• This quiz is closed book, closed notes and 35 minutes long
• Read the questions carefully
• No electronic equipment allowed (cell phones, PDAs, computers, . . .)
• Write legibly. What can’t be read will not be graded
• Use pseudocode (or English) to describe your algorithms
• Always remember to analyze the time complexity of your solution
• If you have a question about the meaning of a question, raise your hand
Problem 1. (45 points: 5 points if correct, 2.5 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

4^{\log_2 n} \in \Omega(n^2 \log n) \quad \square True \quad \square False

\log_3 3^{n^2} \in \Theta(n \log_2 2^n) \quad \square True \quad \square False

\sqrt{n} \log_3 n^2 \in O(n \log_3 n) \quad \square True \quad \square False

HEAP-SORT runs in \(O(n) \) time \quad \square True \quad \square False

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the the set of edges visited during the execution of these algorithms are called *tree* or *discovery* edges; *non-tree* edges are the others (also called back edges in DFS, cross edges in BFS)

An undirected complete graph with \(n \) nodes has exactly \(n(n - 1)/2 \) edges \quad \square True \quad \square False

Given the spanning tree \(T \) formed by the discovery (tree) edges of a DFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \) \quad \square True \quad \square False

An edge \(e \) whose removal disconnects a graph is called a bridge; if DFS is run on a connected undirected graph \(G \), every bridge in \(G \) is a discovery (tree) edge in the DFS tree \quad \square True \quad \square False

For a connected undirected graph \(G \), the presence of a back (non-tree) edge in any DFS visit of \(G \) implies that \(G \) has a cycle \quad \square True \quad \square False

If one runs a BFS on a connected undirected graph, the number of cross (non-tree) edges is exactly \(m - n + 1 \) \quad \square True \quad \square False
Problem 2. (25 points: 5 points each)

For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. transitive closure of an undirected graph \(G = (V, E) \)

2. topological ordering of a directed acyclic graph \(G = (V, E) \)

3. spanning tree of an undirected graph \(G = (V, E) \)

4. cycle in an undirected graph \(G = (V, E) \)

5. binary heap
Problem 3. (30 points)

You are given an unsorted array $A[1\ldots n]$ of n distinct integers. We say that $A[i]$ is a
local maximum if $A[i]$ is bigger than its neighbors, that is, $A[i] > A[i-1]$ (if $i \neq 1$) and
$A[i] > A[i+1]$ (if $i \neq n$). For instance in $A = \{3, 4, 1, 2, 6, 0, 8, 9\}$, 4 is a local maximum, 6
is a local maximum, and 9 is a local maximum. Give an $O(\log n)$-time algorithm to find any
of the local maximum in A. If there is more than one local maximum in A, we are OK with
any one of them. Explain briefly how the algorithm works, and why it runs on $O(\log n)$ time.
You can assume that n is a power of two. Hint: If $A[i]$ is not a local maximum because
$A[i] < A[i+1]$, then must there be some local maximum $A[j]$ with $j > i$?