(N^{1/4}) + 1) + 1 \\
4T(N^{1/4}) + 1 + 2 \\
8T(N^{1/8}) + 1 + 2 + 4 \\
&\vdots
\end{align*}
\]
Another example

\[2^i T \left(\frac{1}{N^{2^i}} \right) + 2^0 + 2^1 + ... + 2^i - 1 \]

The expansion stops for \(N^{2^i} = 2 \)
i.e., \(i = \log \log N \)

\[T(N) = 2^0 + 2^1 + ... + 2^{\log \log N} - 1 = \log N - 1 \]

Master Theorem method

| T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} |

Theorem 5.6 [The Master Theorem]: Let \(f(n) \) and \(T(n) \) be defined as above.

1. If there is a small constant \(\epsilon > 0 \) such that \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \).
2. If there is a constant \(k \geq 0 \) such that \(f(n) \) is \(\Theta(n^{\log_b a} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a} \log^{k+1} n) \).
3. If there are small constants \(\epsilon > 0 \) and \(\delta < 1 \) such that \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \) and \(af(n/b) \leq \delta f(n) \), for \(n \geq d \), then \(T(n) \) is \(\Theta(f(n)) \).

\(n/b \) stands for \(\lfloor n/b \rfloor \) or \(\lceil n/b \rceil \)
Master Theorem

<table>
<thead>
<tr>
<th>Condition on $f(n)$</th>
<th>Condition</th>
<th>Conclusion on $T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O\left(n^{\log_b a - \varepsilon}\right)$</td>
<td>$\varepsilon > 0$</td>
<td>$\Theta\left(n^{\log_b a}\right)$</td>
</tr>
<tr>
<td>$\Theta\left(n^{\log_b a \log^k n}\right)$</td>
<td>$k \geq 0$</td>
<td>$\Theta\left(n^{\log_b a \log^{k+1} n}\right)$</td>
</tr>
<tr>
<td>$\Omega\left(n^{\log_b a + \varepsilon}\right)$</td>
<td>$\varepsilon > 0$, $\delta < 1$ (\frac{af(n/b)}{d} \leq \delta f(n))</td>
<td>$\Theta\left(f(n)\right)$</td>
</tr>
</tbody>
</table>

Master method (first case)

Example 5.7: Consider the recurrence

$$T(n) = 4T(n/2) + n.$$

In this case, $n^{\log_b a} = n^{\log_2 4} = n^2$. Thus, we are in Case 1, for $f(n)$ is $O(n^{2-\varepsilon})$ for $\varepsilon = 1$. This means that $T(n)$ is $\Theta(n^2)$ by the master method.
Master method: Hanoi (first case w substitution)

- Hanoi has for any $n > 0$ a running time of
 $$T(n) = 2T(n-1) + 1.$$
 In order to bring this into a form such that the Master Theorem is applicable, we rename $n = \lg m$:
 $$T(\lg m) = 2T(\lg m - 1) + 1$$
 $$= 2T(\lg m - \lg 2) + 1$$
 $$= 2T(\lg (m/2)) + 1$$
 Defining $S(m) = T(\lg m)$ we get the new recurrence:
 $$S(m) = 2S(m/2) + 1$$
 Hence $a = 2$, $b = 2$, $f(m) = 1$. Since $1 = m^\log_2 2 - 1$ the first case applies with $\varepsilon = 1$ and we get:
 $$S(m) = \Theta(m)$$
 With $S(m) = T(\lg m)$ and $n = \lg m$ we finally get:
 $$T(n) = \Theta(2^n)$$

Master method (second case)

Example 5.8: Consider the recurrence

$$T(n) = 2T(n/2) + n \log n,$$

which is one of the recurrences given above. In this case, $n^{\log_2 a} = n^{\log_2 2} = n$. Thus, we are in Case 2, with $k = 1$, for $f(n)$ is $\Theta(n \log n)$. This means that $T(n)$ is $\Theta(n \log^2 n)$ by the master method.
Master method: binary search (second case)

