Problem 1. (30 points)
Using the Master method, give an asymptotic tight bound for \(T(n) \) defined by the following recurrence relation

\[
T(n) = \begin{cases}
2 & n = 2 \\
4T\left(\sqrt{n}\right) + \log^2 n & n > 2
\end{cases}
\]

Answer: Let \(n = 2^k \) (that is, \(\log_2 n = k \)). Then

\[
T(n) = 4T\left(n^{1/2}\right) + \log^2 n \\
T(2^k) = 4T\left(2^{k/2}\right) + k^2
\]

Let \(S(k) = T(2^k) \). We have

\[
S(k) = \begin{cases}
2 & k = 1 \\
4S(k/2) + k^2 & k > 1
\end{cases}
\]

We can apply case 2 of the Master Theorem. In fact,

\[
k^2 \in \Theta\left(k^{\log_2 4 \log^t k}\right)
\]

for \(t = 0 \). Therefore \(S(k) \in \Theta(k^2 \log k) \).

Hence, \(T(2^k) \in \Theta(k^2 \log k) \), which implies that \(T(n) \in \Theta\left(\log^2 n \log \log n\right) \).

Problem 2. (30 points)
Consider the following multi-search problem. Let \(A[1, \ldots, n] \) be a fixed array of distinct integers. Given an array \(X[1, \ldots, k] \), we want to find the position (if any) of each integer \(X[i] \) in the array \(A \). In other words, we want to compute an array \(I[1, \ldots, k] \) where for each \(i \), either \(I[i] = 0 \) (so zero means ‘none’) or \(A[I[i]] = X[i] \). Determine the complexity of this problem, as a function of \(n \) and \(k \), in the binary decision tree model.

Answer: For each element \(X[i] \), we need to report its position in \(A \) or report that it does not exist. So the number of possible outputs is \(n + 1 \) for each element \(X[i] \). For \(k \) queries \(X[1, \ldots, k] \), the number of all possible output configurations is \((n + 1)^k\). The height of the decision tree (assuming a comparison-based computation model) is therefore \(\Omega(k \log_2 n) \), which is the lower bound on this problem. Note that we can achieve this lower bound when the array \(A \) is sorted by running \(k \) binary searches, for a total of \(O(k \log_2 n) \).

Problem 3. (40 points)
Show how to implement a queue using two stacks \(S_1 \) and \(S_2 \) so that the amortized cost of each operation on the queue is \(O(1) \). (1) Give the pseudocode for the \texttt{ENQUEUE}(x) operation
and the \texttt{Dequeue()} operation (you can omit error checking for underflow and overflow of the stacks). (2) Use the accounting method to charge each operation a constant amortized cost and prove that a sequence of \(n \) \texttt{Enqueue} and \texttt{Dequeue} cost \(O(n) \) time overall.

\textbf{Answer:} We can implement a queue in the following way.

\texttt{Enqueue}\((x)\)
1. \texttt{Push}\((S_1, x)\)

\texttt{Dequeue}()
1. if \(S_2 \neq \emptyset \)
2. then \texttt{return} \texttt{Pop}(S_2)
3. else
4. while \(S_1 \neq \emptyset \) do
5. \texttt{Push}(S_2, \texttt{Pop}(S_1))
6. \texttt{return} \texttt{Pop}(S_2)

Note that each element is first pushed in \(S_1 \), then is moved to \(S_2 \), and eventually gets popped. Since each \texttt{Pop} and \texttt{Push} in the stacks costs constant time, we count the overall number of \texttt{Pop} and \texttt{Push}.

The following is our charging scheme. We charge $4 for \texttt{Enqueue} and $0 for \texttt{Dequeue}. Out of $4, $1 pays for the \texttt{Push} in \texttt{Enqueue}(x) and $3 are left as credit. When \(x \) is popped from \(S_1 \) and pushed in \(S_2 \) we remove $2 from the credit. When \(x \) is finally popped from \(S_2 \) we use the remaining $1 to pay for the \texttt{Pop}.

A series of \(n \) \texttt{Enqueue} and \texttt{Dequeue} operations would take $4n in the worst case (\(O(n) \) overall) and therefore the amortized cost of each operation is \(O(1) \).