- The Master Theorem allows us to ignore the floor or ceiling function around \(n/b\) in \(T(n/b)\) in general.
- Binary Search has for any \(n > 0\) a running time of
 \[T(n) = T(n/2) + \Theta(1). \]
 Hence \(a = 1, b = 2, f(n) = \Theta(1)\). Since \(1 = n^{\log_2 1}\) the second case applies and we get:
 \[T(n) = \Theta(\lg n) \]

Master method: merge-sort (second case)

- For arbitrary \(n > 0\), the running time of Merge-Sort is
 \[
 T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}
 \]
 We can approximate this from below and above by
 \[
 T(n) = \begin{cases} 2 T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \\ 2 T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}
 \]
 respectively. According to the Master Theorem, both have the same solution which we get by taking
 \(a = 2, b = 2, f(n) = \Theta(n)\).
 Since \(n = n^{\log_2 2}\), the second case applies and we get:
 \[T(n) = \Theta(n \lg n) \]
Master method (second case w substitution)

Example 5.11: Finally, consider the recurrence

\[T(n) = 2T(n^{1/2}) + \log n. \]

This equation is unfortunately not in a form that allows us to use the master method. We can put it into such a form, however, by introducing the variable \(k = \log n \), which lets us write

\[T(n) = T(2^k) = 2T(2^{k/2}) + k. \]

Substituting into this the equation \(S(k) = T(2^k) \), we get that

\[S(k) = 2S(k/2) + k. \]

Now, this recurrence equation allows us to use master method, which specifies that \(S(k) \) is \(O(k \log k) \). Substituting back for \(T(n) \) implies \(T(n) \) is \(O(\log n \log \log n) \).

Master method (third case)

Example 5.9: Consider the recurrence

\[T(n) = T(n/3) + n, \]

which is the recurrence for a geometrically decreasing summation that starts with \(n \).

In this case, \(n^{\log_3 1} = n^{0} = 1 \). Thus, we are in Case 3, for \(f(n) = \Omega(n^{0+\varepsilon}) \), for \(\varepsilon = 1 \), and \(af(n/b) = n/3 = (1/3)f(n) \). This means that \(T(n) \) is \(\Theta(n) \) by the master method.

Example 5.10: Consider the recurrence

\[T(n) = 9T(n/3) + n^{2.5}. \]

In this case, \(n^{\log_3 9} = n^{2.5} \). Thus, we are in Case 3, for \(f(n) = \Omega(n^{2+\varepsilon}) \), for \(\varepsilon = 1/2 \), and \(af(n/b) = 9(n/3)^{2.5} = (1/3)^{1/2}f(n) \). This means that \(T(n) \) is \(\Theta(n^{2.5}) \) by the master method.
Amortized analysis

Amortized Analysis

- In amortized analysis we care for the temporal cost of one operation when considered in an aggregate sequence of n operations.
- In a sequence of n operations, some operations may be cheap, some may be expensive.
- The amortized cost of an operation equals the total cost of the n operations divided by n.

Amortized Analysis

- The goal is to find an upper bound for the total time complexity $T(n)$ required for a sequence of n operations
- Formally: if your algorithm takes a total $T(n)$ time/work for n operations, then the \textit{amortized cost} of each operation is $T(n)/n$

Amortized Analysis: Outline

- We will prove amortized run times using the \textit{accounting method}
- We present how the accounting works with two examples
 - Stack example
 - Binary counter example
- Other amortized techniques
 - Aggregate analysis
 - Potential method
Amortized Analysis: Stack Example

Consider a stack S that holds up to n elements and it has the following three operations:

- **PUSH**(S, x) pushes object x in stack S
- **POP**(S) pops top of stack S
- **MULTIPOP**(S, k) ... pops the k top elements of S or pops the entire stack if it has less than k elements

• How much a sequence of n **PUSH()**, **POP()** and **MULTIPOP()** operations cost?
 - A **MULTIPOP()** may take $O(n)$ time in the worst-case
 - Naïve analysis: a sequence of n such operations may take $O(n \cdot n) = O(n^2)$ time since we may call n **MULTIPOP()** operations of $O(n)$ time each

• With accounting method (amortized analysis) we can show a better run time of $O(1)$ per operation
Amortized Analysis: Stack Example

- Devise a charging scheme that accounts for the time of a basic operation (in this case, either push or pop of one element)

- Proposed charging scheme
 - Charge $2 for operation `PUSH()`
 - $1 pays for the cost of pushing an element
 - $1 is deposited on the element to pay when/if POP-ed later by either `POP()` or `MULTIPOP()`
 - Charge $0 for `POP()` and a `MULTIPOP()`

Amortized Analysis: Stack Example

- `Push(a)` = $2
 - $1 pays for push and $1 is deposited

- `Push(b)` = $2
 - $1 pays for push and $1 is deposited

- `Push(c)` = $2
 - $1 pays for push and $1 is deposited

- `MULTIPOP()` costs nothing because you have the $1 bills to pay for the pop operations!
Accounting Method

- We operate with a budget $T(n)$
 - A sequence of n \texttt{POP()}, \texttt{MULTIPOP()}, and \texttt{PUSH()} operations needs a budget $T(n)$ of at most $2n$
 - Each operation costs $\frac{T(n)}{n} = \frac{2n}{n} = O(1)$ amortized time

Binary Counter Example

- Let A be a n-bit counter $A[n-1]...A[0]$ (counts from 0 to 2^n-1)
 - How much time does it take to increment the counter n times starting from zero?
 - We want to measure the number $T(n)$ of bits we need to flip (0→1 and 1→0) as we increment the n-bit counter (time complexity)
Binary Counter Example

```python
def increment(A):
    i=0
    while i<len(A) and A[i]==1:
        A[i]=0
        i+=1
    if i<len(A):
        A[i]=1
    return A
```

This procedure resets the first \(i \)-th sequence of 1 bits and sets \(A[i] \) equal to 1 (ex. 0011 \(\rightarrow \) 0100, 0101 \(\rightarrow \) 0110, 1111 \(\rightarrow \) 0000)

4-bit Binary Counter Example

<table>
<thead>
<tr>
<th>Counter value</th>
<th>COUNTER</th>
<th>Bits flipped (work (T(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>15</td>
</tr>
</tbody>
</table>

Highlighted are bits that flip at each increment
Binary Counter Example

- A naïve analysis would show that a sequence of \(n \) operations on a \(n \)-bit counter needs \(O(n^2) \) work
 - Each \textsc{Increment}() takes up to \(O(n) \) time \(\rightarrow \) \(n \) \textsc{Increment}() operations can take \(O(n^2) \) time

- Amortized analysis with accounting method
 - We show that amortized cost per \textsc{Increment}() is only \(O(1) \) and the total work \(O(n) \)
 - Aggregate analysis: Prove that \(T(n) \) is never twice the amount of counter value (total # of increments)

Binary Counter Example

- Charge $0 for \(A[i]=0 \)
- Charge $2 for \(A[i]=1 \)
 - $1 pays for the 0\(\rightarrow \)1 flip in \(A[i]=1 \)
 - $1 is deposited to pay for the 1\(\rightarrow \)0 flip later in \(A[i]=0 \)

- Therefore, a sequence of \(n \) \textsc{Increments}() needs
 \[T(n) = 2n \] $

 \[\ldots \text{each } \textsc{Increment}() \text{ has an amortized cost of } \]
 \[2n/n = O(1) \]
Binary Counter Example

Credit invariant

$0\ 0\ 0\ 0\ \rightarrow\ 0\ 0\ 0\ 1\ \rightarrow\ 0\ 0\ 1\ 0$

• Charge 2 for every $0\rightarrow1$ bit flip, 1 pays for the actual operation

• Every 1 bit has 1 deposited to pay for $1\rightarrow0$ bit flip later

Recipe for amortized complexity

• Assign a cost to each operation so that its computational cost is paid for the $$ assigned to it or paid with credit (is there a way to assign zero $ for variable cost operations?)

• State/prove the credit invariant and show that it is sufficient to pay for future operations

• Compute the total cost $T(n)$ for n arbitrary operations

• The amortized complexity is $T(n)/n$
Reading assignment

- Chapter 3, “Growth of Functions”
- Section 8.1, “Lower bounds for sorting”
- Chapter 4, “Recurrences”
- Chapter 17, “Amortized Analysis”